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BOCHNER’S TECHNIQUE ON LORENTZIAN MANIFOLDS
AND INFINITESIMAL CONFORMAL SYMMETRIES

Alfonso Romero and Miguel Sánchez

Bochner’s technique is applied to the study of timelike
vector fields on a Lorentzian manifold. A Lorentzian Bochner
integral formula is obtained; as a consequence, compact Ricci-
flat Lorentzian manifolds admitting a timelike conformal vec-
tor field are classified. Some obstructions to the existence of
timelike conformal vector fields and other conformal symme-
tries are also given.

1. Introduction.

In a previous article [9] the authors introduced an integral inequality on
compact Lorentzian manifolds and applied it to Killing vector fields. As a
remarkable fact, this inequality was obtained by using Bochner’s technique,
for the first time in the Lorentzian case, to our knowledge. The main ob-
struction to apply Bochner’s technique to Lorentzian manifolds seems to be
the following (see [10] for a pedagogical approach). Recall that there are two
slightly different points of view about classical Bochner’s technique [15]; the
first one uses an integral formula obtained as a consequence of the divergence
theorem; the second takes into account the ellipticity of the Laplacian associ-
ated to a Riemannian metric, especially the classical maximum principle. As
was shown in [14], this last point of view allow to refine, in some directions,
the results obtained from the first approach. For a Lorentzian metric, the
D’Alambertian is formally defined as the Laplacian of a Riemannian metric,
but now this operator is not elliptic; this fact leads to the absence, in the
Lorentzian case, of the well-known properties of the Riemannian one (note,
for instance, that on a compact Lorentzian manifold, “harmonic” functions
are not necessarily constant). Thus, it seems impossible to translate this es-
pecially useful second approach to the Lorentzian case. On the other hand,
classical Bochner’s results made assumptions on curvature which are mis-
leading or may have more than one translation for a Lorentzian metric (for
instance, trivially, a “negative semidefinite Ricci tensor” in the case of a
Lorentzian metric with constant sectional curvature c implies c = 0). Even
more, there are some additional tools in the Riemannian case for the geomet-
ric interpretations of the results, which do not hold for a Lorentzian metric
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(for example, the isometry group of a compact Lorentzian manifold is not
necessarily compact [3], see also [11]). Taking into account these difficulties,
our startpoint in [9] was to introduce Bochner’s technique regarding timelike
Killing vector fields. The purpose of this article is to introduce Bochner’s
technique for timelike vector fields (not necessarily Killing) in a more general
setting. As a particular consequence, several classification and nonexistence
results obtained in [9] for the Killing case are generalized to the conformal
one.

This paper is laid out as follows. In Section 2 an integral formula for
timelike vector fields is obtained, Theorem 2.1. This formula can be seen as
a version of classical Bochner’s formula [1] adapted to the difficulties of the
Lorentzian case. In our formula, timelike vector fields are normalized (refer-
ence frames) to obtain algebraically manageable terms. An integral inequal-
ity involving an arbitrary reference frame is then obtained, Corollary 2.2,
and discussed, Remark 2.3. In Section 3 these results are applied to study
certain infinitesimal conformal symmetries. The application of Bochner’s
technique to conformal vector fields in the Riemannian case was first carried
out by Yano [16]. The study of conformal vector fields in Lorentzian geom-
etry is more subtle than in the Riemannian case, and has been developed
mainly under assumptions of interest in Physics (see, for example [2], [4]).
Of course, stronger results has been proved for the special case of Killing
vector fields, which appear as a useful tool to get classification results in
some areas of Lorentzian Geometry. In particular, standard space forms
(those with a time-orientable double covering admitting a timelike Killing
vector field) have been studied in [6], [7]. The authors do not know previous
results in this direction for the conformal case. Our main result is obtained
in Theorem 3.6; as an interesting consequence, we prove a uniqueness result
about compact Ricci-flat Lorentzian manifolds admitting a timelike confor-
mal vector field, Corollary 3.9. Moreover, nonexistence results for timelike
conformal vector fields, under certain Ricci curvature assumptions, are ob-
tained in Corollary 3.8 and Corollary 3.10.

Even though our objective in Section 3 is just to obtain strictly mathemat-
ical results (in the spirit, for example, of [6], [9], and references therein), it
leads to consider spatially conformally stationary reference frames (see Def-
inition 3.3). These vector fields generalize the rigid reference frames, which
are well-known in General Relativity [12], and have been recently studied
in [5]. Lorentzian manifolds admitting them are more general than those
admitting a timelike conformal vector field, Example 3.5. At the beginning
of Section 3, we obtain some of their properties which are relevant in our
approach (compare with [5, Definition 3.1 and Remark 3.2]).
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2. Lorentzian Bochner Formula.

Let (M, g) be a n-dimensional Lorentzian manifold, that is, a (connected,
smooth) manifold M endowed with a non-degenerate metric g with in-
dex (+, . . . ,+,−). As usual, the causal character of a tangent vector v ∈
TpM, p ∈M is timelike (resp. null, spacelike) if g(v, v) < 0 (resp. g(v, v) =
0, g(v, v) > 0). For any vector field, X ∈ X (M) consider the tensor field
AX of type (1,1) given by AX(v) = −∇vX, where ∇ denotes the Levi-Civita
connection of g. Classical Bochner’s formula asserts, for compact M :∫

M

{Ric(X,X) + trace(A2
X)− (traceAX)2}dv = 0.(1)

Observe that this formula is true in the Lorentzian case as well as in
the Riemannian one; in fact, it is obtained just taking into account that
the integral of the divergence of the vector field W = −AX(X)− (divX)X
vanishes. Now, put

δX = trace(A2
X)− (traceAX)2.(2)

If δX has a definite sign, Bochner’s formula (1) yields a strong link between
X and the sign of the Ricci curvature Ric(X,X). In fact, the more classical
applications in the Riemannian case are obtained by applying (1) on certain
vector fields (Killing, harmonic, conformal) for which δX is signed; then, it
follows that Ric(X,X) must have opposite sign to δX at some points. For
the Lorentzian case none of the analogous conditions on X imply that δX
is signed, even when X has a definite causal character (timelike, null or
spacelike).

Now, assume that Z ∈ X (M) is a reference frame, that is, g(Z,Z) = −1.
Then AZ can be restricted to the subspace Z⊥ orthogonal to Z, and it is
straightforward to check that the corresponding restriction A′Z also satisfies:

δZ = trace(A′Z
2)− (traceA′Z)2.(3)

Put A′Z = S′Z + H ′Z where S′Z (resp. H ′Z) is, at any point p, a self-adjoint
(resp. skew-adjoint) operator on Z⊥ at p. Then (3) can be written as:

δZ = −s′Z + trace(H ′Z
2),(4)

with s′Z = − trace(S′Z
2) + (traceS′Z)2. From (4), (2) and (1) the following

integral formula is obtained.

Theorem 2.1 (Lorentzian Bochner formula). Let (M, g) be a compact
Lorentzian manifold and let Z be a reference frame on (M, g). Then∫

M

{
Ric(Z,Z)− s′Z + trace

(
H ′Z

2
)}

dv = 0.(5)
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When n = 2 then s′Z ≡ 0, H ′Z ≡ 0, and integral formula (5) is just Gauss-
Bonnet theorem. On the other hand, note that trace(H ′Z

2) ≤ 0 with equality
at some point p if and only if H ′Z = 0 at p. So, as a consequence of Theorem
2.1 we have:

Corollary 2.2. Let (M, g) be a compact Lorentzian manifold and let Z be
a reference frame on (M, g). If s′Z ≥ 0 then∫

M

Ric(Z,Z)dv ≥ 0(6)

and the equality holds if and only if s′Z ≡ 0 and H ′Z ≡ 0.

Remark 2.3. Let λ1(p), · · · , λn−1(p) be the eigenvalues of the operator
S′Z at the point p. Then s′Z(p) =

∑
i6=j λi(p)λj(p), that is, s′Z is, up to a

sign, the coefficient of tn−3 in the characteristic polynomial of S′Z at p. As
a consequence, if all the λi(p) have equal sign at each point p then s′Z ≥ 0.
Moreover, in this case, s′Z(p) = 0 if and only if the λi(p) are all zero but, at
most, one.

3. Application to infinitesimal conformal symmetries.

We begin showing two complementary results. The first one characterizes
the tensor field S′Z ; the second one will be useful to apply Lorentzian Bochner
formula, in particular, to any timelike vector field (not necessarily unit). We
denote by LX the Lie derivative with respect to X ∈ X (M).

Lemma 3.1. For each reference frame Z consider the decomposition AZ =
SZ +HZ where SZ (resp. HZ) is a self-adjoint (resp. skew-adjoint) operator
with respect to g. Then TZ := −(1/2)LZg is the 2-covariant tensor field
g-equivalent to SZ (that is, g(X,SZ(Y )) = TZ(X,Y ), for all X,Y ∈ X (M)).

In particular, the restriction T ′Z of TZ to Z⊥ is g-equivalent to the re-
stricted operator S′Z.

Proof. Note that

2TZ(X,Y ) = g(X,SZ(Y )) + g(SZ(X), Y )(7)

from which the result directly follows.

The following lemma is also a consequence of (7).

Lemma 3.2. Let X be a timelike vector field on (M, g) and let f ∈ C∞(M).
If TX = −(1/2)LXg then

2fTX(U, V ) = −(LfXg)(U, V )

for all U, V in X⊥.
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Recall that a vector field C ∈ X (M) is called conformal if LCg = 2kg,
where k : M → R, and C is Killing if it is conformal with k ≡ 0; a Lorentzian
manifold is called stationary if it admits a timelike Killing vector field. Fol-
lowing [5] we introduce the next concept.

Definition 3.3. Let (M, g) be a Lorentzian manifold. A reference frame
Z is spatially conformally stationary (SCS ) provided that

(LZg)(U, V ) = 2kg(U, V )

for all U, V ∈ X (M) orthogonal to Z, where k : M → R. Moreover, if k ≡ 0
then Z is called spatially stationary (SS).

SS reference frames are also called rigid in the literature [12, p. 56]. In
General Relativity these vector fields model sets of observers which see a
constant metric in the spatial part for them. SCS reference frames model
observers which see an expansion or compression along their proper time.
The existence of conformal symmetries is a quite general and useful assump-
tion to study Einstein equations.

The natural behaviour of these vector fields under conformal changes of
metric is stated in the following result.

Proposition 3.4. Let (M, g) be a Lorentzian manifold and put g∗ =
exp(2u)g, where u ∈ C∞(M).
(i) If a vector field X is conformal for g then it is conformal for g∗. More-

over, if g∗(X,X) is a nonzero constant then X is Killing for g∗.
(ii) If X is a SCS reference frame in (M, g) then X∗ = (−g∗(X,X))−1/2 ·X

is a SCS reference frame in (M, g∗).

Proof. Note that

LXg∗ = 2X(u)g∗ + exp(2u)LXg(8)

which yields the first assertion in (i). For the second one, note that any
(local) flow Φt of X is a conformal transformation for each t, and the corre-
sponding conformal factor can be obtained as g∗(Φt∗(X),Φt∗(X))/g∗(X,X).
Thus, assertion (ii) follows from formula (8) and Lemma 3.2.

Example 3.5. (1) From Lemma 3.2, if a timelike vector field C is conformal
(resp. Killing) the normalized vector field Z = (−g(C,C))−1/2 · C is a SCS
(resp. SS) reference frame. Not all the SCS reference frames can be obtained
in such a way, as the next example shows in particular.
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Consider the Lorentzian metric g = dx2 −G(x+ y)dy2 on R2, where: (i)
G is periodic, and, thus, g can be induced on a torus T 2, (ii) G > 0 (i.e. g
is Lorentz), and (iii) G is not constant. A direct computation shows that
∂/∂x−∂/∂y yields a Killing vector field K on T 2. This is the unique Killing
vector field on T 2 (up to a constant) because, in the opposite case, g would
be flat [11], in contradiction with (iii). It is straightforward to check that
the reference frame Z on T 2 induced from G(x + y)−1/2 · ∂/∂y is SS. Z
is not the normalized of a Killing vector field because of the uniqueness of
K. Moreover, Z is neither the normalized of any timelike conformal (non-
Killing) vector field C. In fact, if Z = (−g(C,C))−1/2 · C, then LCg = 2σg,
with σ 6≡ 0 and, LZg = 2(−g(C,C))−1/2 · σg on Z⊥; thus, LZg 6= 0 on Z⊥,
a contradiction. Even more, for any conformal metric g∗, the vector field
Z∗ = (−g∗(Z,Z))−1/2 ·Z is SCS (in fact, every reference frame on a Lorentz
surface is SCS) but it is not the normalized of any conformal vector field.

(Note also that if G reaches the value 1, then g is geodesically incomplete
[11], which is an obstruction to the existence of a timelike conformal vector
field on T 2, see [8]. On the other hand, if (ii) is replaced by: (ii′) G < 0,
then, analogous examples are suggested for a Riemannian metric.)

(2) Denote by π : S2n+1 −→ CP n the usual Hopf fibration from an odd-
dimensional (unitary) sphere S2n+1 to a complex projective space CP n. For
each u ∈ C∞(S2n+1) put gu = exp(2u)π∗gF − ω ⊗ ω, where gF is the Fu-
bini metric on CP n and ω is the 1-form naturally obtained from the usual
connection on this fibre bundle. Thus, each gu is a Lorentzian metric on
S2n+1 with the same SCS reference frame Z given by w −→ √−1.w, for all
w ∈ S2n+1 ⊂ Cn+1. Note that, in this example, the distribution Z⊥ is not
integrable.

Next, we will apply Corollary 2.2 to a SCS reference frame Z. Note that
such a Z has s′Z = (n − 1)(n − 2)k2, and hence s′Z ≥ 0. Moreover, if n ≥ 3
then the equality holds if and only if T ′Z ≡ 0. Thus we have:

Theorem 3.6. Let (M, g) be a compact Lorentzian manifold with dimen-
sion n ≥ 3. If (M, g) admits a SCS reference frame Z then∫

M

Ric(Z,Z)dv ≥ 0

and the equality holds if and only if A′Z ≡ 0.

Remark 3.7. From Proposition 3.4, the existence of a SCS reference frame
is a conformal invariant. Note that the property Ric(Z,Z) > 0 is not
conformal invariant; in fact, if this inequality holds at a point p then a
conformal metric g∗ can be constructed such that its Ricci tensor satisfies
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Ric∗(Z,Z) < 0 at a neighborhood of p. In the compact case,
∫
M Ric(Z,Z)dv

is not necessarily equal to the corresponding integral
∫
M Ric*(Z∗, Z∗)dv∗,

where Z∗ = (−g∗(Z,Z))−1/2 · Z, but both integrals must be non-negative.
This fact can be seen as a conformal invariant property of the conclusion in
Theorem 3.6.

Corollary 3.8. A compact Lorentzian manifold with Ric(X,X) < 0 for all
timelike vector field X admits no SCS reference frame.

In particular, a compact Einstein Lorentzian manifold with Ric = cg ad-
mitting a SCS reference frame must satisfy c ≤ 0.

For the case c = 0, the following strong result holds. Note that it is
necessary to assume the existence of a timelike conformal vector field, not
only a SCS reference frame.

Corollary 3.9. Let (M, g) be an n-dimensional compact Ricci-flat Lorentz-
ian manifold admitting a timelike conformal vector field C. Then C is par-
allel, the first Betti number of M is not zero, and the Levi-Civita connection
of g coincides with the Levi-Civita connection of a Riemannian metric.

Moreover, (M, g) is isometric to a flat Lorentzian n-torus, up to a (finite)
covering if one of the following three conditions holds:
(1) (M, g) is homogeneous,
(2) (M, g) is flat,
(3) n ≤ 4.

Proof. The case n = 2 is trivial, so assume n ≥ 3. By Theorem 3.6 with
Z = (−g(C,C))−1/2 ·C, we have A′Z ≡ 0. A direct computation using Lemma
3.2 shows that C is in fact Killing; moreover, by using (1) we have AZ ≡ 0,
that is, C is parallel. Then, the result follows from [9, Theorem 3.2].

Finally, we have the following nonexistence result.

Corollary 3.10. A simply connected compact Lorentzian manifold (M, g)
with Ric(X,X) ≤ 0 for all timelike vector field X admits no timelike con-
formal vector fields.

Proof. The same argument as in the previous result shows that such a vector
field would be parallel. Moreover (M, g) is geodesically complete from the
result in [8]. Now de Rham-Wu decomposition theorem [13] can be claimed,
and (M, g) is isometric to a metric product R×M ′, whereM ′ is a Riemannian
manifold. But this contradits the compactness assumption.
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