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R2-IRREDUCIBLE UNIVERSAL COVERING SPACES OF
P2-IRREDUCIBLE OPEN 3-MANIFOLDS

Robert Myers

An irreducible open 3-manifold W is R2-irreducible if it
contains no non-trivial planes, i.e. given any proper embed-
ded plane Π in W some component of W−Π must have closure
an embedded halfspace R2 × [0,∞). In this paper it is shown
that if M is a connected, P2-irreducible, open 3-manifold such
that π1(M) is finitely generated and the universal covering
space M̃ of M is R2-irreducible, then either M̃ is homeomor-
phic to R3 or π1(M) is a free product of infinite cyclic groups
and fundamental groups of closed, connected surfaces other
than S2 or P2. Given any finitely generated group G of this
form, uncountably many P2-irreducible, open 3-manifolds M
are constructed with π1(M) ∼= G such that the universal cov-
ering space M̃ is R2-irreducible and not homeomorphic to
R3; the M̃ are pairwise non-homeomorphic. Relations are es-
tablished between these results and the conjecture that the
universal covering space of any irreducible, orientable, closed
3-manifold with infinite fundamental group must be homeo-
morphic to R3.

1. Introduction.

Suppose M is a connected, P2-irreducible, open 3-manifold with π1(M)
finitely generated and non-trivial. It is easy to construct examples of such
M for which the universal covering space M̃ is not homeomorphic to R3.
Start with any 3-manifold N satisfying the given conditions. Let U be a
Whitehead manifold, i.e. an irreducible, contractible, open 3-manifold
which is not homeomorphic to R3(see e.g. [17], [4]). Choose end-proper
embeddings of [0,∞) in each of N and U . (A map between manifolds is
end-proper if pre-images of compact sets are compact; it is ∂-proper if
the pre-image of the boundary is the boundary; it is proper if it has both
these properties. These terms are applied to a submanifold if its inclusion
map has the corresponding property.) Let X and Y be the exteriors of these
rays. (The exterior of a submanifold is the closure of the complement of a
regular neighborhood of it.) ∂X and ∂Y are each planes. We identify them
to obtain a P2-irreducible open 3-manifold M with π1(M) ∼= π1(N). Let
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p : M̃ → M be the universal covering map. Then M̃ , p−1(X), and p−1(Y )
are P2-irreducible [5]. Each component Ỹ of p−1(Y ) has interior Ũ homeo-
morphic to U and so contains a compact, connected subset J which does not
lie in a 3-ball in Ũ . If M̃ were homeomorphic to R3 then J would lie in a
3-ball B in M̃ . Standard general position and minimality arguments applied
to ∂B and ∂Ỹ would then yield a 3-ball B′ in Ũ containing J , a contra-
diction. Alternatively, one could use the Tucker Compactification Theorem
[15] to obtain a compact polyhedron K in Ũ such that some component V of
Ũ −K has non-finitely generated fundamental group. But this is impossible
since the union of V and M̃−Ũ is a component of M̃−K whose fundamental
group is isomorphic to π1(V ).

In this example ∂Ỹ is a non-trivial plane in M̃ , i.e. a proper plane Π
such that no component of M̃ −Π has closure homeomorphic to R2 × [0,∞)
with Π = R2 × {0}. This paper shows that it is harder to find examples if
one rules out this behavior by requiring that M̃ be R2-irreducible in the
sense that, in addition to being irreducible, it contains no non-trivial planes.

Define a closed surface group to be the fundamental group of a closed,
connected 2-manifold.

Theorem 1. Let M be a connected, P2-irreducible, open 3-manifold with
π1(M) finitely generated. If the universal covering space M̃ of M is R2-
irreducible, then either
(1) M̃ is homeomorphic to R3 or
(2) π1(M) is a free product of infinite cyclic groups and infinite closed

surface groups.

The second possibility can be disjoint from the first.

Theorem 2. Suppose G is a free product of finitely many infinite cyclic
groups and infinite closed surface groups. Then there is a P2-irreducible open
3-manifold M such that π1(M) ∼= G and M̃ is an R2-irreducible Whitehead
manifold. Moreover, for each given G there are uncountably many such M
for which the M̃ are pairwise non-homeomorphic.

This generalizes an example of Scott and Tucker [13] for which G is infinite
cyclic. (We remark that their example has a mistake. It is, however, easy to
correct. See Section 4 for details.)

These results have a bearing on the following well-known problem.

Conjecture 1 (Universal Covering Conjecture). Let X be a closed, con-
nected, irreducible, orientable 3-manifold with π1(X) infinite. Then the uni-
versal covering space X̃ of X is homeomorphic to R3.

Since there are only countably many homeomorphism types of closed 3-
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manifolds, Theorem 2 implies that there must exist uncountably many R2-
irreducible Whitehead manifolds M̃ which cover open 3-manifolds M with
π1(M) ∼= G but cannot cover a closed 3-manifold. This generalizes a result
of Tinsley and Wright [14] which shows that there must exist uncount-
ably many non-R2-irreducible Whitehead manifolds M̃ which cover open 3-
manifolds M with π1(M) infinite cyclic but cannot cover a closed 3-manifold.
Unfortunately this argument does not provide any specific such examples.
Specific examples of non-R2-irreducible Whitehead manifolds M̃ which cover
open 3-manifolds M with π1(M) infinite cyclic or, more generally, a count-
able free group, but cannot cover a closed 3-manifold are given in [10] and
[11], respectively. At the time of this writing the problem of providing
specific examples of R2-irreducible Whitehead manifolds which non-trivially
cover other open 3-manifolds but cannot cover a closed 3-manifold is still
open.

One can make several conjectures related to Conjecture 1. We consider the
selection below. In all of them G is assumed to be a finitely generated group
of covering translations acting on a Whitehead manifold W with quotient a
3-manifold M .

Conjecture 2. G is a free product of infinite cyclic groups and fundamental
groups of ∂-irreducible Haken manifolds.

Conjecture 3. G is a free group or contains an infinite closed surface
group.

Conjecture 4. If W is R2-irreducible, then G is a free product of infinite
cyclic groups and infinite closed surface groups.

A proper plane Π in W is equivariant if for each g ∈ G either g(Π) = Π
or Π ∩ g(Π) = ∅.
Conjecture 5 (Special Equivariant Plane Conjecture). If G is not a free
product of infinite cyclic groups and infinite closed surface groups, then W
contains a non-trivial equivariant plane.

Conjecture 6 (Equivariant Plane Conjecture). If W contains a non-trivial
plane, then it contains a non-trivial equivariant plane.

These conjectures are related as follows.

Theorem 3. (4)⇐ (1)⇔ (2)⇔ (3)⇔ (5)⇐ (4 + 6).

Theorems 1 and 3 are proven in Section 2. Theorem 2 is proven in Sections
3-7. Section 3 presents a modified version of the criterion used by Scott and
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Tucker [13] for showing that a 3-manifold is R2-irreducible. Sections 4 and
5 treat, respectively, the special cases in which G is an infinite cyclic group
and an infinite closed surface group. The constructions and notation of these
special cases are used in Section 6, which treats the general case. Section 7
shows how to get uncountably many M with non-homeomorphic M̃ for each
group G.

2. The proofs of Theorems 1 and 3.

Lemma 2.1. Let M be a connected, P2-irreducible, open 3-manifold. Let
Q be a compact, connected, 3-dimensional submanifold of M such that ∂Q
is incompressible in M and π1(Q) is not an infinite closed surface group.
Let p : M̃ → M be the universal covering map and G the group of covering
translations. Let Q̃ be a component of p−1(Q). Then:
(1) Each component of p−1(∂Q) is a plane.
(2) There is no component Π of ∂Q̃ which is invariant under the subgroup

G0 of G consisting of those covering translations which leave Q̃ invari-
ant.

(3) If each component of ∂Q̃ is a trivial plane, then M̃ is homeomorphic
to R3.

Proof. (1) follows from the incompressibility of ∂Q in M .
Suppose S is a component of ∂Q and Π is a component of p−1(S) which is

invariant under G0. Since the restriction of p to Q̃ is the universal covering
space of Q and the restriction of G0 to Q̃ is the group of covering trans-
lations we have that π1(S) → π1(Q) is an isomorphism, contradicting our
assumption on π1(Q). This establishes (2).

We now prove (3). Suppose that each component Π of ∂Q̃ bounds an
end-proper halfspace HΠ in M̃ . Let KΠ be the closure of the component of
M̃ −Π which does not contain int Q̃.

Assume that for all such Π we have HΠ = KΠ. Then M̃ is the union of Q̃
and an open collar attached to ∂Q̃, hence M̃ is homeomorphic to int Q̃. Since
Q is Haken, the Waldhausen Compactification Theorem [16] implies that Q̃
is homeomorphic to a closed 3-ball minus a closed subset of its boundary,
hence int Q̃ is homeomorphic to R3, and we are done.

Thus we may assume that for some Π we have HΠ 6= KΠ. Then HΠ∩KΠ =
Π and HΠ ∪KΠ = M̃ . Now G0 has an element g such that g(Π) 6= Π. Since
Q̃ ⊆ HΠ and g(Q̃) = Q̃ we must have g(KΠ) ⊆ HΠ. Since R2 × [0,∞) is R2-
irreducible (see e.g. [9]) it follows that KΠ is homeomorphic to R2 × [0,∞).
Thus M̃ is homeomorphic to R3.
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Proof of Theorem 1. By passing to a covering space of M , if necessary, we
may assume that π1(M) is indecomposable with respect to free products and
is neither an infinite cyclic group nor an infinite closed surface group. Let
C be the Scott compact core [12] of M , i.e. C is a compact, connected, 3-
dimensional submanifold of M such that π1(C)→ π1(M) is an isomorphism.
The conditions on π1(M) imply that ∂C is incompressible in M . We thus
can apply Lemma 2.1 with Q = C to finish the proof.

Proof of Theorem 3. We first show that (1) ⇒ (2) ⇒ (3) ⇒ (1). If (1)
is true, then M must be non-compact; this follows from the fact that if M
were closed and non-orientable, then it would be Haken and so have universal
covering space homeomorphic to R3. Let C be the Scott compact core for
M . Since M is irreducible we may assume that no component of ∂C is a
2-sphere; it follows that C is irreducible. If C is ∂-irreducible, then we are
done. If C is not ∂-irreducible, then there is a finite set of compressing
disks for ∂C in C which express C as a ∂-connected sum of 3-balls and ∂-
irreducible Haken manifolds, thus yielding (2). Clearly (2) ⇒ (3). Suppose
(3) is true and M is closed. If G is free, then M is by [2, Theorem 5.2] a
connected sum of 2-sphere bundles over S1, hence is not aspherical, hence
W is not contractible. If G contains an infinite closed surface group, then
by a result of Hass, Rubinstein, and Scott [1] W is homeomorphic to R3.

Clearly Theorem 1 and the fact thatM cannot be closed and non-orientable
show that (1)⇒ (4).

We now show that (1) ⇒ (5). Let C be the Scott compact core of M .
Then the assumptions on G imply that there is a set of compressing disks
for ∂C in C such that some component Q of C split along this collection
of disks satisfies the hypotheses of Lemma 2.1. Thus any component of the
pre-image of ∂Q is an equivariant non-trivial plane.

We next show that (5) ⇒ (1). Assume M is closed. If π1(M) is a free
product of infinite cyclic groups and infinite closed surface groups, then we
apply (3) to obtain (1). If π1(M) is not such a group, then the existence of
an equivariant plane, together with the compactness of M , implies that M
is Haken, and so (1) follows by Waldhausen [16].

Finally we show that (4 + 6) ⇒ (1). If W is R2-irreducible, then (4)
implies the hypothesis of (2), hence implies (1). If W is not R2-irreducible,
then (6) implies as before that M is Haken, thus (1) holds.

3. Nice quasi-exhaustions and R2-irreducibility.

We shall reformulate a criterion due to Scott and Tucker [13] for a P2-
irreducible open 3-manifold to be R2-irreducible. A proper plane Π in an
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open 3-manifold W is homotopically trivial if for any compact subset C
of W the inclusion map of Π is end-properly homotopic to a map whose
image is disjoint from C.

Lemma 3.1. Let W be an irreducible, open 3-manifold, and let Π be a
proper plane in W . If Π is homotopically trivial, then Π is trivial.

Proof. This is Lemma 4.1 of [13].

Lemma 3.2. Let W be a connected, irreducible, open 3-manifold, and let
{Cn}n≥1, be a sequence of compact 3-dimensional submanifolds of W such
that Cn ⊆ int Cn+1 and
(1) each Cn is irreducible,
(2) each ∂Cn is incompressible in W − int Cn,
(3) if D is a proper disk in Cn+1 which is in general position with respect

to ∂Cn such that ∂D is not null-homotopic in ∂Cn+1, then D ∩ ∂Cn
has at least two components which are not null-homotopic in ∂Cn and
bound disjoint disks in D.

Then any proper plane in W can be end-properly homotoped off Cn for any
n.

Proof. This is Lemma 4.2 of [13].

The precise criterion we shall use is as follows.

Lemma 3.3. Let W be a connected, irreducible, open 3-manifold. Suppose
that for each compact subset K of W there is a sequence {Cn}n≥1 of compact
3-dimensional submanifolds such that Cn ⊆ int Cn+1 and
(1) each Cn is irreducible,
(2) each ∂Cn is incompressible in W − int Cn and has positive genus,
(3) each Cn+1 − int Cn is irreducible, ∂-irreducible, and anannular,
(4) K ⊆ C1.
Then W is R2-irreducible.

Proof. Let D be a disk as in part (iii) of Lemma 3.2. If every component of
D∩∂Cn is null-homotopic in ∂Cn, then one can isotop D so that D∩Cn = ∅
and hence ∂Cn+1 is compressible in Cn+1− int Cn. If only one component α
of D ∩ ∂Cn is not null-homotopic in ∂Cn, then ∂D ∪ α bounds an annulus
A which can be isotoped so that A ∩ ∂Cn = α, hence Cn+1 − int Cn is not
anannular. If no two of the components of D ∩ ∂Cn which are not null-
homotopic in ∂Cn bound disjoint disks in D, then these components must
be nested on D. We can isotop D to remove null-homotopic components
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and then intermediate annuli to again get an incompressible annulus joining
∂Cn+1 to ∂Cn. Now apply Lemma 3.2 and then Lemma 3.1.

Let {Cn} be a sequence of compact, connected 3-dimensional submanifolds
of an irreducible, open 3-manifold W such that Cn ⊆ int Cn+1 such that W−
int Cn has no compact components. This will be called a quasi-exhaustion
for W . A quasi-exhaustion for W whose union is W is an exhaustion for
W . A quasi-exhaustion is nice if it satisfies conditions (1)-(3) of Lemma 3.3.
Thus that lemma can be rephrased by saying that if every compact subset
of W is contained in the first term of a nice quasi-exhaustion, then W is
R2-irreducible.

We shall need some tools for constructing Whitehead manifolds with nice
quasi-exhaustions. Define a compact, connected 3-manifold Y to be nice
if it is is P2-irreducible, ∂-irreducible, and anannular, it contains a two-
sided proper incompressible surface, and it is not a 3-ball; define it to be
excellent if, in addition, every connected, proper, incompressible surface
of zero Euler characteristic in Y is ∂-parallel. So in particular an excellent
3-manifold is anannular and atoroidal while a nice 3-manifold is anannular
but may contain a non-∂-parallel incompressible torus. We note that by the
torus theorem and Thurston’s hyperbolization theorem a nice 3-manifold is
excellent if and only if it has a hyperbolic structure.

A proper 1-manifold in a compact 3-manifold is excellent if its exterior
is excellent; it is poly-excellent if the union of each non-empty subset of
the set of its components is excellent.

Lemma 3.4. Every proper 1-manifold in a compact, connected 3-manifold
whose boundary contains no 2-spheres or projective planes is homotopic rel
∂ to an excellent proper 1-manifold.

Proof. This is a special case of Theorem 1.1 of [7].

Define a k-tangle to be a disjoint union of k proper arcs in a 3-ball.

Lemma 3.5. For all k ≥ 1 poly-excellent k-tangles exist.

Proof. This is Theorem 6.3 of [8].

We shall also need the following criterion for gluing together excellent
3-manifolds to get an excellent 3-manifold.

Lemma 3.6. Let Y be a compact, connected 3-manifold. Let S be a
compact, proper, two-sided surface in Y . Let Y ′ be the 3-manifold obtained
by splitting Y along S. Let S′ and S′′ be the two copies of S which are
identified to obtain Y . If each component of Y ′ is excellent, S′, S′′, and
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(∂Y ′)− int (S′ ∪S′′) are incompressible in Y ′, and each component of S has
negative Euler characteristic, then Y is excellent.

Proof. This is Lemma 2.1 of [7].

4. The infinite cyclic case.

Theorem 2 of this paper was motivated by an example due to Scott and
Tucker [13] of an open 3-manifold called M7 which has infinite cyclic funda-
mental group and whose universal covering space M̃7 is a Whitehead mani-
fold which was claimed to be R2-irreducible. However, on closer inspection
this turns out not to be the case. We briefly describe the mistake in the
construction of M7 which allows M̃7 to have non-trivial planes and the error
in the proof which allows this to go undetected. Fortunately this problem is
very easy to fix, and we indicate how to do so. We then give a general proce-
dure for building P2-irreducible, open 3-manifolds with infinite cyclic funda-
mental groups whose universal covering spaces are R2-irreducible Whitehead
manifolds. The construction introduced here will be incorporated into that
for the general case in Section 6.

The example M7 has an exhaustion {Cn} by genus two handlebodies.
The embedding of Cn in Cn+1 is factored through an intermediate genus two
handlebody Yn as described in Figure 8 of [13]. A closer examination of
Figure 8(c) shows that the embedding of Yn in Cn+1 is actually isotopic to
the standard embedding of a concentric copy of Cn+1 in Cn+1. This can be
seen by regarding Yn as the result of attaching a 1-handle to a solid torus
concentric with Tn+1 and then sliding one end of the 1-handle so as to undo
the Whitehead clasp shown in Rn+1. The result is that M7 is homeomorphic
to the monotone union of genus two handlebodies embedded as in Figure
8(b). The corresponding monotone union of the meridional disks of the
lower solid tori in that figure is a proper plane whose preimage in M̃7 is an
equivariant family of non-trivial planes. The error in the proof that M̃7 is
R2-irreducible occurs in the proof of Lemma 4.8, where it is asserted that
adjacent components of the link Lrn in the handlebody V r

n+1 as shown in
Figure 9(d) are linked. While it is true that they are linked in R3, it is not
true that they are linked in V r

n+1. There is a proper disk D in V r
n+1 which

separates them. This can be seen as follows. Note that Lrn is isotopic to a
family of disjoint simple closed curves in ∂V r

n+1. Given a component J of
Lrn, let E × [−1, 1] be a regular neighborhood of a proper disk E in V r

n+1

such that E ∩ Lrn = E ∩ J is a single transverse intersection point. Let J ′

be the curve in ∂V r
n+1 isotopic to J . Then the band sum of E × {−1} and

E × {1} formed by using a band which follows the portion of J ′ which lies
outside of E × (−1, 1) is the required disk D.
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The remainder of Scott and Tucker’s proof is correct, and the problem just
described can easily be corrected as follows. Replace the Whitehead clasp
shown in the portion Rn+1 of Figure 8(c) by the true lover’s tangle (Figure 1
on page 79 of [6]). This will induce a similar replacement in Figures 9(c,d).
It follows from Proposition 4.1 of [6] that this tangle is excellent. It then
follows from Lemma 3.1 of [6] that the exterior of the new link Lrn in V r

n+1

is irreducible and ∂-irreducible. Hence Lemma 4.8 of [13] now holds.
We now describe our general procedure for constructing R2-irreducible

open 3-manifolds which are infinite cyclic covering spaces.
Let Pn = Dn × [0, 1], where Dn is the disk of radius n. We call Pn a

pillbox. Identify Dn × {0} with Dn × {1} to obtain a solid torus Qn. Let
Rn be a solid torus and Hn a 1-handle D× [0, 1] joining ∂Dn× (0, 1) to ∂Rn.
Let Vn = Pn ∪Hn ∪ Rn and Mn = Qn ∪Hn ∪ Rn. We call Vn an eyebolt.
We embed Mn in the interior of Mn+1 as follows.

We choose a collection of arcs θ0, θ1, α0, α1, α2, β1, β2, γ1, γ2, δ1, δ2, ε in Pn+1

which satisfy certain conditions described below. θ0, θ1, and α0 meet in a
common endpoint in int Pn+1 but are otherwise disjoint. The other end-
points of θ0 and α0 lie in (int Dn+1)×{0}; that of θ1 lies in (int Dn+1)×{1}.
We let θ = θ0 ∪ θ1. All the other arcs are proper arcs in Pn+1 which are dis-
joint from each other and from θ∪α0. γ1, β2, and δ2 run from (int Dn+1)×{0}
to itself. γ2, β1, and δ1 run from (int Dn+1) × {1} to itself. α1 runs from
(int Dn+1) × {0} to (int Dn+1) × {1}. α2 runs from (int Dn+1) × {1} to
int (Pn+1 ∩ Hn+1). ε runs from int (Pn+1 ∩ Hn+1) to itself. We denote the
image in Qn+1 of an arc by the same symbol, relying on the context to dis-
tinguish an arc in Pn+1 from its image in Qn+1. We require that θ be a simple
closed curve in Qn+1 and that α0 ∪ β1 ∪ γ1 ∪ δ1 ∪ α1 ∪ β2 ∪ γ2 ∪ δ2 ∪ α2 is
an arc consisting of subarcs which occur in the given order. We require that
any union of these arcs which contains α0 and at least one other arc has
excellent exterior in Pn+1, and that the same is true for any union of these
arcs which contains neither θ0, θ1, nor α0. This can be achieved as follows.
Note that the exterior of α0 in Pn+1 is a 3-ball B. Choose a poly-excellent
11-tangle in B and then slide its endpoints so that exactly two of the arcs
meet a regular neighborhood of α0. Extend them to meet α0 in the desired
configuration.

Next let κ1, κ2, and κ3 be product arcs in Hn+1 joining (int D) × {0} to
(int D)×{1}. Let Rn ⊆ int Rn+1 be any null-homotopic embedding. Let λ1

and λ2 be disjoint proper arcs in Rn+1 − int Rn with λ1 joining int (Hn+1 ∩
Rn+1) to itself and λ2 joining int (Hn+1 ∩Rn+1) to ∂Rn. We require λ1 ∪ λ2

to be excellent in Rn+1 − int Rn. We also require that these arcs, together
with ε, fit into an arc whose subarcs form the sequence κ1, λ1, κ2, ε, κ3, λ2

and that κ1 meets α2 in a common endpoint.
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Now we embed Pn in Pn+1 as a regular neighborhood of the arc θ so that
the two disks of Pn ∩ (Dn+1 × {0, 1}) are identified to give an embedding of
Qn in Qn+1. Note that these embeddings are not consistent with the product
structures. From the discussion above we have an arc ω in Mn+1− int (Qn ∪
Rn) running from ∂Qn to ∂Rn. We embed Hn as a regular neighborhood
of ω. We change notation slightly by now letting α0 be the old α0 minus its
intersection with the interior of Qn.

We let M be the direct limit of the Mn and let p : M̃ → M be the
universal covering map. p−1(Qn) = p−1(Pn) is the union of pillboxes Pn,j =
Dn × [j, j + 1] meeting along the Dn × {j} to form Dn ×R. Note that this
embedding is not the product embedding. p−1(Rn) is a disjoint union of solid
tori Rn,j. p−1(Hn) is a disjoint union of 1-handles Hn,j joining ∂Dn×(j, j+1)
to ∂Rn,j; these are regular neighborhoods of lifts ωj of ω. p−1(Mn) = p−1(Vn)
is the union of p−1(Pn), p−1(Hn), and p−1(Rn). It is the union of eyebolts
Vn,j = Pn,j ∪Hn,j ∪Rn,j meeting along the Dn×{j}. M̃ is the nested union
of the p−1(Mn).

Let Σm
n = ∪mj=−mVn,j and Λm

n = Pn,−(m+1) ∪ Pn,m+1. Let Φm
1 = ∅, and, for

n ≥ 2, let Φm
n = ∪m+n

j=m+2(Pn,−j ∪Pn,j). Note that Λm
n and Φm

n (for n ≥ 2) are
each disjoint unions of two 3-balls, Λm

n ∩ Σm
n is a pair of disjoint disks, and

(for n ≥ 2) so is Λm
n ∩ Φm

n . Define Cm
n = Σm

n ∪ Λm
n ∪ Φm

n .

Lemma 4.1. {Cm
m} is an exhaustion for M̃ . Each Cm is a nice quasi-

exhaustion.

Proof. Cm
n ⊆ int Cm

n+1, and Cm
n ⊆ Cm+1

n . A given compact subset K of M̃
lies in some p−1(Mn) and thus in a finite union of Vn,j and hence in some
Σm
n ⊆ Cm

n ⊆ Cq
q , where q = max{m,n}. Thus {Cm

m} is an exhaustion for M̃ .
Cm
n is a cube with 2m+ 1 handles. Let Y = Cm

n+1− int Cm
n . We will show

that Y is excellent by successive applications of Lemma 3.6.
Consider a Pn+1,j contained in Cm

n+1. If |j| < m, then it meets Cm
n in a

regular neighborhood of the union of the jth copies of all the arcs in Pn+1.
Thus Y ∩Pn+1,j is excellent, and Lemma 3.6 implies that the union of these
Y ∩ Pn+1,j is excellent. For |j| ≥ m some care must be taken so that one is
always gluing excellent 3-manifolds along surfaces of the appropriate type.
Note that Y ∩(Pn+1,m∪Pn+1,m+1∪· · ·∪Pn+1,m+n−1∪Pn+1,m+n) is equal to the
exterior of the mth copy of all the arcs but β1 and δ1 in Pn+1,m together with
the exterior of the (m+ 1)st copy of β2, δ2, and θ in Pn+1,m+1, the exterior of
the jth copy of θ in Pn+1,j for m+ 1 < j < m+ n, and the 3-ball Pn+1,m+n.
This space is homeomorphic to the exterior of the mth copy of all the arcs
but β1, δ1, and θ1 in Pn+1,m+1 together with the exterior of the (m+1)st copy
of β2 and δ2 in Pn+1,m+1, and the 3-ball consisting of the union of the Pn+1,j

for which m+ 1 < j ≤ m+ n. This can be seen by taking the arc consisting
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of the mth copy of θ1 and the jth copy of θ for m < j < m+n and retracting
it onto the endpoint in which it meets the rest of the graph. This space is
then excellent by Lemma 3.6. Similar remarks apply for j ≤ −m, so these
spaces can be added on to get that Y ∩ ∪m+n

j=−(m+n)Pn+1,j is excellent.
We fill in the remainder of Y by adding the exteriors of the jth copies of

κ1, κ2, and κ3 in Hn+1,j and λ1∪λ2 in Rn+1,j− int Rn,j for |j| ≤ m. Since the
first of these spaces is a product the union of the two spaces is homeomorphic
to the second space, and Lemma 3.6 applies to complete the proof that Y is
excellent.

It remains to show that each ∂Cm
n is incompressible in M̃ − int Cm

n . Since
each Cm

n+s+1 − int Cm
n+s is ∂-irreducible we have that ∂Cm

n is incompressible
in Cm

n+q − int Cm
n for each q ≥ 1. p−1(Mn+q) is the union of Cm

n+q and the
closure of p−1(Mn+q)−Cm

n+q. These two sets meet in a collection of disjoint
disks. It follows that ∂Cm

n is incompressible in p−1(Mn+q) − int Cm
n . Since

M̃ is the nested union of the p−1(Mn+q) over all q ≥ 1 we have the desired
result.

5. The surface group case.

Let F be a closed, connected surface other than S2 or P2. Let n ≥ 1.
Regard F as being obtained from a 2k-gon E, k ≥ 2, by identifying sides
si and s′i, 1 ≤ i ≤ k. This induces an identification of the lateral sides
Si = si× [−n, n] and S′i = s′i× [−n, n] of the prism Pn = E × [−n, n] which
yields Qn = F×[−n, n]. Let Rn be a solid torus and Hn a 1-handle D×[0, 1].
Let Vn = Pn ∪ Hn ∪ Rn, where Hn ∩ Rn = D × {1} is a disk in ∂Rn, and
Hn∩Pn = D×{0} is a disk in (int E)×{1}. We again call Vn an eyebolt. It
is a solid torus whose image under the identification is Mn = Qn ∪Hn ∪Rn,
a space homeomorphic to the ∂-connected sum of F × [−n, n] and a solid
torus.

We define an open 3-manifold M by specifying an embedding of Mn in the
interior of Mn+1 and letting M be the direct limit. The inclusion [−n, n] ⊆
[−(n + 1), n + 1] induces Pn ⊆ Pn+1 and hence Qn ⊆ Qn+1. We let Rn ⊆
int Rn+1 be any null-homotopic embedding. Again the interesting part of the
embedding will be that of Hn in Mn+1. It will be the regular neighborhood
of a certain arc ω in Mn+1 − int (Qn ∪Rn) joining ∂Qn to ∂Rn.

The arc ω is the union of 4k+7 arcs any two of which are either disjoint or
have one common endpoint. The 4k + 2 arcs α0, αi, βi, γi, δi, 1 ≤ i ≤ k, and
ε lie in E × [n, n+ 1] and are identified with their images in Qn+1; the three
arcs κ1, κ2, and κ3 lie in Hn+1, and the two arcs λ1 and λ2 lie in Rn+1. These
arcs will have special properties to be described later. We first describe their
combinatorics. The arcs in Pn+1 are all proper arcs in E× [n, n+1]. α0 runs
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from (int E)× {n} to int S1. For 1 ≤ i < k, αi runs from int Si to int Si+1.
αk runs from int S′k to int (Pn+1 ∩Hn+1). For 1 ≤ i ≤ k, βi and δi each run
from int S′i to itself, while γi runs from int Si to itself. These arcs are chosen
so that under the identification their endpoints match up in such a way as
to give an arc which follows the sequence α0, β1, γ1, δ1, α1, . . . , βk, γk, δk, αk.
We require ε to run from int (Pn+1 ∩ Hn+1) to itself. κ1, κ2, and κ3 are
product arcs in Hn+1 lying in (int D) × [0, 1]. λ1 and λ2 are proper arcs
in Rn+1 − int Rn, with λ1 running from int (Hn+1 ∩ Rn+1) to itself and λ2

running from int (Hn+1 ∩ Rn+1) to ∂Rn. These arcs are chosen so as to fit
together into the sequence κ1, λ1, κ2, ε, κ3, λ2 with the endpoint of κ1 other
than κ1 ∩ λ1 being the same as the endpoint of αk other than αk ∩ δk. This
gives ω.

We now describe the special properties required of these arcs. We require
that α0∪β1∪γ1∪δ1∪α1∪· · ·∪βk∪γk∪δk∪ε be a poly-excellent (4k+2)-tangle
in E × [n, n+ 1] and λ1 ∪ λ2 to be an excellent 1-manifold in Rn+1− int Rn.

We now consider the universal covering map p : M̃ → M . Our goal is to
construct a sequence {Cm} of nice quasi-exhaustions whose diagonal {Cm

m}
is an exhaustion for M̃.

The universal covering space F̃ of F is tesselated by copies Ej of E. We
fix one such copy E1. We inductively define an exhaustion {Fm} for F̃ as
follows. F1 = E1. Fm+1 is the union of Fm and all those Ej which meet it.
Each Fm is a disk (which we call a star). The inner corona Im of Fm is
the annulus Fm+1 − int Fm. Each vertex on ∂Fm lies in either one or two of
those Ej contained in Fm. Each Ej in Im meets meets Fm in either an edge
or a vertex; in both cases it meets exactly two adjacent E` of Im, and each of
these intersections is an edge. For n ≥ 2 we define the outer n-corona Om

n

to be the annulus Fm+n − int Fm+1; we define Om
1 = ∅. Let σ2 be a proper

arc in F2 consisting of three edges of the polygons in F2. Inductively define
a proper arc σm+1 in Fm+1 by adjoining to σm two arcs spanning Im which
are edges of polygons in Im. Thus each σm is an edge path in Fm splitting it
into two unions of polygons F ′m and F ′′m.

We now consider the structure of M̃. For n ≥ 1, p−1(Qn) = p−1(Pn) is
the union of prisms Pn,j = Ej × [−n, n] meeting along their lateral sides to
form F̃ × [−n, n]. p−1(Rn) is a disjoint union of solid tori Rn,j. p−1(Hn) is a
disjoint union of 1-handles Hn,j running from Ej × {n} to ∂Rn,j; these are
regular neighborhoods of lifts ωj of ω. Now p−1(Mn) = p−1(Vn) is the union
of p−1(Pn), p−1(Hn), and p−1(Rn). It can be expressed as the union of the
eyebolts Vn,j = Pn,j ∪Hn,j ∪Rn,j meeting along the lateral sides of the Pn,j.
Finally M̃ is the nested union of the p−1(Mn).

Let Σm
n be the union of those Vn,j such that Ej is in the star Fm. Let Λm

n

be the union of those Pn,j such that Ej is in the inner corona Im. Let Φm
n
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be the union of those Pn,j such that Ej is in the outer n-corona Om
n . Note

that Λm
n and Φm

n (for n ≥ 2) are solid tori, Λm
n ∩ Σm

n is an annulus which
goes around Λm

n once longitudinally and consists of those lateral sides of
the prisms in Σm

n which lie on ∂Σm
n , and (for n ≥ 2) Λm

n ∩ Φm
n is an annulus

which goes around each of these solid tori once longitudinally. We now define
Cm
n = Σm

n ∪ Λm
n ∪ Φm

n .

Lemma 5.1. {Cm
m} is an exhaustion for M̃. Each Cm is a nice quasi-

exhaustion.

Proof. Note that Cm
n ⊆ int Cm

n+1, and Cm
n ⊆ Cm+1

n . Suppose K is some
compact subset of M̃. Then K lies in some p−1(Mn) and thus in a finite
union of Vn,j and hence in some Σm

n ⊆ Cm
n ⊆ Cq

q , where q = max{m,n}.
Thus {Cm

m} is an exhaustion for M̃.
Each Cm

n is a cube with handles, so is irreducible. The number of handles
is at least one, so ∂Cm

n has positive genus. Let Y = Cm
n+1 − int Cm

n . We
will prove that Y is excellent by successive applications of Lemma 3.6. Let
P+
n+1,j and P−n+1,j denote, respectively, Ej× [n, n+1] and Ej× [−(n+1),−n].
Consider a Pn+1,j contained in Σm

n+1. It meets Cm
n in Pn,j together with

regular neighborhoods of certain arcs in P+
n+1,j. These arcs consist at least

of the jth copies of the αi, the γi, and ε which are part of the lift ωj of
ω. If another prism Pn+1,` in Σm

n+1 meets Pn+1,j in a common lateral side,
then either ωj or ω` will meet this side; in the latter case this contributes
a βi and δi to the subsystem of arcs in P+

n+1,j. Since the full system of arcs
was chosen to be poly-excellent this subsystem of arcs is excellent and so
has excellent exterior Y ∩ P+

n+1,j. Let U ′ be the union of those Y ∩ P+
n+1,j

such that Ej ⊆ F ′m. This space can be built up inductively by gluing on one
Y ∩P+

n+1,j at a time, with the gluing being done along either a disk with two
holes (when Pn+1,j is glued along one lateral side) or a disk with four holes
(when Pn+1,j is glued along two adjacent lateral sides). No component of
the complement of this surface in the boundary of either manifold is a disk,
hence this surface is incompressible in each manifold. It follows that U ′ is
excellent. Similar remarks apply to the space U ′′ associated with F ′′m.

Next consider a P+
n+1,j contained in Λm

n+1. If Ej ⊆ Fm+1 and meets F ′m in
an edge of E` ⊆ F ′m, then either ω` misses P+

n+1,j or meets it in copies of βi
and δi. Thus enlarging U ′ by adding Y ∩ P+

n+1,j either adds a 3-ball along
a disk in its boundary, giving a space homeomorphic to U ′ or gives a new
excellent 3-manifold. We adjoin all such Y ∩P+

n+1,j to U ′. Then we consider
those Ej which meet F ′m in a vertex. Then P+

n+1,j = Y ∩P+
n+1,j, and one can

successively adjoin these 3-balls along disks in their boundaries. We denote
the enlargement of U ′ from all these additions again by U ′. Similar remarks
apply to U ′′.
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Now (F ′m+n+1− int F ′m+1)× [n, n+ 1] is a 3-ball which meets U ′ in a disk,
so we adjoin it to U ′ to get a new U ′ homeomorphic to the old one. We then
adjoin the 3-ball (f ′m+n+1−int F ′m+n)×[−n, n]∪F ′m+n+1×[−(n+1),−n] which
meets this space along a disk to obtain our final U ′. The same construction
gives U ′′.

Now U ′ and U ′′ are each excellent. U ′ ∩ U ′′ is an annulus with a positive
number of disks removed from its interior corresponding to its intersection
with arcs passing from F ′m × [n, n+ 1] to F ′′m × [n, n+ 1]. No component of
the complement of this surface in ∂U ′ or in ∂U ′′ is a disk; this corresponds
to the fact that F ′m × {n}, F ′′m × {n}, F ′m × {n+ 1}, and F ′′m × {n+ 1} each
meet some ωj. Thus this surface is incompressible in both U ′ and U ′′, so
U ′ ∪ U ′′ is excellent.

Finally we add on the Y ∩ (Hn+1,j ∪ Rn+1,j) for Ej ⊆ Fm to U ′ ∪ U ′′ to
conclude that Y is excellent.

It remains to show that each ∂Cm
n is incompressible in M̃ − int Cm

n . First
note that since each Cm

n+s+1 − int Cm
n+s is ∂-irreducible we must have that

∂Cm
n is incompressible in Cm

n+q − int Cm
n for each q ≥ 1. Now consider the

set
M̃n+q = p−1(Mn+q) ∪

(
F̃ × [−(n+ q + 1),−(n+ q)]

)
.

It can be obtained from Cm
n+q as follows. First add the solid tori Rn+q,j ∪

Hn+q,j in p−1(Mn+q) for which Ej ⊆ Fm+q+n; these meet Cm
n+q in disks. Then

add

(Fm+q+n × [−(n+ q + 1),−(n+ q)]) ∪(
F̃ − (int Fm+q+n)× [−(n+ q + 1), n+ q]

)
.

This is a space homeomorphic to R2 × [0, 1] which meets Cm
n+q in the disk

(Fm+q+n × {−(n+ q)}) ∪ ((∂Fm+q+n)× [−(n+ q), n+ q]).

Lastly add all the remaining solid tori Rn+q,j ∪ Hn+q,j, where Ej ⊆ F̃ −
int Fm+q+n; these do not meet Cm

n+q. This description shows that Cm
n+q ∩

(M̃n+q − int Cm
n+q) consists of (finitely many) disjoint disks, and therefore

∂Cm
n is incompressible in M̃n+q − int Cm

n . Finally since M̃ is the nested
union of the M̃n+q over all q ≥ 1 we have that ∂Cm

n is incompressible in
M̃ − int Cm

n .

6. The general case.

Suppose G1, . . . , Gk are infinite cyclic groups and infinite closed surface
groups. For i = 1, . . . , k let P i

n be a pillbox or prism, as appropriate, with
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quotient Qi
n a solid torus or product I-bundle over a closed surface, respec-

tively. We let H i
n be a 1-handle attached to P i

n as before. We let Rn be a
common solid torus to which we attach the other ends of all the H i

n. The
union of the Qi

n and H i
n with Rn is called Mn. As before we choose arcs in

the P i
n+1, H

i
n+1, and Rn+1 and use them to define an embedding of Mn into

the interior of Mn+1.
The choice of arcs in Rn+1 − int Rn, as well as the embedding Rn ⊆

int Rn+1, requires some discussion, since we will want this family λ of arcs
to be poly-excellent. Choose a poly-excellent (2k + 2)-tangle λ+ in a 3-ball
B, with components λit, 1 ≤ i ≤ k + 1, t = 1, 2. Construct a graph in B
by sliding one endpoint of each λi2, 1 ≤ i ≤ k, so that it lies on int λk+1

2 .
Thus these λi2 now join ∂B to distinct points on int λk+1

2 ; all the other λit
still join ∂B to itself. Now choose disjoint disks E1 and E2 in ∂B such that
Et meets the graph in ∂λk+1

t ∩ int Et. Glue E1 to E2 so that B becomes
a solid torus Rn+1 and λk+1

1 ∪ λk+1
2 becomes a simple closed curve. The

regular neighborhood of this simple closed curve is our embedding of Rn in
the interior of Rn+1. Clearly Rn is null-homotopic in Rn+1. By Lemma 3.6
its exterior is excellent as is the exterior of the union of Rn with any of the
λit, 1 ≤ i ≤ k, t = 1, 2.

Let p : M̃ → M be the universal covering map. Then p−1(Rn) consists
of disjoint solid tori whose union separates p−1(Mn) into components with
closures Li,µn , where Li,µn is a component of p−1(Qi

n ∪ H i
n). Let Zi,µn be the

union of Li,µn and all those components of p−1(Rn) which meet it. Then
Zi,µ = ∪n≥1Z

i,µ
n is an open subset of M̃ which has a family {Ci,µ,m} of quasi-

exhaustions as previously described. We will develop from these families an
appropriate family {Cm} of quasi-exhaustions of M̃ .

We start by choosing a component R̂1 of p−1(R1). For each n there is
then a unique component R̂n of p−1(Rn) which contains R̂1. We define C1

n

to be the union of R̂n and the (finitely many) Ci,µ,1
n which contain it by.

Suppose Cm
n has been defined and that it is the union of the Ci,µ,m

n for which
Cm
n ∩ Li,µn 6= ∅. We define Cm+1

n in two steps. We first take the union C ′

of all the Ci,µ,m+1
n such that Ci,µ,m

n ⊆ Cm
n . This is just the union of the nth

elements of the (m + 1)st quasi-exhaustions for those Zi,µ such that {i, µ}
is in the current index set. The second step is to enlarge the index set by
adding those {i, ν} for which C ′ ∩ Li,νn 6= ∅ and then adjoin the Ci,ν,m+1

n to
C ′ in order to obtain Cm+1

n . One can observe that the Li,µn and p−1(Rn) give
p−1(Mn) a tree-like structure and that the passage from Cm

n to Cm+1
n goes

out further along this tree.
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Lemma 6.1. {Cm
m} is an exhaustion for M̃. Cm is a nice quasi-exhaustion.

Proof. Again we have Cm
n ⊆ int Cm

n+1 and Cm
n ⊆ Cm+1

n with the result that
{Cm

m} is an exhaustion for M̃.
As regards the excellence of Cm

n+1 − int Cm
n we note that the only thing

new takes place in those components of p−1(Rn+1) contained in Cm
n+1. Instead

of two arcs λ1 and λ2 as before we have λi1 and λi2 as i ranges over some
non-empty subset of {1, . . . , k}. We then apply the poly-excellence of the
full set of λit.

The incompressibility of ∂Cm
n in M̃ − int Cm

n follows as before. We first
note that ∂Cm

n is incompressible in Cm
n+q− int Cm

n for each q ≥ 1. Now define
M̃n+q to be the union of p−1(Mn+q) and, for each of the surface group factors
Gi of G, the copy F̃ i,µ× [−(n+q+1),−(n+q)] of F̃ i× [−(n+q+1),−(n+q)]
contained in Zi,µ, where F̃ i is the universal covering space of the surface
F i with π1(F i) ∼= Gi. Then the exterior of Cm

n+q in M̃n+q meets it in a
collection of disjoint disks, from which it follows that ∂Cm

n is incompressible
in M̃n+q − int Cm

n , thus is incompressible in M̃ − int Cm
n .

7. Uncountably many examples.

We now describe how to get uncountably many examples for a given group
G. We will use a trick introduced in [8]. Let {Xn,s} be a family of exteriors of
non-trivial knots in S3 indexed by n ≥ 2 and s ∈ {0, 1}; they are chosen to be
anannular, atoroidal, and pairwise non-homeomorphic. (One such family is
that of non-trivial, non-trefoil twist knots.) One chooses a function ϕ(n) with
values in {0, 1}, i.e. a sequence of 0’s and 1’s indexed by n, and constructs
a 3-manifold M [ϕ] by embedding Xn,ϕ(n) in Mn− int Mn−1 so that ∂Xn,ϕ(n)

in incompressible in Mn − int Mn−1 (but is compressible in Mn). The idea
is to do this in such a way that for “large” compact sets C in M̃ [ϕ] one
has components of p−1(Xn,ϕ(n)) which lie in M̃ −C and have incompressible
boundary in M̃ − C for “large” values of n; moreover, every knot exterior
having these properties should be homeomorphic to some Xn,ϕ(n). Thus if
M̃ [ϕ] and M̃ [ψ] are homeomorphic one must have ϕ(n) = ψ(n) for “large”
n. One then notes that there are uncountably many functions which are
pairwise inequivalent under this relation.

We proceed to the details. First assume ϕ is fixed, so we can write s =
ϕ(n). The most innocuous place to embed Xn,s is in Rn− int Rn−1 since this
space is common to all our constructions. Recall that this space contains
arcs λ1, λ2 or, if G is a non-trivial free product, arcs λi1, λi2, 1 ≤ i ≤ k;
call this collection of arcs λ. We wish Xn,s to lie in the complement of λ
in such a way that it is poly-excellent in Rn − int (Rn−1 ∪Xn,s). We revise
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the construction of λ from Section 6 as follows. Let B0 and B1 be 3-balls.
Choose disjoint disks Dr and D′r in ∂Br. Let ζr be a simple closed curve in
∂Br − (Dr ∪D′r) which separates Dr from D′r. Let Ar and A′r be the annuli
into which ζr splits the annulus ∂Br−int (Dr∪D′r), with the notation chosen
so that Ar ∩Dr = ∅. Let τr be a poly-excellent (4k + 4)-tangle in Br which
is the union of (2k+ 2)-tangles ρr and ρ′r satisfying the following conditions.
Each component of ρ0 runs from int D0 to int A′0. Each component of ρ1

runs from int A′1 to int D′1. Each component of ρ′0 runs from int D′1 to itself.
Each component of ρ′1 runs from int D′1 to int D1. We then glue A′0 to
A′1 and D′0 to D′1 so as to obtain a space homeomorphic to a 3-ball minus
the interior of an unknotted solid torus contained in the interior of the 3-
ball. The 2-sphere boundary component is D0 ∪ D1; the torus boundary
component is A0 ∪A1. The gluing is done so that the endpoints of the arcs
match up to give a system λ+ of 2k+2 arcs. Each arc in this system consists
of an arc of ρ0 followed by an arc of ρ1 followed by an arc of ρ′0 followed by
an arc of ρ′1. We then glue Xn,s to this space along their torus boundaries
so as to obtain a 3-ball B. We then apply the construction of Section 6 to
λ+ to get a poly-excellent system λ of arcs in Rn − int Rn−1. It is easily
seen that this 3-manifold is nice and that ∂Xn,s is, up to isotopy, the unique
incompressible non-∂-parallel torus in it; ∂Xn,s is also, up to isotopy, the
unique incompressible torus in the exterior Kσ of any non-empty union σ of
components of λ.

Lemma 7.1. If M̃ [ϕ] and M̃ [ψ] are homeomorphic then there is an index
N such that ϕ(n) = ψ(n) for all n ≥ N .

Proof. Consider M̃. Y = Cm
n − int Cm

n−1 contains copies of Kσ for various
choices of σ. The closure of the complement in Y of these copies consists
of excellent 3-manifolds which meet the copies along incompressible planar
surfaces. It follows that the various copies of ∂Xn,s in Y are, up to isotopy
and for n ≥ 3, the unique incompressible tori in Y . The incompressibility
of ∂Cm

n in M̃ − int Cm
n implies that these tori are also incompressible in

M̃ − int Cm
n−1.

Suppose T is an incompressible torus in M̃−int Cm
n−1. Then T lies in M̃n+q

for some q ≥ 0. The exterior of Cm
n+q in M̃n+q consists of disjoint contractible

spaces to which disjoint 1-handles have been attached. It meets Cm
n+q in a set

of disjoint disks. It follows that T can be isotoped into Cm
n+q−int Cm

n−1. Since
∂Cm

n+u for 1 ≤ u < q is not a torus it is easily seen that T can be isotoped into
some Cm

v − int Cm
v−1 and thus is isotopic to some copy of ∂Xv,ϕ(v). Thus any

knot exterior X incompressibly embedded in M̃− int Cm
n−1 is homeomorphic

to some Xv,ϕ(v).
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Now consider two different functions ϕ and ψ. We will show that if M̃ [ϕ]
and M̃ [ψ] are homeomorphic then there is an N such that ϕ(n) = ψ(n) for
all n ≥ N . Suppose h : M̃ [ϕ] → M̃ [ψ] is a homeomorphism. Distinguish
the various submanifolds arising in the construction of these two manifolds
by appending [ϕ] and [ψ], respectively. For n ≥ 2 there are incompressibly
embedded copies X̃n,ϕ(n) of Xn,ϕ(n) in M̃ [ϕ]− int C1

1 [ϕ]. There is an index `
such that h(C1

1 [ϕ]) ⊆ int C`
` [ψ]. By construction ∪n≥2X̃n,ϕ(n) is end-proper

in M̃ [ϕ], so there is an index N such that for all n ≥ N we have h(X̃n,ϕ(n)) ⊆
M̃ [ψ]− int C`

` [ψ]. Since h(∂X̃n,ϕ(n)) is incompressible in M̃ [ψ]− int h(C1
1 [ψ])

it is incompressible in the smaller set M̃ [ψ] − int C`
` [ψ]. Thus it is home-

omorphic to Xv,ψ(v) for some v > `. Since the knot exteriors are pairwise
non-homeomorphic we must have n = v and ϕ(n) = ψ(v) = ψ(n).
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