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A NOTE ON TAYLOR’S BRAUER GROUP

S. Caenepeel and F. Grandjean

We make clear that some of the properties of central sep-
arable algebras without unit, as announced by Taylor and
Raeburn, are only valid under the assumption that the alge-
bra in question is flat. This leads to the introduction of two
possibly different versions of the big Brauer group. Both of
them inject into the second étale cohomology group, and one
of them is isomorphic to it.

Let R be a commutative ring. Taylor introduced a Brauer group consisting
of classes of algebras that do not necessarily have a unit. The classical Brauer
group Br(R) is contained in this new Brauer group, and one of the exciting
properties is that the new Brauer group is isomorphic to the second étale
cohomology group H2(Rét,Gm). One of the classical results in the theory of
the Brauer group is Gabber’s Theorem stating that the Brauer group Br(R)
is isomorphic to the torsion part of H2(Rét,Gm). Thus Taylor’s Brauer group
provides an algebraic description of the non-torsion elements in H2(Rét,Gm).

The idea is that the algebras that represent elements of the big Brauer
group are central separable algebras in a generalized sense. These central
separable algebras are in general not projective or finitely generated. Here a
logical problem arises, comparable to the problems that one has if one tries to
introduce the Grothendieck group of all projective modules: one has to make
sure that the equivalence classes of central separable algebras form a set. To
overcome this problem, Taylor proved that every central separable algebra
A is equivalent to a subalgebra that is contained in a finitely generated R-
module. Unfortunately, we have discovered that this property is not true in
general. We will explain that its proof relies on another general property
that is only true if the central separable algebra A in question is flat as an
R-module. We have a counterexample in the situation where A is not flat.

We have investigated that the flatness of A is also used in several other
properties that were proved by Taylor and Raeburn. Apart from the logical
problem, there is also the fact that the splitting Theorem, stating that every
central separable algebra is a twisted form of a so-called elementary algebra,
no longer holds. The importance of this property is illustrated by the fact
that it is the basis for the construction of the monomorphism from the Brauer
group to the second cohomology group.
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In this note, we discuss the properties of central separable algebras that re-
quire flatness. We propose two modified definitions of the big Brauer group.
BR(R) consists of equivalence classes represented by a flat central separa-
ble algebra, while Br′(R) consists of equivalence classes of finitely generated
central separable algebras. It will turn out that BR(R) ⊂ Br′(R). We do not
know if this inclusion is an equality. Furthermore, both Brauer groups map
injectively into the second étale cohomology group, and we can show that
Br′(R) is isomorphic to H2(Rét,Gm). Thus one of the principal properties
of the big Brauer group is saved.

We end this introduction with some historical remarks. In the classical
situation where one considers only algebras with a unit, central separable
algebras have been renamed as Azumaya algebras, and this is the terminol-
ogy that is mostly used nowadays. There is also a difference in approach: in
the original paper by Auslander and Goldman [2], the algebras in question
have to be central and separable. Another, more conceptual, approach is
possible: given an algebra A, one has a pair of adjoint functors between
the categories of R-modules and A-bimodules (see for example [9]). A is an
Azumaya algebra if and only if these adjoint functors establish a category
equivalence. In a forthcoming monograph [3], the first author develops the
corresponding theory of Azumaya algebras without a unit.

1. Regular modules over flat central separable algebras.

Let R be a commutative ring with unit, and A an associative R-algebra, not
necessarily with a unit. The center Z(A) of A is by definition EndAe(A). A
is called R-central if the canonical map R → Z(A) is an isomorphism. A is
called R-separable if the following conditions are satisfied.
(1) A2 = A

(2) A is a projective Ae-module
(3) mA 6= A for any maximal ideal m of Z(A).

If A has a unit, then A is separable if and only if A is separable in the
sense of [4], and A is central separable if and only if A is central separable
(or Azumaya) in the classical sense. We refer to [2], [4], [9] or [11] for an
introduction to the theory of Azumaya algebras.

The basic examples of central separable algebras are the so-called ele-
mentary algebras (cf. [14]). We recall that they can be obtained in the
following way: Consider two R-modules P and P ′, and a surjective map
λ : P ′ ⊗ P → R. The elementary algebra ER(P, P ′, λ) associated to P , P ′

and λ is the R-module P ⊗P ′ together with the multiplication given by the
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formula
(p⊗ p′)(q ⊗ q′) = λ(p′ ⊗ q)p⊗ q′.

According to [14, Prop. 4.5], the elementary algebra ER(P, P ′, λ) has a unit
if and only if P and P ′ are faithfully projective as R-modules, P ′ ∼= P ∗ and
λ is the duality map P ∗ ⊗ P → R. In this situation, ER(P, P ′, λ) is nothing
else but the endomorphism ring of P . In the theory of the big Brauer group,
the elementary algebras play the role that endomorphism rings play in the
classical theory.

Now let A be an R-algebra, and M a (left) A-module. Recall from [14]
that M is called A-regular if the map A ⊗AM → M induced by the scalar
multiplication on M is an isomorphism. A is called a regular algebra if it is
regular over itself.

Proposition 1.1. Let A be an R-algebra and M a (left) A-module. If the
scalar multiplication µ : A ⊗R M → M has a A-linear section, then M
is regular. Furthermore, if A is separable, then the converse property also
holds.

Proof. Having a section, the map µ is surjective, so we only have to show
that A ⊗A M → M is injective. Consider x =

∑
i ai ⊗ mi ∈ A ⊗R M ,

and assume that µ(x) =
∑
i aimi = 0. Write s(mi) =

∑
j aij ⊗mij. Then∑

i,j aiaij⊗mij = s(
∑
i aimi) = 0, and x =

∑
i,j ai⊗aijmij−∑i,j aiaij⊗mij =

0 in A⊗AM .
If A is separable, then conditions (1) and (2) of the definition of separabil-

ity imply that the multiplication map A⊗R A→ A has an Ae-linear section
ϕ. For a regular A-module M , we construct a section of the map µ as the
following composition:

M ∼= A⊗AM ϕ⊗M−−−→ A⊗R A⊗AM ∼= A⊗RM.

We conclude from this result that a separable R-algebra is always regular.
Now let A be a separable R-algebra, and assume that M is a regular left
A-module. In [14, Prop. 1.6], it is shown that an A-submodule of N with
surjective scalar multiplication is regular. The following counterexample
shows that this result is not allways true.

Example 1.2. Let A = EZ(Z,Z/2Z ⊕ Z, λ), where λ is defined by the
formula

λ
(
(z, t)⊗ s) = ts.
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As a Z-module, A ∼= Z/2Z⊕ Z, with multiplication given by

(z1, t1) · (z2, t2) = (t1z2, t1t2).

Take a = (0, 2) ∈ A. Then the principal ideal aA ∼= 2Z is not regular as
an A-module. Indeed the image of (0, 2) ⊗ (1, 0) in aA ⊗A A under the
multiplication map is zero, while (0, 2)⊗ (1, 0) 6= 0. To see this, consider the
well defined homomorphism aA⊗A A→ Z/2Z sending (0, 2s)⊗ (z, t) to sz.
This morphism sends (0, 2)⊗ (1, 0) to 1 which is not zero in Z/2Z.

The elementary algebra A considered in Example 1.2 is not flat as a Z-
module, and this is why we have problems. In the proof of [14, Prop. 1.6],
the flatness of A as an R-module is implicitly used. The correct statement
is the following:

Proposition 1.3. Let A a separable, flat R-algebra and M a regular (left)
A-module. If N is an A-submodule of M such that N = AN , then N is
regular as an A-module.

Proof. If we can show that A is flat as an A-module, then the regularity of
N follows immediately after we inspect the following commutative diagram:

A⊗A N −−−→ NyA⊗i yi
A⊗AM −−−→ M

.

Here i : N →M is the inclusion.
Let us show that A is flat as an A-module. A ⊗A M fits into an exact
sequence

A⊗R A⊗RM λ−→ A⊗RM π−→ A⊗AM −→ 0

where λ is defined by λ(a⊗ b⊗m) = ab⊗m−a⊗ bm, and π is the canonical
surjection. Let ϕ : A → Ae be an Ae-linear section of the multiplication
map (A is separable). It is easy to see that

λ ◦ (ϕ⊗M) : A⊗RM −→ Im(λ)

is a projection. Therefore the exact sequence of A-modules

0 −→ Im(λ) −→ A⊗RM π−→ A⊗AM −→ 0

is split, and π has an A-linear section s : A⊗AM → A⊗RM . Now consider
an exact sequence of A-modules

0 −→ N
f−→M

g−→ L −→ 0



A NOTE ON TAYLOR’S BRAUER GROUP 17

and look at the commutative diagram

0 −−−→ A⊗N A⊗f−−−→ A⊗M A⊗g−−−→ A⊗ L −−−→ 0

sN

x sM

x sL

xyπN yπM yπL
0 −−−→ A⊗A N A⊗Af−−−→ A⊗AM A⊗Ag−−−→ A⊗A L −−−→ 0.

The top row is exact since A is flat as an R-module, and this implies eas-
ily that the bottom row is also exact. It follows that A is flat as an A-
module.

2. Morita equivalence and the big Brauer group.

Two regular algebras A and B are called Morita equivalent if there exist a
regular A-B-bimodule M and a regular B-A-bimodule N such that we have
two bimodule isomorphisms f : M ⊗B N ∼=−→ A and g : N ⊗A M ∼=−→ B
that are associative in the following sense: f(m ⊗ n) ·m′ = m · g(n ⊗m′)
and g(n ⊗ m) · n′ = n · f(m ⊗ n′) for all m,m′ ∈ M , n, n′ ∈ N . An easy
modification of the classical Morita theorem shows that the functors M⊗B •
and N ⊗A • establish an equivalence between the categories of regular left
A-modules and regular left B-modules if A and B are Morita equivalent.
It is also straightforward to show that Morita equivalence is an equivalence
relation.

Also recall the following generalization of elementary algebras. Let A be a
regular R-algebra, M a right regular A-module, N a left regular B-module,
and λ : N ⊗R M → A a surjective Ae-linear map. The A-elementary
algebra EA(M,N, λ) associated to M,N and λ is the R-module M ⊗A N ,
with multiplication given by the formula

(m⊗ n)(m′ ⊗ n′) = m · λ(n⊗m′)⊗ n′.

In [14, Prop. 4.2], the following result is stated: If A is a central separable
algebra, and B is an R-algebra, then A and B are Morita equivalent if and
only if B is an A-elementary algebra. The proof uses the fact that A is flat
as an R-module, so one expects that the result is true only in the case where
A is flat. We were able to find a proof that avoids the flatness of A.

First we recall a result from category theory. Let f, g : M → N be two
morphisms in R-mod, where R is an arbitrary ring. The arrow q : N → P
is called the absolute coequalizer of f and g if q ◦ f = q ◦ g, q has a section
r, g has a section s, and

f ◦ s = r ◦ q.
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An absolute coequalizer is always a coequalizer: Take n ∈ N , and assume
that q(n) = 0. Then

g(s(n))− f(s(n)) = n− r(q(n)) = n.

Proposition 2.1. Let A and B be R-algebras, and suppose that A is sep-
arable. Then B is Morita equivalent to A if and only if B is A-elementary.

Proof. One implication is obvious, we refer to [14]. Conversely, suppose that
B = EA(M,N, λ) is an A-elementary algebra. Then M is a left B-module,
the left B-action is given by the formula

(m⊗ n) ·m′ = m · λ(n⊗m′).

In a similar way, N is a right B-module.
We know that the multiplication map on A has an Ae-linear section ϕ :

A → Ae. We will use the following Sweedler-type notation: For a ∈ A, we
write

ϕ(a) =
∑

a1 ⊗ a2.

From Proposition 1.1, we know that the scalar multiplication M ⊗RA→M
has a section t : M →M ⊗R A given by the formula

t(m · a) =
∑

m · a1 ⊗ a2

for all m ∈ M and a ∈ A. A is Ae-projective, so the surjective map λ :
N ⊗RM → A has an Ae-linear section s. We will write

s(a) =
∑

aN ⊗ aM ∈ N ⊗M

for all a ∈ A. We claim that the scalar multiplication map B ⊗RM →M is
split. The splitting map s is the composition

s = (π ⊗M) ◦ (M ⊗ r) ◦ t

where π : M ⊗R N →M ⊗A N is the canonical projection. In other words,

s(m · a) =
∑

(ma1 ⊗ (a2)N)⊗ (a2)M .

Now∑
(ma1 ⊗ (a2)N) · (a2)M =

∑
ma1 · λ((a2)N ⊗ (a2)M) =

∑
m · a1a2 = ma

as needed.
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We now claim that λ : N ⊗RM → A is the absolute coequalizer of{
ψrN ⊗M
N ⊗ ψlM

: N ⊗R B ⊗RM−→−→N ⊗RM.(1)

Indeed, λ ◦ (ψrN ⊗M) = λ ◦ (N ⊗ ψlM), r is a section of λ and N ⊗ s is a
section of N ⊗ ψlM . Finally

(ψrN ⊗M) ◦ (N ⊗ s) = r ◦ λ

since

(ψrN ⊗M)
(
(N ⊗ s)(n⊗m · a)

)
= (ψrN ⊗M)

(∑
n⊗ (ma1 ⊗ (a2)N)⊗ (a2)M

)
=
∑

λ(n⊗m · a1) · (a2)N ⊗ (a2)M

=
∑

λ(n⊗m · a1)r(a2)

=
∑

r(λ(n⊗m · a1) · a2)

=
∑

r(λ(n⊗m · a1 · a2)) = (r ⊗ λ)(n⊗m · a)

for all m ∈ M , n ∈ N and a ∈ A. N ⊗B M and A are both coequalizers of
(1), so it follows from the universal property of coequalizers that the map
λ : N ⊗B M → A induced by λ is an isomorphism. (B,A,M,N, IB, λ) is a
strict Morita context.

We have saved Proposition 4.2 of [14]. An important consequence is that
Proposition 4.3, which follows from Proposition 4.2, is also true in general.
We mention it explicitly, as we will need it further on.

Proposition 2.2. Let N be a regular left ideal and M a regular right ideal
of the central separable algebra A. If NM = A, then the subalgebra MN is
central separable and Morita equivalent to A.

In [14], Taylor introduces the big Brauer group of central separable alge-
bras as the set of Morita equivalence classes of central separable algebras.
Here we face the following logical problem: how do we know that Morita
equivalence classes form a set? The explanation given by Taylor is the follow-
ing: he shows that every central separable R-algebra A is Morita equivalent
to a subalgebra which is contained in a finitely generated R-submodule of A
(cf. [14, Corollary 4.1]). From this result, it follows indeed that equivalence
classes of central separable algebras form a set.
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Unfortunately, the proof of [14, Corollary 4.1] relies on [14, Proposi-
tion 1.6], and we have seen that this property fails to be true if A is not
flat as an R-module. In the proof of [14, Corollary 4.1], we need the fact
that ideals of A of the form

∑
i aiA are regular. For a correct statement, we

therefore need the additional assumption that A is flat as an R-module.

Proposition 2.3. Every central separable R-algebra A which is flat as R-
module, is Morita equivalent to a subalgebra which is contained in a finitely
generated R-submodule of A. In particular, if R is noetherian then every
central separable flat R-algebra is Morita equivalent to a subalgebra which is
a finitely generated as an R-module.

Remark that it does not follow from the proof of Proposition 2.3 that the
finitely generated subalgebra is itself flat as an R-module.

We conclude that we are no longer sure whether the equivalence classes
of central separable algebras form a set. We present two ways to escape this
problem.

The first one is to restrict attention to equivalence classes that are repre-
sented by flat central separable algebras. Using Proposition 2.3, we see that
these classes form a set, and the operation induced by the tensor product
puts an abelian group structure on this set. Indeed, the neutral element is
represented by R itself, which is obviously flat as an R-module, and, if A is
a flat central separable R-algebra, then then the inverse of [A] is represented
by Aop, which is also flat as an R-module. The Brauer group that we obtain
is denoted by BR(R).

We can also look at Morita equivalence classes that are represented by
a finitely generated central separable algebra. Then we obviously obtain
a set, and the tensor product makes this set into a group which we will
denote by Br′(R). This notation is inspired by the notation K′0(R) for the
Grothendieck group of the category of finitely generated R-modules. It is
obvious that BR(R) and Br′(R) both contain the classical Brauer group
Br(R) as a subgroup. If R is noetherian, then it follows from Proposition 2.3
that BR(R) ⊂ Br′(R). We will see below that this inclusion holds also in the
case where R is not noetherian. We do not know whether BR(R) = Br′(R).

3. Cohomological interpretation of BR(R) and Br′(R).

It is well-known that the classical Brauer group Br(R) may be embedded into
the second étale cohomology group H2(Rét,Gm), see e.g. [7], [9], [10]. This
embedding is based on the splitting Theorem, stating that every Azumaya
algebra is a twisted form of a matrix ring. A similar result for central separa-
ble algebras is stated in [12, Lemma 2.1]. The proof uses [14, Corollary 4.1],
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and we have seen above that this result is uncertain if A is not flat. We can
repair the proof, either by assuming that A is flat, and applying Proposi-
tion 2.3, or by assuming that A is finitely generated as an R-module, in
which case we do not need Proposition 2.3. We then obtain the following
result. Recall from [14] that an idempotent e of A is called a rank one idem-
potent if eAe = Re ∼= R. If A contains a rank one idempotent e, then A is
Morita equivalent to R, and A is an R-elementary algebra. Indeed, observe
that eA and Ae are respectively a right and a left regular A-module (use the
fact that e is an idempotent), and apply Proposition 2.2 with M = eA and
N = Ae. It follows that eA2e = eAe = Re ∼= R is Morita equivalent to A.
The splitting theorem can now be stated as follows.

Theorem 3.1. Let A be an R-algebra that is flat or finitely generated as
an R-module. Then the following assertions are equivalent:
(1) A is a central separable R-algebra;
(2) A⊗R S is a central separable S-algebra containing a rank one idempo-

tent for some étale covering S of R;
(3) A⊗R S is an S-elementary algebra for some étale covering S of R;
(4) A⊗R S is a central separable S-algebra containing a rank one idempo-

tent for some commutative faithfully flat R-algebra S;
(5) A⊗RS is an S-elementary algebra for some commutative faithfully flat

R-algebra S;
(6) A⊗R S is a central separable S-algebra containing a rank one idempo-

tent for some commutative faithfully flat R-algebra S that is locally of
finite type;

(7) A⊗RS is an S-elementary algebra for some commutative faithfully flat
R-algebra S that is locally of finite type.

The set Ω of all Ae-bimodule morphisms Al ⊗ Ar → Ae is called the
Goldman set. If A is central separable, then it is not difficult to show that Ω
is projective of rank one as an R-module, and that it is of order at most 2 in
the Brauer group (see [14, Proposition 3.7]). From the splitting theorem, one
can deduce that there exists an Ae-bimodule isomorphism ω : Al⊗Ar → Ae,
and we have the following result.

Corollary 3.2. If A is a central separable algebra that is flat or finitely
generated as an R-module, then the Goldman set is a free module of rank
one.

In [12], this result is stated for arbitrary central separable algebras. It is
an open question whether the Goldman set is free of rank one for an arbitrary
central separable algebra.
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Theorem 3.3. BR(R) and Br′(R) embed into H2(Rét,Gm).

Proof. The proof is relatively simple if one uses Artin’s Refinement Theorem
[1]. A consequence of Artin’s Theorem is that the étale cohomology groups
can be written as inductive limits of Amitsur cohomology groups:

H2(Rét,Gm) = lim−→ H2(S/R,Gm)

where the inductive limit runs over all étale coverings S of R. Take a central
separable algebra [A] that is flat or finitely generated as an R-module. From
Theorem 3.1, we know that A⊗R S is S-elementary for some étale covering
S of R. Thus we have an isomorphism σ : A⊗ S −→ ES(P, P ′, λ) = ES(P ).
We define Φ by the commutativity of the following diagram.

S ⊗R A⊗R S S⊗σ−−−→ ES⊗RS(S ⊗R P )yτ⊗S yΦ

A⊗R S ⊗R S σ⊗S−−−→ ES⊗RS(P ⊗ S)

.

From the fact that S⊗R S and ES⊗RS(S⊗RP ) are Morita equivalent, one
can deduce that Φ is of the following type.

Φ: (S ⊗R P )⊗S⊗RS (S ⊗ P ′)
∼= (S ⊗R P )⊗S⊗RS I ⊗S⊗RS I∗ ⊗S⊗RS (S ⊗ P ′)
f⊗f ′−−−→ (P ⊗R S)⊗S⊗RS (P ′ ⊗ S)

for some invertible S ⊗R S-module I. Using Artin’s Refinement Theorem a
second time, we see that we can replace S by a étale covering of S in such
a way that I is free of rank one as an S ⊗R S-module. Then we obtain
an isomorphism f : S ⊗R P → P ⊗R S, and an easy argument shows that
f−1

2 ◦f3◦f1 : S⊗RS⊗RP → S⊗RS⊗RP is given by multiplication by a unit
u in S⊗3 which is an Amitsur cocycle. Sending [A] to [u], we obtain well-
defined monomorphisms from BR(R) and Br′(R) into H2(Rét,Gm). This
can be verified along the lines of the corresponding proof for the classical
Brauer group Br(R), as exhibited in [9, Sec. 5.2].

Our Theorem can also be proved without using Artin’s Refinement The-
orem. For full detail, we refer to the forthcoming [3].

Recall that a commutative R-algebra S (not necessarily having a unit)
is called quasi-finite if S ⊗ k(p) is finite dimensional as a k(p)-vector space,
for every prime ideal p of R. A map τ : S → R is called a trace map if
τ ⊗ k(p) : S ⊗ k(p)→ k(p) coincides with the standard trace map for every
prime ideal p of R.
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Now let f : R→ S be a noetherian commutative R-algebra, with R and
S noetherian. We say that S is of trace type if we have a factorization

R
g−→ T

i−→ S

with T finitely generated as an R-module, i : T → S an open immersion,
and such that there exists an ideal I of T with D(I) = Spec(S) and I having
a trace map.

A key result is Taylor’s Refinement Theorem ([12, Lemma 3.4]): If S is
a an étale covering of R, then there exists an étale covering S → S′ such
that R → S′ is of trace type. The proof of this result is based on Zariski’s
Main Theorem and the Artin-Rees Lemma. It can be used to prove the next
Theorem.

Theorem 3.4.
Br′(R) ∼= H2(Rét,Gm).

Proof. Assume first that R is noetherian. Let c ∈ H2(Rét,Gm). Using
Artin’s Refinement Theorem, we can assume that u is represented by a
cocycle u ∈ Z2(S/R,Gm) for some étale covering S of R. Invoking Taylor’s
Refinement Theorem, we can assume that S is of trace type. Let g, i, T and
I be as above, and consider{

p1

p2

: T ⊗ S−→−→T ⊗ S ⊗ S : t⊗ s 7→
{
t⊗ 1⊗ s
t⊗ s⊗ 1

.

Let S ⊗ S ⊗ S be S⊗3 considered as a T ⊗ S-module, with T and S acting
respectively on the first and third factor. Then I⊗S⊗S is a T⊗S-submodule
of S ⊗ S ⊗ S, and we can consider the T ⊗ S-modules

M = (I ⊗R⊗ S) ∩ u−1(I ⊗ S ⊗ S)

N = (I ⊗R⊗ S) ∩ u(I ⊗ S ⊗ S)

and let

Mi = M ⊗T⊗S,pi (T ⊗ S ⊗ S)

Ni = N ⊗T⊗S,pi (T ⊗ S ⊗ S)

for i = 1, 2. With this notation, we mean that T ⊗ S ⊗ S is considered as a
T ⊗ S-module via pi. M1 and M2 are T ⊗ S ⊗ S-submodules of S ⊗ S ⊗ S,
and we claim that

u2M1 = M2 and u2N2 = N1.(2)
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Following Sweedler’s tradition, we write

u =
∑

u1 ⊗ u2 ⊗ u3 ∈ S⊗3 and u−1 =
∑

v1 ⊗ v2 ⊗ v3 ∈ S⊗3.

Also recall the following notations

u1 =
∑

1⊗ u1 ⊗ u2 ⊗ u3, u2 =
∑

u1 ⊗ 1⊗ u2 ⊗ u3 ∈ S⊗4, . . .

We have that

M1 = (I ⊗R⊗ S ⊗ S) ∩ u−1
3 (I ⊗ S ⊗ S ⊗ S)

M2 = (I ⊗R⊗ S ⊗ S) ∩ u−1
4 (I ⊗ S ⊗ S ⊗ S).

Now take
x =

∑
i

v1xi ⊗ v2si ⊗ s′i ⊗ v3s′′i ∈M1

with xi ∈ I and s′i, s
′
i, s
′′
i ∈ S. From the fact that x ∈ I ⊗ R ⊗ S ⊗ S and

faithfully flat descent of elements (cf. [9, II.2.2]), it follows that

x =
∑
i

v1xi ⊗ 1⊗ v2sis
′
i ⊗ v3s′′i

and

u2x =
∑
i

u1v1xi ⊗ 1⊗ u2v2sis
′
i ⊗ u3v3s′′i

=
∑
i

xi ⊗ 1⊗ sis′i ⊗ s′′i ∈ (I ⊗R⊗ S ⊗ S).

Now u is a cocycle, hence u2u
−1
3 = u−1

4 u1, and

u2u
−1
3 (I ⊗ S ⊗ S ⊗ S) = u−1

4 u1(I ⊗ S ⊗ S ⊗ S)

= u−1
4 (I ⊗ S ⊗ S ⊗ S)

and this proves that u2M1 ⊂ M2. In a similar way, we can prove that
u−1

2 M2 ⊂ M1 and u2N2 = N1. By extension of scalars, τ ⊗ IS : I ⊗ S → S
is a trace. This trace restricts to a trace MN → S, since MN is a T ⊗ S-
subideal of I ⊗ S, which is surjective. The composition

λ : N ⊗M →MN → S

is also a surjection, and we obtain a dual pair M = (M,N, λ) of S-modules,
after we consider M and N as S-modules via restriction of scalars. T is
finitely generated as an R-module. Since R is noetherian, the submodule
I of T is also finitely generated, and it follows that I ⊗ R ⊗ S is finitely
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generated as an S-module. M and N are submodules of I⊗R⊗S, and they
are therefore also finitely generated as S-modules.

Furthermore, the map

(u2, u
−1
2 ) : M1 −→M2

is an isomorphism of dual pairs over S ⊗ S. To prove this, we need to check
that

λ1 = λ2 ◦
(
u2 ⊗ u−1

2

)
.

Take x ∈M1 and y ∈M2, and write, with notations as above,

x =
∑
i

v1xi ⊗ 1⊗ v2sis
′
i ⊗ v3s′′i

y =
∑
j

u1yj ⊗ 1⊗ u2tjt
′
j ⊗ u3t′′j

with xi, yj ∈ I and s′i, s
′
i, s
′′
i , t
′
j, t
′
j, t
′′
j ∈ S. Then

λ1(x⊗ y) = (τ ⊗ IS⊗S)

∑
i,j

v1xiu
1yj ⊗ 1⊗ v2sis

′
iu

2tjt
′
j ⊗ v3s′′i u

3t′′j


= (τ ⊗ IS⊗S)

∑
i,j

xiyj ⊗ 1⊗ sis′itjt′j ⊗ s′′i t′′j


=
∑
i,j

τ(xiyj)⊗ 1⊗ sis′itjt′j ⊗ s′′i t′′j

= λ2

(∑
i

xi ⊗ 1⊗ sis′i ⊗ s′′i
)
⊗
∑

j

yj ⊗ 1⊗ tjt′j ⊗ t′′j


= λ2

(
u2x⊗ u−1

2 y
)

=
(
λ2 ◦

(
u2 ⊗ u−1

2

))
(x⊗ y)

(u2, u
−1
2 ) induces an isomorphism

Φ: ES⊗S(M1) −→ ES⊗S(M2)

and the isomorphism

Φ−1
2 ◦ Φ3 ◦ Φ1 : ES⊗S⊗S(M11) −→ ES⊗S⊗S(M11)

is induced by(
u−1

24 u25u23, u24u
−1
25 u

−1
23

)
=
(
u−1

32 u42u22, u32u
−1
42 u

−1
22

)
=
(
(u2u

−1
3 u4)2, (u2u

−1
3 u4)−1

2

)
= (u12, u

−1
12 ).
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From the fact that M11 ⊂ I ⊗ R ⊗ S⊗3, it follows that Φ−1
2 ◦ Φ3 ◦ Φ1 is the

identity on ES⊗S⊗S(M11), and Φ is a descent datum. Thus ES(M) descends
to a Taylor-Azumaya algebra A. A is finitely generated as an R-module,
because M , N and ES(M) are finitely generated as S-modules.

A careful inspection of the first part of the proof of Theorem 3.3 yields
that the image of [A] in H2(Rét,Gm) is represented by u ∈ Z2(S/R,Gm).

In the case where R is not necessarily noetherian, our result follows from
the fact that

Hn(Rét,Gm) = lim−→ Hn(R0,ét,Gm)

where the limit runs over all noetherian subrings R0 of R.

We have allready mentioned that BR(R) ⊂ Br′(R) if R is noetherian.
From Theorem 3.3 and Theorem 3.4, it follows immediately that this inclu-
sion also holds for R nonnoetherian.

Corollary 3.5. Let R be an arbitrary commutative ring. Then BR(R) ⊂
Br′(R).

Let us end with the remark that the definition of central separable algebras
can be easily extended to the situation where the commutative ring R is
replaced by a noetherian scheme X: A quasi-coherent sheaf of OX-algebras
is called a central separable OX-algebra if Γ(U,A) is a central separable
Γ(U,OX)-algebra for every open affine subset U of X. One can introduce the
Brauer group Br′(X) by considering equivalence classes of coherent central
separable OX-algebras. Theorem 3.3 can be extended, and we obtain an
embedding Br′(X) ↪→ H2(Xét,Gm). This embedding is an isomorphism
if every finite subset of X is contained in an open affine subset of X (in
this situation, Artin’s Refinement Theorem holds, and this is sufficient to
generalize the proof of Theorem 3.4).
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