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STABLE BUNDLES ON PROJECTIVE CURVES: THEIR
FILTRATIONS AND THEIR SUBBUNDLES

E. Ballico

Let X be a smooth genus g projective curve. Here we
study the maximal degree subbundles of the stable vector
bundles on X and the existence of stable vector bundles on
X with suitable filtrations by subbundles. Tools: Elementary
transformations of vector bundles and pull-backs of bundles
from lower genus curves.

0. Introduction.

Let X be a smooth, projective curve of genus g. Let F be a vector bundle on
X such that F has an increasing filtration {Fj}0≤j≤k by saturated subbundles
with F0 := {0} and Fk := F ; set ai := deg(Fi/Fi−1) and ri := rank(Fi/Fi−1),
1 ≤ i ≤ k; assume Fi 6= Fi−1 for every i, i.e. ri > 0 for every i; the ordered
set of integers (k; a1, r1, . . . , ak, rk) will be called the type (or the numerical
type) of the filtration {Fj}0≤j≤k. If g ≥ 2 we are interested in the existence of
a stable vector bundle on X with a filtration of type (k; a1, r1, . . . , ak, rk). If
k = 2 a necessary condition is the inequality a1/r1 < a2/r2. In [L2] H. Lange
conjectured that this condition is also a sufficient condition. Recently, several
cases of Lange’s conjecture were solved by L. Brambila-Paz and H. Lange
([BL]) and by M. Teixidor i Bigas ([T]). We always assume characteristic
0. We list here some of our main results (all proven in Section 3); for other
results, see 3.1 and Section 4.

For an integer a, set a+ = a− = a if a is even and a+ = a− + 2 = a+ 1 if
a is odd.

Theorem 0.1. Fix integers g, k, q, ai, 1 ≤ i ≤ k, ri, 1 ≤ i ≤ k. Assume
ri > 0 for every i ≥ 1, q ≥ 1, k ≥ 2, 2g+ 2 > k+ 4q if q ≥ 2, g ≥ k if q = 1.
If q = 1 assume (ai+ + 2)/ri ≤ ai+1−/ri+1 for every i < k. Let f : X → Y be
a double covering with X smooth curve of genus g and Y smooth curve of
genus q. If q ≥ 2 assume ai+/ri + 4q + 3 < ai+1−/ri+1 for every i < k and
that Y is bielliptic. Then there is a stable bundle E on X with a filtration
{E(i)}0≤i≤k with numerical type (k; a1, r1, . . . , ak, rk).

We state explicitely the case q = 2 of Theorem 0.1.
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Corollary 0.2. Fix integers g, k, ai, 1 ≤ i ≤ k, ri, 1 ≤ i ≤ k. Assume
ri > 0 for every i ≥ 1, k ≥ 2, 2g > k + 6 and (ai+ + 11)/ri < ai+1−/ri+1 for
every i < k. Let f : X → Y be a double covering with X smooth curve of
genus g and Y bielliptic curve of genus 2. Then there is a stable bundle E
on X with a filtration {E(i)}0≤i≤k with numerical type (k; a1, r1, . . . , ak, rk).

By Lemma 2.7 proved in Section 2 and Corollary 0.2 we have the following
result.

Theorem 0.3. Fix integers g, k, ai, 1 ≤ i ≤ k, ri, 1 ≤ i ≤ k. Assume
ri > 0 for every i ≥ 1, k ≥ 2, 2g > k + 6 and (ai+ + 11)/ri < ai+1−/ri+1

for every i < k. Let X be a general smooth curve of genus g. Then there
is a stable bundle E on X with a filtration {E(i)}0≤i≤k with numerical type
(k; a1, r1, . . . , ak, rk).

The proof of 0.3 shows the power of the “double covering tricks” used to
prove Theorem 0.1 and the power of a statement like 0.1 for double cover-
ings. We believe that for this type of problems and for the Brill-Noether
theory there is a deep difference between double coverings and curves with
general moduli. Sometimes (as here and in [BR] for a weak form of Lange’s
conjecture) a result proven for double coverings implies the corresponding
result for the general curves with the same genus. Sometimes, the theorem
for curves with general moduli may be used to obtain the corresponding
statement substituting the words “stable bundle” with “semistable bundle”
on all smooth curve with the same genus (see e.g. [T], Proof of Th. 0.2).
Sometimes, the corresponding result is trivially false for curves with general
moduli. In Section 1 we fix the notations used in this paper and we consider
the case g = 1. These results on elliptic curves will be use to prove the case
q = 1 of Theorem 0.1.

This research was partially supported by MURST and GNSAGA of CNR
(Italy).

1. Elliptic curves.

We work over an algebraically closed field K with char(K) = 0. For a vector
bundle A on a smooth curve, let µ(A) := deg(A)/ rank(A) be its slope; if A
is semistable set µ+(A) = µ−(A) := µ(A); if A is not semistable, let µ+(A)
(resp. µ−(A)) be the maximal (resp. minimal) slope of a graded subquotient
of the Harder-Narasimhan filtration of A. If X is a smooth curve of genus
≥ 2 and r, d are integers with r ≥ 1M(X; r, d) will denote the variety of all
stable vector bundles on X with rank r and degree d. We will meet often
the following situation. Fix an integer r ≥ 2. Let Z be a smooth projective
curve and Mi ∈ Pic(Z), 1 ≤ i ≤ r. Set mi := deg(Mi). Set E(0) := {0} and
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E(1) := M1. For 1 ≤ i ≤ r we have an exact sequence

(1) 0→ E(i− 1)→ E(i)→Mi → 0.

Hence each E(i), 1 ≤ i ≤ r, is a rank i vector bundle on Z with deg(E(i)) =∑
1≤j≤imj. We will call numerical datum an ordered set of integers

[r;m1, . . . ,mr] with r ≥ 2 and we will say that the filtered bundle {E(i)}0≤i≤r
with E(i)/E(i− 1) ∼= Mi has numerical datum [r;m1, . . . ,mr].

Let E be a rank r vector bundle on the smooth curve Z and P ∈ Z.
Let KP be the skyscraper sheaf on Z of length 1 supported by P. Fix sur-
jections u : E → KP and v : E(P ) → K⊕(r−1)

P . The sheaves Ker(u) and
Ker(v) are locally free of rank r. We have det(Ker(u)) ∼= det(E)(−P ) and
det(Ker(v)) ∼= det(E)(P ). In particular we have deg(Ker(u)) = deg(E) − 1
and deg(Ker(v)) = deg(E) + 1. We will say that Ker(u) is obtained from
E by an elementary transformation supported by P and that Ker(v) is ob-
tained from E by a +elementary transformation supported by P. Note that
Ker(v)∗ is obtained from E∗ by an elementary transformation supported by
P and that Ker(u)∗ is obtained from E∗ by a +elementary transformation
supported by P. Furthermore, E is obtained from Ker(u) (resp. Ker(v)) by
a +elementary (resp. an elementary) transformation supported by P.

In this section we will consider the case of a smooth elliptic curve Y. The
results contained in this section will be used to prove the case q = 1 of 0.1.
The following Lemma was proved in [BR].

Lemma 1.1 ([BR, Prop. 1.4]). Fix integers a, b, u, v with 1 ≤ u < v and
a/u < b/v. Let Y be an elliptic curve and A,B polystable vector bundles on
Y with deg(A) = a, rank(A) = u, deg(B) = b and rank(B) = v. Assume
that no two direct factors of A are isomorphic and that the same is true for
B. Then there exists an injection j : A→ B with Coker(j) locally free.

Theorem 1.2. Let Y be an elliptic curve. Fix integers r ≥ 2, m1, . . . ,mr,
such that for all integers i with 1 ≤ i < r we have (Σ1≤j≤imi)/i < mi + 1.
Then there is a polystable bundle E = E(r) on Y such that E has a filtration
{E(i)}0≤i≤r by polystable subbundles with rank(E(i)) = i for every i and
E(i + 1)/E(i) ∈ Picmi+1(Y ), i.e. a filtration determined by exact sequences
(1) with numerical datum [r;m1, . . . ,mr].

Proof. Fix an integer i with 1 ≤ i ≤ r. Let E(i) be a polystable bundle
with rank(E(i)) = i, deg(E(i)) = Σ1≤j≤imi and such that no two of the
indecomposable factors of E(i) are isomorphic. By assumption we have
µ(E(i)) < µ(E(i + 1)) for every i < r. By Lemma 1.1 there is an inclusion
j : E(i)→ E(i+ 1) with Coker(j) locally free, i.e. with E(i+ 1)/j(E(i)) ∈
Picmi+1(Y ). Hence we conclude.
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Lemma 1.3. Let A and B be semistable vector bundles on an elliptic
curve Y. Assume rank(A) > rank(B) and µ(A) < µ(B)− 1. Then there is a
surjection t : A→ B.

Proof. Set u := rank(A) and v := rank(B). Set H := H0(Y,Hom(A,B)) and
for every P ∈ X set H(−P ) := H0(Y,Hom(A,B)(−P )). Since char(K) = 0
the bundle Hom(A,B) is semistable of slope µ(B) − µ(A) > 1. Hence for
every P ∈ Y we have H1(Y,Hom(A,B)(−P )) = H1(Y,Hom(A,B)) = 0.
Thus dim(H(−P )) = dim(H) − uv ≥ 0 by Riemann-Roch. Note that the
origin {0} of the fiber BP of B over P ∈ Y is the intersection of v hyperplanes
of BP . This implies that for every P ∈ Y and for every hyperplane M of the
vector space BP the set H{P,M} := {f ∈ H : f(AP ) ⊆M} has codimension
≥ u in H. Since P(BP ) = Pv−1, this implies that the set H{P} := {f ∈ H :
f(AP ) 6= BP} is an algebraic subset of H with codimension ≥ u − v + 1 ≥
2. Since dim(Y ) = 1, this implies that a general f ∈ H is surjective, as
wanted.

The proof of Lemma 1.3 just given shows (just changing the notations)
the following more general result.

Lemma 1.4. Let A and B be vector bundles on an elliptic curve Y. Assume
rank(A) > rank(B) and µ+(A) < µ−(B) − 1. Then there is a surjection
t : A→ B.

As a particular case of Lemma 1.4 we have the following partial general-
ization of Theorem 1.2.

Proposition 1.5. Fix an elliptic curve Y and a numerical datum
[r;m1, . . . ,mr]. Let E be a semistable vector bundle on Y with rank(E) = r
and deg(E) = Σ1≤j≤rmr. Assume that mr ≥ mi + 2 for every integer i < r.
Fix Mi ∈ Picmi(Y ), 1 ≤ i ≤ r, such that ⊗1≤i≤rMi

∼= det(E). Set E(r) := E
and for 1 ≤ i < r set E(i) := ⊕1≤j≤iMi. Then there exists an inclusion
m : E(r − 1) → E with Mr

∼= Coker(m). In particular E has a filtration
{E(i)}0≤i≤r with E(i− 1), E(i) and Mi fitting in the exact sequences (1).

Now we may generalize Proposition 1.5 in the following way.

Theorem 1.6. Fix an elliptic curve Y and a numerical datum [r;m1, . . . ,
mr]. Let E be a semistable vector bundle on Y with rank(E) = r and
deg(E) = Σ1≤j≤rmr. Assume the existence of an integer k ≥ 1 and of inte-
gers 0 := i(0) < i(1) < · · · < i(k) := r such that for every integer t with 1 ≤
t ≤ k we have mi(t) ≥ 2+max{mj}i(t−1)<j<i(t) and such that if t < k we have
(Σi(t−1)<j≤i(t)mj)/(i(t)−i(t−1)) < 1+(Σi(t)<j≤i(t+1)mj)/(i(t+1)−i(t)). Then



BUNDLES ON CURVES 5

there exists a semistable vector bundle E on X with a filtration {E(i)}0≤i≤r
with numerical datum [r;m1, . . . ,mr] and such that for all integers t with
1 ≤ t ≤ k, the bundle E(i(t))/E(i(t− 1)) is semistable.

Proof. If k = 1, this is Proposition 1.5. Assume k > 1. For every inte-
ger t with 1 ≤ t ≤ k we apply 1.5 to the numerical datum [i(t) − i(t −
1),mi(t−1)+1, . . . ,mi(t)]. Since mi(t) ≥ 2+max{mj}i(t−1)<j<i(t) we obtain
a semistable bundle F (t) with rank(F (t)) = i(t)− i(t− 1) and deg(F (t)) =
Σi(t−1)<j≤i(t)mj. Set E(i(1)) := F (1) and take the corresponding filtration.
Since µ(F (2)) > 1 + µ(F (1)) by Lemma 1.3 there is a semistable bundle
E(i(2)) with E(i(1)) subbundle of E(i(2)) and with E(i(2))/E(i(1)) ∼= F (2).
If k = 2 by Lemma 1.3 we may take E(i(2)) as E. If k > 2 we continue in
the same way.

Remark 1.7. Here we analyze the cases with r = 3 not covered by
Theorem 1.2. First we assume m2 > m1. If there is any chance to find
a semistable bundle with numerical datum (3;m1,m2,m3) we need (and
will assume) 3m1 ≤ m1 + m2 + m3 (i.e. −m3 − m2 ≤ −2m1) and m1 +
m2 ≤ 2m3. Since the dual of a stable bundle is stable, we will consider the
datum (3;−m3,−m2,−m1). Since the numerical datum (3;m1,m2,m3) is
not covered by 1.2 we have −m3 < −m2. If we have −m3 −m2 < −2m1 we
may apply Theorem 1.2 to this datum. Assume −m3 − m2 = −2m1. Let
B be a polystable bundle with a filtration of numerical type (2;−m3,−m2).
Take as polystable bundle B ⊕ R with R ∈ Pic−m1(Y ). Now we assume
m1 = m2. We apply Lemma 1.1 taking A := M1 ⊕M2 with M1 and M2

not isomorphic. If m1 < m2 = m3 we may apply this discussion to the dual
numerical datum (3;−m3,−m2,−m1). If m1 = m2 = m3 the construction of
a polystable bundle with numerical datum (3;m1,m2,m3) is trivial.

2. A few lemmas.

In this section we collect several lemmas.

Lemma 2.1. Fix an integer g ≥ 2, a numerical datum [r;m1, . . . ,mr]
and a smooth genus g curve Z. Assume the existence of a stable (resp.
semistable) bundle E on Z associated to the numerical datum [r;m1, . . . ,mr].
Assume the existence of line bundles Mi ∈ Picmi(Z), 1 ≤ i ≤ r, such that
h0(Z,Hom(Mi,Mj)) = 0 for all integers i, j with 1 ≤ j < i ≤ r. Then for
a general curve X of genus g there is a stable (resp. semistable) bundle
associated to the numerical datum [r;m1, . . . ,mr].

Proof. Let {E(i)}0≤i≤r be the filtration of E with Mi, 1 ≤ i ≤ r, as graded
subquotients. The cohomological assumption gives inductively that for all
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integers i with 1 ≤ i < r we have dim(Ext1(Mi+1, E(i))) = −χ(Hom(Mi+1,
E(i))) = −Σ1≤j≤iχ(Hom(Mi+1,Mj)), i.e. the minimal possible value. Note
that on a finite covering M of Mg,1 there are the relative Picard varieties Pict

for all integers t. Since every vector bundle on an integral variety has integral
total space and the associated relative Ext1-functor is a vector bundle over
a Zariski dense open subset of M by semicontinuity, we conclude by the
openness of stability (resp. semistability) and the theory of relative Ext
([BPS] or [L1]).

Remark 2.2. The cohomological assumption of Lemma 2.1 is always
satisfied if the numerical datum [r;m1, . . . ,mr] is strictly increasing, i.e.
mj < mi for all i, j with 1 ≤ j < i ≤ r, or if [r;m1, . . . ,mr] is weakly
increasing, i.e. mj ≤ mi for all i, j with j < i, and for no pair (i, j) with
i 6= j Mi and Mj are isomorphic.

The proof of Lemma 2.1 gives the following result.

Lemma 2.3. Fix an integer g ≥ 2, a numerical type (k; a1, r1, . . . , ak, rk),
and a smooth genus g curve Z. Assume the existence of a stable (resp.
semistable) bundle E on Z with a filtration {Ei}0≤i≤k with numerical type
(k; a1, r1, . . . , ak, rk) and such that H0(Z,Hom(Ei/Ei−1, Ej/Ej−1)) = 0 for
all integers i, j with 0 < j < i ≤ k. Then on a general smooth curve there is
a stable (resp. semistable) bundle E′ with a filtration of type (k; a1, r1, . . . ,
ak, rk). Furthermore, if some of the bundles Ei/Ei−1 are stable or semistable
or simple, we may find E′ such that the corresponding bundles E′i/E

′
i−1 have

the same properties.

The proof of Lemma 1.3 gives verbatim the following results.

Lemma 2.4. Let Z be a smooth curve of genus q ≥ 2. Fix vector bundles
A,B,D with µ+(A) + 2q − 1 < µ−(B), rank(A) < rank(B), rank(B) >
rank(D) and µ+(B)+2q−1 < µ−(D). Then there is an embedding j : A→ B
with Coker(j) locally free and a surjection B → D.

Lemma 2.5. Let Z be a smooth curve of genus q ≥ 2. Fix stable vector
bundles A,B,D with µ(A) + 2q− 1 < µ(B), rank(A) < rank(B), rank(B) >
rank(D) and µ(B) + 2q − 1 < µ(D). Then there is an embedding j : A→ B
with Coker(j) locally free and a surjection B → D.

We will use often the following notations. We have integers a, b, r, s, q with
r > 0, s > 0, q ≥ 2. We consider an exact sequence

(2) 0→ H → E → Q→ 0
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of vector bundles on a smooth genus q curve called Z (or sometimes X) with
rank(H) = r, rank(Q) = s, deg(H) = a, deg(Q) = b. Usually we will have
a/r < b/s and we will look at exact sequences (2) with H,E and Q stable.

Lemma 2.6. Let Z be a smooth curve of genus q ≥ 2. Fix integers a, b, r, s
with r > 0, s > 0, a/r + 4q − 2 < 2q − 1 + (a + b)/(r + s) < b/s. Fix
Q ∈M(Z; s, b). Then there is an exact sequence (2) in which E is a general
element of M(Z; r + s, a+ b) and H is a general element of M(Z; r, a).

Proof. By Lemma 2.4 for every E ∈ M(Z; r + s, a+ b) there is a surjection
t : E → Q. We fix any such surjection t and set H := Ker(t). Since H is
a flat limit of a flat family of stable bundles and H1(Z,Hom(E,Q)) = 0,
it is sufficient to check that varying the bundle E and the surjection t we
obtain as Ker(t) all bundles in a neighborhood of H in its semiuniversal
deformation space. By deformation theory H1(Z,Hom(H,H)) is the tangent
space to this deformation space and H1(Z,Hom(E,E)) is the tangent space
to the deformation space of E which is smooth (i.e. every infinitesimal
deformation lifts to a local deformation) of dimension h1(Z,Hom(E,E)) =
−χ(Hom(E,E))+1 by the stability of E. Applying the functors Hom(−, H)
and Hom(E,−) to (2) we obtain the exact sequences

H1(Z,Hom(Q,H))→ H1(Z,Hom(E,H))→ H1(Z,Hom(H,H))→ 0
(3)

H0(Z,Hom(E,Q))→ H1(Z,Hom(E,H))→ H1(Z,Hom(E,E)).
(4)

Hence we conclude.

The proof of Lemma 2.1 gives the following result.

Lemma 2.7. Fix an integer g ≥ 2, a numerical type (k; a1, r1, . . . , ak, rk)
and a smooth genus g curve Z. Assume the existence of a stable (resp.
semistable) bundle E on Z with a filtration {Ei}0≤i≤k with numerical type
(k; a1, r1, . . . , ak, rk) such that h0(Z,Hom(Ei/Ei−1, Ei−1)) = 0 for every in-
teger i with 2 ≤ i ≤ r. Then for a general curve X of genus g there
is a stable (resp. semistable) bundle with a filtration of numerical type
(k; a1, r1, . . . , ak, rk).

3. Proofs of 0.1, 0.2 and 0.3.

In this section we prove Theorem 0.1 and hence Corollary 0.2 and (by Lemma
2.7) Theorem 0.3. Then we give a related result (Proposition 3.1).
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Proof of Theorem 0.1. Let σ ∈ Aut(X) be the involution determined by f
and B(f) the ramification locus of f. By assumption we have 2g + 2 > 4q.
We have card(B(f)) = 2g + 2 − 4q by Riemann-Hurwitz. Since B(f) 6= ∅,
for every stable bundle M on Y the bundle f∗(M) is stable (see e.g. [BBR],
Lemma 2.2). The proof will be divided into two steps. In the first step we
will prove the case q ≥ 2, while in the second step we will consider the case
q = 1.

Step 1. Assume q ≥ 2. Set I := {i ∈ {1, . . . , k} : ai is odd} and t := card(I).
Hence 0 ≤ t ≤ k. Fix t general points of Y, say f(P (x)), 1 ≤ x ≤ t, with
P (x) ∈ X, 1 ≤ x ≤ t, and card{P (x), σ(P (x)), 1 ≤ x ≤ t} = 2t. Set b′i :=
b′′i := ai/2 if ai is even and b′i := b′′i −1 := [ai/2] if ai is odd. Let F ′ (resp. F ′′)
be a stable bundle on Y with a filtration {F ′(i)}0≤i≤k (resp. {F ′′(i)}0≤i≤k)
of type (k; b′1, r1, . . . , b

′
k, rk) (resp. (k; b′′1 , r1, . . . , b

′′
k, rk)), with F ′ subsheaf of

F ′′ and such that F ′′(i)/F ′′(i − 1) is obtained from F ′(i)/F ′(i − 1) by one
+elementary transformation if ai is odd and F ′′(i)/F ′′(i−1) = F ′(i)/F ′(i−1)
if ai is even, each +elementary transformation supported by a different point
of {f(P (x))}1≤x≤t; the existence of F and F ′ follows taking +elementary
transformations of suitable bundle π∗(A′) and π∗(A′′) with π : Y → Z double
covering, Z elliptic curve and A′, A′′ polystable vector bundles on Z; for more
details, see a similar situation in the next few lines. Set E′ := f∗(F ′) and
E′′ := f∗(F ′′). Let E be the unique bundle containing E′, contained in E′′

and such that E is obtained from E′ making t +elementary transformations
supported by the points P (x), 1 ≤ x ≤ t. Note that E is obtained from
E′′ making t elementary transformations supported by the points σ(P (x)),
1 ≤ x ≤ t. Note that E′′ is the minimal bundle containing both E and σ(E).
By construction E has a filtration {E(i)}0≤i≤k of type (k; a1, r1, . . . , ak, rk).
It is sufficient to show the stability of E. In order to obtain a contradiction
we assume the existence of a saturated subbundle A of E with µ(A) ≥ µ(E).
Taking rank(A) minimal, we may assume A stable. We have A 6= σ(A)
because A∩σ(A) is contained in E′ and E′ is stable with µ(E′) ≤ µ(E). By
[BR], Step 4 of the proof of Th. 0.1, there are bundles B, U on Y, B subsheaf
of F ′′, U saturated subsheaf of B, with A ∩ σ(A) = f∗(U) and A+ σ(A) =
f∗(B). Since E′′ comes from Y, for every Q ∈ B(f) ⊂ Y the involution σ
acts as the identity over the fiber E′′Q′ over the point Q′ := f−1(Q)red ∈ X.
Hence the inclusion of the subsheaf A+ σ(A) into E′′ has AQ′ as image into
E′′Q′ , i.e. calling K the saturation of A + σ(A) into E′′, K/(A + σ(A)) has
length ≥ rank(A + σ(A)) − rank(A) at each of the card(B(f)) ramification
points of f. Since E′′ is stable and A+ σ(A) is a quotient of the polystable
bundle A ⊕ σ(A) we have µ(A + σ(A)) ≥ µ(A) and µ(E′′) = µ(E) + t/r ≥
µ(K) ≥ card(B(f)) · (rank(A+σ(A))− rank(A)) +µ(A), with equality only
if A + σ(A) ∼= A ⊕ σ(A) and K = E′′ (and hence rank(A) = r/2). In all
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cases if 2g + 2 > k + 4q we obtain a contradiction.

Step 2. Here we assume q = 1. If ai is even set b′i := ai/2− 2 and b′i := ai/2;
if ai is odd set b′i := [ai/2] and b′′i := [ai/2] + 1. Let t be the number of
indices i with ai odd. Choose 2k − t general points of Y, say f(P (x)),
1 ≤ x ≤ 2k − t, with P (x) ∈ X and {P (1), . . . , P (2k − t)} general. Let F ′

(resp. F ′′) be polystable bundles on Y with a filtration {F ′(i)}0≤i≤k (resp.
{F ′′(i)}0≤i≤k) of type (k; b′1, r1, . . . , b

′
k, rk) (resp. (k; b′′1 , r1, . . . , b

′′
k, rk)), with

F ′ subsheaf of F ′′ and such that F ′′(i)/F ′′(i−1) is obtained from F ′(i)/F ′(i−
1) by one +elementary transformation if ai is odd and by two +elementary
transformations if ai is even, each +elementary transformation supported
by a different point of {f(P (x))}1≤x≤2k−t. Such bundles F ′ and F ′′ exists by
Lemma 1.1. Note that here we could use also the more elementary Lemma
1.3. As in Step 1 we obtain a contradiction if 2g−2 := card(B(f)) > 2k− t.
Since t ≥ 0, here it is sufficient to assume g ≥ k.

Proposition 3.1. Fix integers g, r,mi, 1 ≤ i ≤ r, with g ≥ 2. Let u be
an integer i ≤ r with mi maximal. Set ∆({mi}) := Σ1≤i≤r(mu−mi). Fix any
integer t ≥ 1 + ∆({mi}). Let X be a smooth genus g curve. Set m′i := mu

for i < r, m′r := mu + t−∆({mi}). Then a general rank r vector bundle on
X with a filtration of type {m′i}1≤i≤r is stable.

Proof. Choose general bundles Mi ∈ Picmi(X), 1 ≤ i ≤ r, and general
bundles M ′

i ∈ Picmu(X), 1 ≤ i ≤ r, with h0(X,M ′
i ⊗ M∗

i ) 6= 0 for all i.
Set F := ⊕1≤i≤rMi, F

′ := ⊕1≤i≤rM ′
i , G := ⊕1≤i<rMi and F ′′ := G ⊕M ′

r.
Since M ′

i is obtained from Mi adding an effective divisor of degree mu−mi,
F ′ is obtained from F making ∆({mi}) +elementary transformations. For
general Mi’s we may assume that no two M ′

i ’s are isomorphic. By [B],
Prop. 2.3 and 2.7, for every integer w ≥ 1 a general bundle obtained from
F ′ making w +elementary transformations is stable. Take w := t−∆({mi}).
The family of bundles obtained in this way is contained in the closure of the
family of bundles obtained from F ′′ making t−mu+mr general +elementary
transformations. Any such bundle, A, has G as subbundle and hence it has
a filtration of type m′1, . . . ,m

′
r := deg(A)−Σ1≤i<rm′i. Hence we conclude by

the openness of stability.

4. Other results.

In this section we will use the following notations. Fix a smooth curve X
of genus g ≥ 2, an integer r ≥ 2 and integers mi, 1 ≤ i ≤ r. Set ext :=
ext({mi}) : Σ1≤j<i≤r(mi−mj+g−1) = Σ1≤i≤r(2i−r−1)mi+r(r−1)(g−1)/2.
Let E be a “general” rank r bundle with a filtration {E(i)}0≤i≤r of type
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(r;m1, 1, . . . ,mr, 1), i.e. with numerical datum [r;m1, . . . ,mr]. Set Mi :=
Ei/Ei−1 ∈ Picmi(X). We assume that (M1, . . . ,Mr) is a general element
of Picm1(X) × · · · × Picmr(X). We always assume mj ≤ mi + g − 1 for all
i, j with j < i. When this condition is satisfied, for general (M1, . . . ,Mr) ∈
Picm1(X)×· · ·×Picmr(X) the following condition (Condition ($)) is satisfied:

Condition ($): h0(X,Hom(Mi,Mj)) = 0 if i > j.

When Condition ($) is satisfied, for fixed (M1, . . . ,Mr) the set T(M1, . . . ,
Mr) of all filtered bundles with {Mi}1≤i≤r as graded subquotients is a vec-
tor space of dimension ext. Varying (M1, . . . ,Mr) ∈ Picm1(X) × · · · ×
Picmr(X) among the r-ples satisfying Condition ($) we obtain an irreducible
family, T, of dimension rg + ext of filtered bundles with numerical type
(r;m1, 1, . . . ,mr, 1). E will be a general element of T.

Lemma 4.1. Fix Mi ∈ Picmi(X), 1 ≤ i ≤ r, and assume Condition ($). Let
F be the general bundle on X with a filtration {F (i)}0≤i≤r with F (i)/F (i−
1) ∼= Mi. Let R be a rank 1 subbundle of F contained in F (k), 2 ≤ k ≤ r,
but not in F (k−1). Then (k+1) deg(R) ≤ Σ1≤j<kmj +2mk− (k−1)(g−1).

Proof. By assumption the inclusion R → F (k) induces a non-zero map
R→Mk and hence an effective divisor D with R ∼= Mk(−D). Furthermore,
the inclusion R → F (k) induces an inclusion F (k − 1) ⊕ R → F (k). Set
a := deg(D) ≥ 0. F (k) is obtained from F (k−1)⊕R making a +elementary
transformations with supports at points Pi, 1 ≤ i ≤ a, (not necessarly differ-
ent) with D = Σ1≤i≤aPi. For fixed R and D the set of all such +elementary
transformations is parametrized by a vector space of dimension ak. By Con-
dition ($) we have dim(Ext1(Mk, F (k−1))) = (k−1)(g−1+mk)−Σ1≤i≤k−mi.
Note that every inclusion of F (k−1)⊕R into F induces an extension of Mk

by F (k− 1) with F as middle term. Hence, since dim(X) = 1 and the set of
all +elementary transformations of a fixed rank k bundle supported at a fixed
point P ∈ X has dimension k, we obtain ka+a ≤ dim(Ext1(Mk, F (k− 1))),
i.e. the lemma.

In particular we obtain the following result.

Corollary 4.2. Fix Mi ∈ Picmi(X), 1 ≤ i ≤ r, and assume Condition
($). Assume that for every integer k with 2 ≤ k ≤ r we have (k + 1)m1 >
Σ1≤j<kmj + 2mk − (k − 1)(g − 1). Let F be the general bundle on X with a
filtration {F (i)}0≤i≤r with F (i)/F (i−1) ∼= Mi. Then every rank 1 subbundle
of F has degree ≤ m1 and M1 := F (1) is the unique subbundle of E with
degree m1.

Corollary 4.3. Fix Mi ∈ Picmi(X), 1 ≤ i ≤ r, and assume Condition ($).
Assume that 2m1 > 2m2 + 1− g and that for every integer k with 3 ≤ k ≤ r
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we have m1 ≥ mk − (2k−2 − 1)(g − 1)22−k. Let F be the general bundle on
X with a filtration {F (i)}0≤i≤r with F (i)/F (i− 1) ∼= Mi. Then every rank 1
subbundle of F has degree ≤ m1 and M1 := F (1) is the unique subbundle of
E with degree m1.

Proof. By 4.2 we need to check that for all integers k with 2 ≤ k ≤ r we have
(k+1)m1 > Σ1≤j<kmj+2mk−(k−1)(g−1). For k = 2 we assumedm1 > m2+
(1−g)/2. For k = 3 we assumed 4m1 > m1+m2+2m3+(1−g)/2+3(1−g)/2.
And so on, using that Σ2≤i<k(1− 2− i+ 1) + 2(1− 2−k+1) = k − 1.

Now we may extend Corollary 4.3 to the case of subbundles of rank b > 1.

Theorem 4.4. Let X be a smooth curve of genus g ≥ 2. Fix integers r, b
with 1 ≤ b ≤ r. Fix Mi ∈ Picmi(X), 1 ≤ i ≤ r, and assume Condition
($). Assume mi > mj − (2j−i+1 − 1)(g − 1)2i−j−1 for all integers i, j with
1 ≤ i < j ≤ r. Let F be the general bundle on X with a filtration {F (i)}0≤i≤r
with F (i)/F (i − 1) ∼= Mi. Then every rank b subbundle of F has degree
≤ Σ1≤i≤bmi and F (b) is the unique subbundle of F with degree Σ1≤i≤bmi.

Proof. We use double induction on b and r, the case b = 1 being covered
by Corollary 4.3. Assume b ≥ 2 and let A be a rank b saturated subbundle
of F. Since the case b = r is trivial and F (r − 1) is saturated in F, we
may assume rank(A ∩ F (r − 1)) = b − 1 and b < r. Hence the image of A
into Mr := F (r)/F (r − 1) is a subsheaf Mr(−D) of Mr, with D effective
divisor on X. We have deg(A) = deg(A∩F (r− 1)) + deg(Mr(−D)). By the
inductive assumption we have deg(A∩F (r−1)) ≤ Σ1≤i≤b−1mi. The proof of
Corollary 4.3 gives deg(Mr(−D)) < m1. However, our assumptions on the
integers {mi}1≤i≤r are stronger than in 4.3 and hence we may apply 4.3 to
F/F (b−1) and find deg(Mr(−D)) < mb. Hence we have deg(A) < Σ1≤i≤bmi,
as wanted.
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