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MEAN VALUES AND NON-PERIODIC PRESSURE IN
CONVECTION PROBLEMS BETWEEN PLATES OR WITH

STRESS-FREE BOUNDARIES

Burkhard J. Schmitt and Wolf von Wahl

When considering the Oberbeck-Boussinesq equations in
an infinite layer it is mostly assumed that the pressure π is pe-
riodic in the plane, whereas the equations only require ∇π to
be periodic. We study here the influence the general admissi-
ble form of the pressure may have on the velocity field u below
the onset of convection, a question which is closely connected
with the mean flow. This is a vector field which depends on z
only and which is given by the mean values of ux, uy, uz over
the plane periodicity cell. — The mean value of u over the
layer is constant under stress-free boundary conditions and
periodic pressure. If this constant c is not 0 there is in most
cases no longer an exchange of stability on the onset for the
linearization around c. We study its spectrum on the onset.

I. Introduction, Notations.

We consider an incompressible viscous fluid in an infinite layer R2× (− 1
2
, 1

2
)

heated from below. The perturbations of the motionless state are governed
by the Oberbeck-Boussinesq equations

∂tu−∆u + u · ∇u−√Rϑk +∇π = 0,
∇ · u = 0,

Pr ∂tϑ−∆ϑ+ Pr u · ∇ϑ−√Ruz = 0.
(I.1)

R is the Rayleigh-number and is proportional to the intensity of heating, Pr is
the Prandtl-number. R serves as control parameter. u = (ux, uy, uz)T =
(u1, u2, u3)T is the velocity field of the perturbation, π its pressure and ϑ
is the fluctuation of the temperature from a static state. We consider (I.1)
under stress-free boundaries

∂zux = ∂zuy = uz = ϑ = 0 at z = ±1
2

as well as under rigid ones

u = 0, ϑ = 0 at z = ±1
2
.
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Here x = (x, y, z)T ∈ R2 × [− 1
2
, 1

2
]. The solutions (u, π, ϑ) of (I.1) shall

have the property that at least u, ϑ are periodic with respect to the plane
variables x, y. Let us assume that P = (−π

α
, π
α

) × (−π
β
, π
β

) is the plane
periodicity cell with wave numbers α, β in x, y-direction respectively. u, π,
ϑ are assumed to be real valued throughout this paper, although they will
be considered in complex function spaces.

As for the pressure only ∇π needs to be periodic. This is what (I.1)
requires. In the literature it is in general assumed that the pressure π it-
self is periodic with respect to P. There are however several exceptions
which we will touch later. The reason for assuming π to be periodic is that
when considering perturbations of the motionless state as given by (I.1), the
usual stability considerations require (∇π,u)L2 = 0. Beside by uz = 0 at
z = ±1/2 the latter is ensured by plane periodicity of π. To eliminate the
pressure from the Navier-Stokes part in (I.1) we therefore have applied the
projection onto the orthogonal complement to the fields ∇π with π periodic.
As already mentioned only ∇π has to be periodic. The general form of π
will be discussed in what follows shortly after these considerations (cf. (I.5)
to follow). We now can try to find u in the orthogonal complement to the
fields ∇π with ∇π periodic. As it follows from (I.5) below then∫

P×(− 1
2 ,

1
2 )

ux dx dy dz =
∫

P×(− 1
2 ,

1
2 )

uy dx dy dz = 0

for the perturbation which is not suitable for rigid boundaries in our situation
but holds for stress-free boundaries if π is periodic and the initial value of u
satisfies this requirement, see (I.3) to follow. Because of these difficulties we
will study (I.1) not by means of projections onto the orthogonal complement
to gradients but by a different method.

The present paper intends to study the changes in the long time behaviour
of the solutions of (I.1) if π is no longer periodic. These changes are closely
connected with certain mean values of u. Therefore we also pay some atten-
tion to the various mean values of u, both under periodic and non-periodic
pressure. The essential tool of our analysis is a particular decomposition
of any solenoidal field which allows us to separate that parts of the solu-
tion of (I.1) which are important at the respective occasions. The results
are described in what follows and in a conclusion section at the end of the
paper.

In the stress-free case it is common usage to assume that the mean value∫
Ω

u dx dy dz = 0(I.2)

over the layer Ω = (−π
α
, π
α

)× (−π
β
, π
β

)× (− 1
2
, 1

2
) and, as already mentioned,
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that π is periodic (cf. [GP, WI, SvWI, SvWII]). First of all let us main-
tain the assumption that π is periodic but drop (I.2). Then it follows by
integrating (I.1) over Ω that the mean value of u over the layer is constant
with respect to time, and


1
|P|

∫
Ω

ux(t, x, y, z) dx dy dz =
1
|P|

∫
Ω

ux(0, x, y, z) dx dy dz = c1,

1
|P|

∫
Ω

uy(t, x, y, z) dx dy dz =
1
|P|

∫
Ω

uy(0, x, y, z) dx dy dz = c2

(I.3)

can be prescribed arbitrarily whereas always

1
|P|

∫
Ω

uz(t, x, y, z) dx dy dz =
1
|P|

∫
Ω

uz(0, x, y, z) dx dy dz = 0.(I.4)

There is also no problem to construct the unique strong solution of (I.1) with
non vanishing mean values c1, c2. Again we refer to the poloidal-toroidal-
mean flow decomposition and [SvWI, WI, WII]. Reduction of the case
(c1, c2) 6= (0, 0) to the case (I.2) by replacing u by w = u − c shows that
(w, π, ϑ) are a perturbation of the constant flow c = (c1, c2, 0)T, π = const.,
ϑ = 0 under stress-free boundaries. Using Galileian invariance of (I.1) simul-
taneously it turns out that c is unconditionally monotonically energy stable
up to criticality. The latter one is represented by the onset of convection
as given in [SvWII], and the corresponding critical value of R will subse-
quently be denoted by RC = RC(α, β). The stability properties of c can of
course be recovered by considering in the usual way the disturbances w (with∫

Ω w dx dy dz = 0) of c. Theorem 1.1 in [WIII], which gives a necessary and
sufficient condition for

energetic Rayleigh-number = critical Rayleigh-number,

however shows the remarkable effect that in general all eigenvalues of the
linearization on the onset become purely imaginary whereas the eigenvalue 0
only occurs if

c1α

c2β
or

c2β

c1α
is rational

and the critical disturbance w therefore is two-dimensional, cf. [WIII,
Sec. 3]. In a sense, the general case of purely imaginary eigenvalues oc-
curring on the onset complements the situation treated in [GS], as now an
exchange of stability does not hold. In the case of rigid boundary conditions
there is no freedom left to dispose of mean values.
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This relatively simple situation changes drastically when the pressure is
no longer x, y-periodic. The system (I.1) only requires, as was already men-
tioned, periodicity of ∇π. The general form of the pressure was derived
in [SvWI]. It looks like

π(t, x, y, z) = π̃(t, x, y, z) + g1(t)x+ g2(t)y + d(t, z),(I.5)

where π̃ is periodic in the plane with respect to P and fulfills
∫
P π̃ dx dy = 0.

d is subject to the condition

∂z

(
d+

1
|P|

∫
P
u2
z dx dy

)
=
√
R

1
|P|

∫
P
ϑ dx dy.

The two-vector

g(t) =

(
g1(t)
g2(t)

)

is arbitrary and depends on t only. Thus π̃ + d is that part of π which is
periodic in the plane whereas g1(t)x+ g2(t)y is the non-periodic one. Using
the poloidal-toroidal-mean flow decomposition of solenoidal fields there is
again no difficulty to solve (I.1) including all terms in (I.5) instead of the
periodic one only as we did in [WI, WII]. The proofs in [WI, WII] carry
over word by word. Thus from a purely mathematical point of view there is
no reason why the periodic case is preferred to the non-periodic one. From
a physical point of view the situation looks different. We deal with rigid
boundaries first. Taking into consideration the non-periodic part of π too
we show that the asymptotic behaviour of u in (I.1) is governed by the mean
flow, provided R < RC and provided the deviations from periodicity in π are
not too large. To be more precise, as t → +∞ the velocity field u behaves
like the vector field (f1(t, z), f2(t, z), 0)T where

∂tf1 + (−∂2
z)f1 = −g1(t),

∂tf2 + (−∂2
z)f2 = −g2(t),

f1(0, z) =
∫
P ux(0, x, y, z) dx dy, f2(0, z) =

∫
P uy(0, x, y, z) dx dy and f1 =

f2 = 0 at z = ±1
2
. For instance, if we assume that R < RC and that

|g(t)| is small, t ≥ 0, and g(t)→ g =

(
g1

g2

)
, t→ +∞, with g 6= 0,

(I.6)
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then all u in (I.1) converge to the Poiseuille flow

−1
2

g1( 1
4
− z2)

g2( 1
4
− z2)
0

 .
This material is dealt with in Sec. III. One may believe that all these dif-
ficulties can be removed by requiring invariance properties of (I.1) against
particular transformations of variables (Galileian invariance for instance).
As we show in Sec. III this is not the case.

If we assume stress-free boundaries, the case of non-periodic pressure can
be reduced to the periodic one by an appropriate change of variables. As a
result we obtain for instance that under the assumptions (I.6) all velocity
fields u in (I.1) approach an “accelerated” rigid motion.

There are several authors dealing with so called mean flows and non-
periodic pressure. We refer to [CI], [EDTS], [IM] and the references given
there. In these papers the mean flow is given by

∫ +1/2

−1/2

∫ +π/α

−π/α uy dx dz for
instance in the Taylor-Couette problem. In our considerations the situation
is different. The mean flow of ours simply occurs as part of a particular de-
composition of any solenoidal field u in the layer being periodic with respect
to the x, y directions and is given by f(z) =

∫
P u dx dy. Thus f enters in

a very natural way into our access to the Boussinesq system. It satisfies a
certain subsystem of (I.1) and exhibits a close connection with the pressure
as was displayed in [SvWI]. The details are given in the section to follow.

II. Poloidal-Toroidal-Mean Flow Decomposition.

We now briefly explain the poloidal-toroidal-mean flow decomposition of a
solenoidal field in an infinite layer and the form (I.1) takes when using this
decomposition. Any solenoidal field u in R2 × (−1

2
, 1

2
) which is x, y-periodic

with respect to P can be decomposed into

u = curl curl (ϕk) + curl (ψk) + f .

k is the unit vector in z-direction and is orthogonal with respect to the
layer. ϕ,ψ are functions having the same periodicity as u. Their mean
values over P vanish for all z. The vector field f depends on z only. Its
third component f3 is constant and vanishes if u satisfies rigid or stress-free
boundary conditions at the walls of the layer z = ±1

2
. We use the notations

δϕ = curl curlϕk =

 ∂xzϕ
∂yzϕ

(−∆2)ϕ
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with (−∆2) = −∂2
x − ∂2

y as plane Laplacian,

εψ = curlψk =

 ∂yψ
−∂xψ

0

 ,
δ · (vector field) = ∂xz (first component of vector field) + . . . ,

and similarly for ε · (vector field).

Stress-free boundary conditions turn out to be equivalent to

ϕ = ∂2
zϕ = ∂zψ = ∂zf1 = ∂zf2 = 0 at z = ±1

2

whereas rigid ones correspond to

ϕ = ∂zϕ = ψ = f1 = f2 = 0 at z = ±1
2
.

(I.1) is now rewritten in terms of the unknown vector

Φ = (ϕ,ψ, ϑ, f1, f2)T .

ϑ is the same quantity as in (I.1) and satisfies ϑ = 0 at z = ±1
2

in any case.
This new system we want to deal with arises by forming curl curl and curl
of the left hand side of the Navier-Stokes part of (I.1) and then taking its
(Euclidean) scalar product with k. Then we obtain



(−∆)(−∆2)∂tϕ+ ∆2(−∆2)ϕ−√R (−∆2)ϑ+ δ · (u · ∇u) = 0,

(−∆2)∂tψ + (−∆)(−∆2)ψ − ε · (u · ∇u) = 0,

Pr ∂tϑ−∆ϑ−√R (−∆2)ϕ+ Pr u · ∇ϑ = 0,

∂tf1 + (−∂2
z)f1 +

1
|P|

∫
P

ũ · ∇ũx dx dy = −g1(t),

∂tf2 + (−∂2
z)f2 +

1
|P|

∫
P

ũ · ∇ũy dx dy = −g2(t)

(II.1)

with u = δϕ + εψ + f as before and ũ = δϕ + εψ as that part of u which
has vanishing mean value over P. g1(t), g2(t) are given in (I.5). In the case
of rigid or stress-free boundary conditions we introduce the Hilbert space

H = L2
M(Ω)× L2

M(Ω)× L2(Ω)× L2

((
−1

2
,
1
2

))
× L2

((
−1

2
,
1
2

))
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where L2
M(Ω) = {f ∈ L2(Ω) | ∫P f dx dy = 0} and where L2((− 1

2
, 1

2
)) is

endowed with the scalar product |P| ∫ +1/2

−1/2 fg dz. It is not too difficult to
show that (II.1) takes the form

B∂tΦ +AΦ−
√
R CΦ +M(Φ,Φ) = G.(II.2)

B is a diagonal strictly positive definite selfadjoint operator, acting on the
periodic vectors in H. A does the same but is strictly positive definite
selfadjoint only for rigid boundaries, whereas under stress-free boundary
conditions A is only nonnegative selfadjoint, which is due to the mean-flow
part. If L2((− 1

2
, 1

2
)) is replaced by the subspace of mean-value-free functions

then A becomes strictly positive definite. Evidently A is also diagonal,
whereas the symmetric operator C has the matrix form

0 0 (−∆2) 0 0
0 0 0 0 0

(−∆2) 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .

M(Φ,Φ) is a bilinear nonlinearity, and −G contains the gradient of the
nonperiodic part of π. In particular the periodic part of the pressure is
eliminated and the system (II.1) is almost local. The only nonlocal parts
are the mean values in the subsystem for the mean flow. For this material
we refer to [SvWI]. A certain technical difficulty occurs in the case of rigid
boundary conditions. It is due to the fact that the operators (−∆) in front
of (−∆2)∂tϕ and ∆2 in front of (−∆2)ϕ do not commute. To say it in other
words: B and A do not commute. For this reason it is convenient to apply
(−∆)−1 under boundary conditions ϕ = 0 at z = ±1

2
to the first row in (II.1).

Thus there arises

(−∆2)∂tϕ+(−∆)−1∆2(−∆2)ϕ−
√
R (−∆)−1(−∆2)ϑ+(−∆)−1δ·(u·∇u) = 0.

As the underlying Hilbert space for ϕ we now take
◦
H1,2
M (Ω) = {ϕ ∈ H1,2

M (Ω) |
ϕ = 0 at z = ± 1

2
}. As H1,2

M (Ω) we define in our situation the Hilbert space
of all f ,

f(x, y, z) =
∑

κ∈Z2\{0}
aκ(z)eiακ1x+iβκ2y

with

‖f‖21 := ‖f‖2H1,2
M

(Ω)
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:=
∑

κ∈Z2\{0}

(∫ 1
2

− 1
2

|∂zaκ|2 dz + (α2κ2
1 + β2κ2

2)
∫ 1

2

− 1
2

|aκ|2 dz
)
.

Thus
◦
H1,2
M (Ω) is endowed with the scalar-product (∇ ·,∇ ·). Then Â =

(−∆)−1∆2 is essentially selfadjoint in
◦
H1,2
M (Ω) when defined on all ϕ ∈

H4,2(Ω) ∩ ◦
H1,2
M (Ω) with ∂zϕ = 0 at z = ±1

2
. Its closure Â is thus self-

adjoint in
◦
H1,2
M (Ω) with domain of definition {ϕ ∈ H3,2(Ω)∩ ◦H1,2

M (Ω) | ∂zϕ =
0 at z = ±1

2
}. The graph-norm of Â is equivalent with the ‖ · ‖H3,2(Ω)-norm.

Â is strictly positive definite in
◦
H1,2
M (Ω), its square root Â

1/2

has domain

of definition {ϕ ∈ H2,2(Ω) ∩ ◦
H1,2
M (Ω) | ∂zϕ = 0 at z = ± 1

2
}. The norm

‖Â
1/2

· ‖ is equivalent with the ‖ · ‖H2,2(Ω)-norm. For this material we re-
fer to [WI, Sec. V], [WII, Sec. V] and [KvWI, Sec. 0 and appendix]. The
underlying Hilbert space under rigid boundary conditions now becomes

Ĥ =
◦
H1,2
M (Ω)× L2

M(Ω)× L2(Ω)× L2

((
−1

2
,
1
2

))
× L2

((
−1

2
,
1
2

))
and (II.1) takes the form

B̂∂tΦ + ÂΦ−
√
R ĈΦ + M̂(Φ,Φ) = 0.(II.3)

Here B̂, Â commute and if J is the diagonal operator with (−∆)−1 in the
first position and the identity in all others then

B̂ = JB, Â = JA, Ĉ = J C, M̂ = JM.

B̂, Â are strictly positive definite selfadjoint operators in Ĥ. We set

D̂ =


Â

1/2

(−∆2) 0 0 0 0
0 (−∆)1/2(−∆2) 0 0 0
0 0

√
Pr (−∆)1/2 0 0

0 0 0 (−∂2
z)

1/2 0
0 0 0 0 (−∂2

z)
1/2

 .

Then D̂ is in an obvious way an intermediate operator between B̂ and Â;
more precisely we can set D̂ = (B̂, Â)1/2 and in (II.3) we have

(B̂∂tΦ, ÂΦ) =
1
2
d

dt
‖D̂Φ‖2.
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III. Rigid Motions in the Periodic Pressure Case.

We consider first the case of stress-free boundaries. The pressure π is as-
sumed to be periodic. By integrating (I.1) over Ω we obtain

d

dt

1
|Ω|

∫
Ω

(
u1(t,x)
u2(t,x)

)
dx = − 1

|Ω|
∫

Ω

(
∂xπ(t,x)
∂yπ(t,x)

)
dx = 0,(III.1)

or
1
|Ω|

∫
Ω

uj(t,x) dx =
1
|Ω|

∫
Ω

uj(0,x) dx =: cj ∈ R, j = 1, 2.

Note that
∫

Ω u3(t,x) dx = 0 because of ∇ · u = 0 and the boundary condi-
tions. Instead of requiring (c1, c2)T to vanish as in (I.2), we want to investi-
gate the case (c1, c2)T 6= (0, 0)T, i.e. when rigid motions occur.

In order to stick to our usual Hilbert space H with zero-averaged mean
flow components we consider (u, π, ϑ) as perturbation of the constant flow
c = (c1, c2, 0)T, π = 0, ϑ = 0, with disturbance (w, π, ϑ), w = u − c.
By expressing (w, ϑ) in terms of Φ = (ϕ,ψ, ϑ, f1, f2)T and writing Φc =
(0, 0, 0, c1, c2)T we have B∂tΦ +AΦ−√R CΦ +M(Φc,Φ) +M(Φ,Φ) = 0,

Φ(0) = Φ0

(III.2)

with stress-free boundary conditions for Φ.
Due to the absence ofM(Φ,Φc) (= 0) the energy ‖B1/2Φ(t)‖2 behaves in

exactly the same way as if Φ was a perturbation of the motionless state. In
particular it decreases monotonically and exponentially provided R < RC .
The antisymmetric structure of M(Φc,Φ) = (c1∂x + c2∂y)BΦ is responsible
for the validity of the following lemma.

Lemma III.1. For every κ ∈ Z2 \ {0} satisfying

(π2 + α2κ2
1 + β2κ2

2)3

α2κ2
1 + β2κ2

2

= RC(III.3)

the eigenvector Φ = (ϕ, 0, ϑ, 0, 0)T of AΦ−√RC CΦ = 0 given by

 ϕ(x, y, z) = eiακ1x+iβκ2y cosπz,

ϑ(x, y, z) =
(
(π2 + α2κ2

1 + β2κ2
2)(α2κ2

1 + β2κ2
2)
)1/2

ϕ(x, y, z)

(III.4)

simultaneously is an eigenvector of

σBΦ = AΦ−
√
RC CΦ +M(Φc,Φ),(III.5)

with σ = i(ακ1c1 + βκ2c2).
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Proof. Obvious.

Lemma III.1 together with [WIII, Thm. 1.1] implies that the marginal
case R = RC for monotonic energy stability simultaneously is critical for
linear stability analysis:

ξ0 := inf{Reσ | ∃ eigenvector Φ of (III.5)} = 0,

just as it was the case for the motionless state. With respect to distur-
bances (w, ϑ) satisfying

∫
Ω w(t,x) dx = 0 the rigid motion (c, 0) therefore is

unconditionally monotonically energy stable up to criticality.
Moreover the eigenspace {Φ | AΦ−√RC CΦ = 0} is spanned by the set of

all vectors Φ given in (III.4), (III.3). From Lemma III.1 and [WIII, Lem. 1.1]
we infer that{

Φ | AΦ−
√
RC CΦ = 0

}
= span

{
Φ | σBΦ = AΦ−

√
RC CΦ +M(Φc,Φ)

for some σ ∈ C with Reσ = 0
}

=
⊕

η=ακ1c1+βκ2c2
κ as in (III.3)

{
Φ | iηBΦ = AΦ−

√
RC CΦ +M(Φc,Φ)

}
.

In contrast to the motionless case, where σ = 0 is the only eigenvalue of
(III.5) with Reσ = 0 and therefore the principle of exchange of stability
holds, this space of eigenvectors can now be split into several subspaces
belonging to purely imaginary eigenvalues iη. To be more precise: σ = 0
remains an eigenvalue of (III.5) if and only if the ratio c1 : c2 and the
ratio −βκ2 : ακ1 coincide for one of the κ given by (III.3). Thus there are
only finitely many possibilities for the ratio c1 : c2 to produce the eigenvalue
σ = 0; in all other cases criticality is attained exclusively at purely imaginary
eigenvalues. In particular this means that for almost all values of c1 : c2 an
exchange of stability no longer takes place.

The behaviour of (u, ϑ) in relation to (c, 0) can as well be described by
means of a Galileian transformation (cf. also (IV.7)):

ũ(t,x) = u(t,x + tc)− c, ϑ̃(t,x) = ϑ(t,x + tc), π̃(t,x) = π(t,x + tc)
(III.6)

also solve (I.1) with stress-free boundaries, but with
∫

Ω ũ(t,x) dx = 0. Be-
cause of periodicity we have

‖ũ(t, ·)‖ = ‖u(t, ·+ tc)− c‖ = ‖w(t, ·)‖
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for every norm ‖ · ‖ involving plain integration over Ω, hence the difference
(w, ϑ) = (u, ϑ)− (c, 0) must behave in exactly the same way as the distur-
bance (ũ, ϑ̃) of the motionless state. For instance we get that monotonic
energy stability of (c, 0) for R ≤ RC is followed by nonlinear instability at
R > RC , since this is known to be true for the motionless case, cf. [Z, Satz 4],
whereas the above method does not seem to provide this result without fur-
ther effort.

The value of the first approach, however, consists in a precise description
of the spectrum for the linearized problem at criticality, thereby presenting
a simple example of the rare situation where criticality is realized by purely
imaginary eigenvalues and linearized stability coincides with monotonic en-
ergy stability. The loss of exchange of stability becomes nevertheless more
clear with the help of the Galileian transformation: The application of the
inverse of (III.6) to x, y-dependent steady states (e.g. convection rolls) bi-
furcating from the rest state at R = RC leads to in general instationary
solutions.

Finally we briefly address the case of (I.1) together with rigid boundary
conditions. Here (III.1) does not hold, and there is no freedom of choice for∫

Ω u(t,x) dx, either, but it is determined uniquely by the mean-flow com-
ponents of the rewritten Oberbeck-Boussinesq equations (II.2), due to the
zero boundary values of f1, f2. In order to observe drift-like steady states in
the case of rigid boundaries one must allow the pressure to be non-periodic.
This will be dealt with in the following section.

IV. Non-Periodic Pressure.

A non-periodic pressure π with periodic gradient necessarily takes the form

π(t, x, y, z) = π̂(t, x, y, z) + g1(t)x+ g2(t)y,(IV.1)

π̂ being periodic, g1(t), g2(t) independent of x, y, z, see (I.5). Here we want to
show that in the case of rigid boundaries the behaviour of a solution (u, π, ϑ)
to (I.1) for t→∞ is governed by the behaviour of a solution um(t, z) to the
parabolic mean field equation in one space variable

{
∂tum,j + (−∂2

z)um,j = −gj(t) in (0,∞)× (− 1
2
, 1

2
),

um,j(t,±1
2
) = 0 for t > 0,

j = 1, 2,

(IV.2)

provided that R < RC and that um stays small in a sense specified below.
Note that (um, ϑm) with um,3 = 0, ϑm = 0, πm(t, x, y, z) = g1(t)x + g2(t)y
solves (I.1), too.
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First we bound the energy in an appropriate way. Since the disturbance
ũ = u − um, ϑ̃ = ϑ − ϑm = ϑ also satisfies the rigid boundary conditions,
we can write (ũ, ϑ̃) in terms of Φ = (ϕ,ψ, ϑ, f1, f2)T as in [SvWI]. The
equation for Φ then reads

B∂tΦ +AΦ−√R CΦ +M(Φ,Φm) +M(Φm,Φ) +M(Φ,Φ) = 0,

Φ(0) = Φ0

(IV.3)

with Φm = (0, 0, 0, um,1, um,2)T , and the boundary conditions are, as usual,

ϕ = ∂zϕ = 0, ψ = 0, ϑ = 0, f1 = f2 = 0 at z = ±1
2
.

Observe that the pressure in the equation for (ũ, ϑ̃) is now periodic. By
means of the energy method we obtain:

Theorem IV.1. Suppose that

sup
06=Φ∈D(A1/2)

0≤t<∞

√
R (CΦ,Φ)− Re (M(Φ,Φm),Φ)

‖A1/2Φ‖2 =: ρ < 1.(IV.4)

Then there exists a constant γ = γ(Pr, α, β, 1 − ρ) > 0 such that for every
strong solution Φ of (IV.3) the energy ‖B1/2Φ(t)‖2 is bounded by

‖B1/2Φ(t)‖2 ≤ ‖B1/2Φ(s)‖2 ≤ e−γs‖B1/2Φ0‖2, 0 ≤ s ≤ t < T (Φ0),

(IV.5)

in its maximal interval of existence (0, T (Φ0)). A sufficient condition for
(IV.4) to hold is

√
R

RC
+

sup
0≤t<∞, |z|≤ 1

2

|∂zum(t, z)|
√

2 (π2 + min{α2, β2}) < 1.(IV.6)

Proof. (IV.5) follows as usual by multiplying (IV.3) by Φ, taking the real
part and integrating. In order to prove the sufficiency of (IV.6) we recall
the estimate |(CΦ,Φ)| ≤ √RC −1‖A1/2Φ‖2, which is due to the definition of
RC (cf. e.g. [SvWII, Sec. 2]). Thus we still must estimate |(M(Φ,Φm),Φ)|.
Setting ‖f‖2P :=

∫
P |f(x, y, z)|2 dx dy we have

|(M(Φ,Φm),Φ)|



MEAN VALUES AND NON-PERIODIC PRESSURE 359

=
∣∣∣(∂zum,1(−∆2)ϕ, ∂x∂zϕ) + (∂zum,2(−∆2)ϕ, ∂y∂zϕ)

+ (∂zum,1(−∆2)ϕ, ∂yψ) + (∂zum,2(−∆2)ϕ,−∂xψ)
∣∣∣

≤
∫ 1

2

− 1
2

( |∂zum,1(t, z)|
2

(
2
ε
‖(−∆2)ϕ‖2P + ε‖∂x∂zϕ‖2P + ε‖∂yψ‖2P

)
+
|∂zum,2(t, z)|

2

(
2
δ
‖(−∆2)ϕ‖2P + δ‖∂y∂zϕ‖2P + δ‖ − ∂xψ‖2P

))
dz.

For ε =
√

2(1 + |∂zum,2(t,z)|2
|∂zum,1(t,z)|2 ), δ =

√
2(1 + |∂zum,1(t,z)|2

|∂zum,2(t,z)|2 ) the right hand side
equals ∫ 1

2

− 1
2

|∂zum(t, z)|√
2

(‖δϕ‖2P + ‖εψ‖2P) dz

≤ sup
|z|≤ 1

2

|∂zum(t, z)|√
2

‖B1/2(ϕ,ψ, 0, 0, 0)T‖2.

The best constant µ in ‖B1/2Φ‖2 ≤ µ‖A1/2Φ‖2, Φ = (ϕ,ψ, 0, 0, 0)T ∈ D(A1/2)
turns out to be µ = (π2 + min{α2, β2})−1, and the assertion is proved.

(IV.5) says that the instationary solution (um, ϑm) of (I.1) is monoton-
ically and unconditionally energy stable with exponentially decaying dis-
turbances, provided that (IV.4) holds. The quantity supt,z |∂zum(t, z)| in
(IV.6) can be considered as Reynolds number. For g1(t) ≡ g1, g2(t) ≡ 0
and Φm = (0, 0, 0,− 1

2
g1( 1

4
− z2), 0)T being the corresponding Poiseuille flow

(IV.4) is just a reformulation of [Mu, (3.14)].
Concerning higher norms we can further show:

Lemma IV.2. Assume that (IV.4) holds and that the norms
‖∂tum(t, ·)‖L2((− 1

2 ,
1
2 )) and ‖∂2

zum(t, ·)‖L2((− 1
2 ,

1
2 )) are bounded uniformly in

time t. If ‖D̂Φ0‖Ĥ is sufficiently small then the strong solution Φ exists
globally, i.e. T (Φ0) = +∞, Φm is locally conditionally stable with respect to
the disturbance Φ in the norm ‖Â · ‖Ĥ, and ‖ÂΦ(t)‖Ĥ → 0 for t→∞.

Proof. The proofs of [KvWI, Thm. 1.1, Thm. 2.1, Thm. 3.1] and [KvWII,
Thm. 2.1 and remark thereafter] carry over to the case of time-dependent Φm

if the required bounds for Φm are uniform in time. This, however, is guar-
anteed by our assumption.

The asymptotic behaviour of (u, ϑ) is therefore determined by the be-
haviour of the mean flow solution um even in higher norms.
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Suppose, for instance, that g(t) = (g1(t), g2(t), 0)T is continuous in t with
g(t)→ g = (g1, g2, 0)T as t→∞, and that R < RC . Then every solution of
the mean field system (IV.2) converges to the stationary field

up(z) = −1
2

(
1
4
− z2

)g1

g2

0

 ,
which is a Poiseuille flow. If we prescribe as initial values e.g. um,j(0, z) =
− 1

2
gj(0)( 1

4
−z2) we see that |∂2

zum(t, z)| ≤ √2 supt |g(t)|, thus |∂zum(t, z)| ≤√
2 supt |g(t)| for every (t, z). Hence if |g(t)| remains small, cf. (IV.6), the

total flow (u, ϑ) also converges to the Poiseuille flow (up, ϑp = 0) with
respect to the energy norm, irrespective of the size of the initial value
(u(0, ·), ϑ(0, ·)). From Lemma IV.2 we conclude that (up, 0) is condition-
ally asymptotically stable with respect to the higher norm ‖Â · ‖Ĥ, too. The
smallness of ‖D̂Φ0‖Ĥ required there guarantees the global existence of (u, ϑ)
as strong solution. By considering (u, ϑ) as weak solution to (IV.1), however,
one still can show that (u, ϑ) must converge to the Poiseuille flow (up, 0)
in ‖Â · ‖Ĥ, even if the smallness assumption for ‖D̂Φ0‖Ĥ is dropped, see
[KvWII, Sec. 3] for a detailed discussion.

The case of non-periodic pressure and stress-free boundaries could be
treated in a similar way to the one used above, here one would have to
replace the Dirichlet problem in (IV.2) by the corresponding Neumann prob-
lem. It is however possible to describe the situation for stress-free boundaries
even more exactly by making use of a transformation leaving (I.5) invari-
ant, cf. [M, p. 15]: If (u, π, ϑ) solves (I.1) with stress-free boundaries and if
ξ(t) = (ξ1(t), ξ2(t), 0)T and q(t) are smooth then the functions

ũ(t,x) = u(t,x− ξ(t)) + ξ′(t),

ϑ̃(t,x) = ϑ(t,x− ξ(t)),

π̃(t,x) = π(t,x− ξ(t)) + q(t)− ξ′′1 (t)x− ξ′′2 (t)y

(IV.7)

solve (I.1) with stress-free boundaries as well. Observe that this is not true
for the case of rigid boundaries because of ξ′(t) 6= 0 at z = ± 1

2
unless

ξ(t) = const. In the stress-free case we now choose

ξ(t) = − t

|Ω|
∫

Ω

u(0,x) dx +
∫ t

0

∫ τ

0

g1(s)
g2(s)

0

 ds dτ

and q(t) = g1(t)ξ1(t) + g2(t)ξ2(t), g1(t), g2(t) being determined from π by
(IV.1). Then (ũ, π̃, ϑ̃) solves (I.1) with π̃ being periodic and

∫
Ω ũ(t,x) dx = 0.
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The rigid motion (v, 0) given by

v(t, x, y, z) = v(t) =
1
|Ω|

∫
Ω

u(0,x) dx−
∫ t

0

g1(τ)
g2(τ)

0

 dτ = −ξ′(t)

is transformed into (ṽ, 0) = (0, 0), i.e. the motionless state. For every
norm ‖ · ‖ involving plain integration over Ω we have

‖u(t, ·)− v(t)‖ = ‖u(t, · − ξ(t))− v(t)‖ = ‖ũ(t, ·)‖

due to periodicity. Hence the difference (u(t, ·), ϑ(t, ·)) − (v(t), 0) exactly
behaves like the disturbance (ũ, ϑ̃) of the rest state in (I.1). But this be-
haviour is well-investigated, cf. e.g. [SvWI], [SvWII], [KvWI], [KvWII],
[WI], [WII], [WIII]. If, for instance, R < RC then (u, ϑ) approaches the
rigid motion (v(t), 0) unconditionally with respect to the energy norm. In
particular the results from the end of Sec. II can be recovered by means of
the above transformation.

V. Conclusion.

It has been studied for both rigid and stress-free boundaries, how the pres-
ence of non-periodic pressure affects the long time behaviour of solutions to
the Oberbeck-Boussinesq equations. It turns out that the flow is governed
entirely by the parabolic subsystem in one space variable for its mean flow
components, provided that R < RC and the Reynolds number for the mean
flow is not too large, cf. (IV.6). Rigid motion can also occur in the case of
periodic pressure if the boundary conditions are stress-free. Linear stability
analysis then shows that the energetic and the critical Rayleigh numbers still
coincide, although the principle of exchange of stability fails to hold because
the marginal case is realized by purely imaginary eigenvalues. This is a gen-
eral effect which also appears if one considers disturbances to a constant
horizontal flow and imposes rigid boundary conditions for the disturbance
and periodicity for the corresponding pressure.
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