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CONTINUOUS EXTENSION OF ANOSOV FOLIATIONS IN
3-MANIFOLDS WITH NEGATIVELY CURVED

FUNDAMENTAL GROUP

Sérgio R. Fenley

We study Anosov flows in 3-manifolds whose stable and
unstable foliations in the universal cover have Hausdorff leaf
space. We show that the intrinsic ideal boundaries of distinct
stable leaves can be canonically identified and similarly for the
unstable foliation. This is then applied to the case when the 3-
manifold has negatively curved fundamental group and leaves
of the above foliations extend continuously to the ideal bound-
aries. We prove that the continuous extension restricted to
the ideal boundaries respects the identifications of intrinsic
ideal points mentioned above. We also analyse the non injec-
tivity of the extension to the boundaries and show that there
are uncountably many almost periodic, non periodic orbits of
the flow which lift to flow lines with same ideal point in both
directions. Finally we prove that the image of any open set
in the domain ideal boundary, contains open sets in the range
ideal boundary.

1. Introduction and statements of results.

The purpose of this article is twofold. First we want to explore the rich
structure of R-covered Anosov flows in 3-manifolds (defined below) and sec-
ond we study metric properties of these flows when the underlying manifolds
have negatively curved fundamental group as defined by Gromov [Gr], here
called ncl manifolds.

A codimension one foliation is said to be R-covered if the leaf space of its
lift to the universal cover is homeomorphic to the set of real numbers. An
Anosov flow is R-covered when one (equivalently both [Fe3]) of the stable
or unstable foliations is R-covered. For Anosov foliations this is equiva-
lent to having Hausdorff leaf space and it implies that the flow is transitive
[So, Ba1]. The flows in the two classical families of Anosov flows in di-
mension 3, namely, suspensions of Anosov diffeomorphisms of the torus T 2

(briefly suspensions) and geodesic flows in the unit tangent bundle of surfaces
of negative curvature (briefly geodesic flows), are always R-covered. There
is also a large class of R-covered Anosov flows in hyperbolic 3-manifolds,
obtained for example by Dehn surgery on closed orbits of suspensions and
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geodesic flows [Go], [Fe3] and there are also many examples in graph mani-
folds [Ba2]. In fact, only very recently an example was found of a transitive,
non R-covered Anosov flow in dimension 3 [Bo-La]. So far there are no such
examples in ncl 3-manifolds.

Furthermore R-covered Anosov flows enjoy many good properties [Fe3].
In particular, the joint topological structure of F̃s, F̃u can only be of two
types, corresponding to the topological type of suspensions (product type)
or of geodesic flows (skewed type), see definitions of product and skewed in
Section 2. The product type is very simple, but the skewed type has a rich
structure which will be explored here.

We first describe the intrinsic geometry of the leaves for a general Anosov
flow. Let Φ be an Anosov flow in M3 and let Fs,Fu be the 2-dimensional
(weak) stable and unstable foliations of Φ. Let π : M̃ → M be the universal
cover of M and let Φ̃, F̃s, F̃u be the respective lifts to M̃ . A leaf of F̃s or F̃u

has an induced Riemannian metric from the universal cover M̃ and in this
metric, the leaf is negatively curved in the large in the Gromov sense [Su].
As a result it has an ideal boundary [Gr] which is always homeomorphic
to a circle [Fe1] and is denoted by ∂∞F . Furthermore F ∪ ∂∞F is homeo-
morphic to the closed disk. Flow lines of Φ̃ in F are quasigeodesics in the
intrinsic metric [Fe3], hence define two ideal points (forward and backward
directions). Ideal points of F correspond to the distinct negative limit points
of flow lines and the common forward limit point of all flow lines - which
are forward asymptotic.

All results here are valid for both Fs and Fu, but for simplicity will be
often be stated and proved only for the stable foliation.

Theorem A. Let Φ be an R-covered Anosov flow in M3 closed. Then for
any F,L ∈ F̃s, there is a canonical homeomorphism XL

F : ∂∞F → ∂∞L.
Hence there is a “global” stable ideal boundary Ss

∞ and a well defined map
ζF : ∂∞F → Ss

∞, so that for any F,L ∈ F̃s, ζF = ζL ◦XL
F .

The homeomorphism XL
F is invariant under covering translations of M̃

in the following sense: Given a covering translation g of M̃ taking F to L,
then g induces a homeomorphism h1 : ∂∞F → ∂∞L. If V is any leaf of F̃s

and E = g(V ), h2 : ∂∞V → ∂∞E, then h2 ◦XV
F = XE

L ◦ h1.
The R-covered hypothesis is essential for this result, for in general there

is no natural way to relate ideal points in distinct leaves. We also show that
ideal boundaries of leaves are naturally identified to a Z quotient of the leaf
space of the dual foliation (the dual of the stable foliation is the unstable
foliation and vice versa). This fact will be used in many arguments.

We now discuss metric properties. The two classical families have the
best possible metric behavior: It is easy to see that, in the appropriate
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metrics, the leaves of the stable and unstable foliations lift to totally geodesic
submanifolds in the universal cover and flow lines lift to minimal geodesics.

The metric behavior of Anosov flows in hyperbolic 3-manifolds is not
so easy to determine. In these manifolds, instead of totally geodesic, it is
better to consider the following (weaker) quasi properties [Th1]: A properly
embedded submanifold of M̃ is quasi-isometric if distance in the submanifold
and distance in M̃ are at most a bounded (multiplicative) distortion of each
other. A foliation is quasi-isometric when lifts of all its leaves to the universal
cover are quasi-isometric. The 1-dimensional case is called quasigeodesic.

Hyperbolic manifolds are always ncl [Gr] and we will analyse metric prop-
erties in the class of ncl manifolds. In [Fe1] we proved that no codimension
one foliation of an ncl 3-manifold can be quasi-isometric. Since Anosov flows
in such manifolds are always transitive [Fe4], it follows that no stable or
unstable leaf can be quasi-isometrically embedded. The quasigeodesic ques-
tion for flow lines has only been settled in the R-covered case: An R-covered
Anosov flow in an ncl 3-manifold can never be quasigeodesic [Fe3]. These
results lead us to consider the weaker metric property, discussed below, of
continuous extension of leaves to the ideal boundary.

If M3 is ncl, then M̃ can also be canonically compactified with an ideal
boundary [Gr] which is always homeomorphic to a 2-dimensional sphere
[Be-Me] and is denoted by S2

∞. In addition M̃ ∪ S2
∞ is homeomorphic to

a closed 3-ball [Be-Me]. In addition the leaves of any codimension one
foliation F of M are always negatively curved in the large [Can]. The
foliation F̃ is said to have the continuous extension property (briefly CEP)
if for all F ∈ F̃ , the inclusion ϕF : F → M̃ extends continuously to the ideal
boundaries:

ϕF : F ∪ ∂∞F → M̃ ∪ S2
∞.

The restriction to ideal boundaries will be denoted by ϕ∞F : ∂∞F → S2
∞.

There are many cases where this happens. For instance if F is a fibra-
tion of M over the circle, then CEP was proved by Cannon and Thurston
[Ca-Th] and this property was also proved for many depth one foliations
in hyperbolic 3-manifolds [Fe2]. In fact, in these cases, the topological
structure of the foliation produces a pseudometric in M . For instance in
the case of fibration the input is any hyperbolic metric in the fiber, plus
the homotopy class of the monodromy (which has to be a pseudo-Anosov
homeomorphism [Th2]). The pseudo-Anosov map has stable and unstable
measured foliations which are projectively invariant under the monodromy.
This data produces a pseudo-metric in M so that when lifted to the uni-
versal cover it is quasi-isometric to the hyperbolic metric in H3 [Ca-Th].
Notice that individual leaves are not quasi-isometrically embedded.
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The key tool in these cases was the existence of a compact leaf, whose geo-
metric behavior is completely characterized as being either quasi-Fuchsian
or a virtual fiber [Th1, Bon]. Using this one builds a hierarchy to under-
stand all leaves. One big difficulty in studying Anosov foliations is that they
do not have compact leaves. In fact in our situation, leaves are dense.

We start the study of this problem for Anosov foliations by assuming
the continuous extension property and then analysing its consequences. We
first show that the identification of intrinsic ideal points of leaves given by
theorem A is respected by the extension maps.

Theorem B. Let Φ be an R-covered Anosov flow in M3 with negatively
curved fundamental group. Suppose that F̃s and F̃u have the continuous
extension property. Then there is a continuous map ϕs : Ss

∞ → S2
∞ so that

for any F ∈ F̃s

ϕ∞F = ϕs ◦ ζF .

The same result holds for F̃u.

We remark that we need to assume that both F̃s and F̃u have CEP to
get the result in theorem B, even if we may be interested in only one of the
foliations, say the stable one. We say that Φ has CEP if both F̃s and F̃u

have CEP. Using this it is easy to prove:

Theorem C. Let Φ be an R-covered Anosov flow in M3 with negatively
curved fundamental group so that Φ has the continuous extension property.
For any open set B ⊂ Ss

∞, ϕs(B) contains an open set in S2
∞.

As will be clear from the proof we do not quite show ϕ is an open map.
A periodic leaf F of F̃s∪F̃u is one for which there is a non trivial covering

translation g of M̃ , so that g(F ) = F . This occurs if and only if π(F )
contains a periodic orbit of Φ.

The limit set of F ⊂ M̃ is the set of accumulation points of F in S2
∞ and

is denoted by ΛF . If Φ is R-covered and M is ncl, then ΛF is always equal
to S2

∞, for any F ∈ F̃s ∪ F̃u [Fe1]. By topological considerations the map
ϕs cannot be injective. The next result is better stated in terms of the ideal
boundary ∂∞F .

Theorem D. Let Φ be an R-covered Anosov flow in M3 with negatively
curved fundamental group so that Φ has the continuous extension property.
Let F ∈ F̃s and let p ∈ ∂∞F which is the intrinsic negative ideal point of a
flow line γ of Φ̃, so that γ is contained in a periodic unstable leaf G ∈ F̃u.
Then for any q ∈ ∂∞F , with q 6= p, it follows that ϕ∞F (p) 6= ϕ∞F (q).

This is the opposite result from the quasigeodesic, non R-covered case in
M3 ncl [Fe4]. In that situation if 2 flow lines in the same stable leaf had
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the same ideal negative limit point in S2
∞, then both of them had to be in

periodic unstable leaves, invariant under a common covering translation.
On the other hand, we show there are many orbits with same ideal points

in both directions:

Theorem E. Let Φ be an R-covered Anosov flow in M3 ncl and assume
that Φ has CEP. Then there are uncountably many almost periodic, non
periodic orbits γ of Φ, so that any lift γ̃ of γ to M̃ has the same ideal points
in forward and backwards directions.

We thank the referee for a careful reading and detailed suggestions which
greatly improved the presentation of this paper.

2. Canonical homemorphisms between intrinsic ideal boundaries.

General references for Anosov flows are [An, Sm]. Let Φ be an Anosov flow
in M3 (M ncl or Φ not assumed a priori) and let Φ̃ be the lift of Φ to M̃ .
Then the orbit space of Φ̃, O = M̃/Φ̃, is homeomorphic to R2 [Fe3], a fact
which helps in visualizing many arguments. Then F̃s, F̃u induce transverse,
1-dimensional foliations in O, denoted by the same symbols. Let Hs be the
leaf space of F̃s and similarly define Hu.

If Φ is also R-covered, then up to isotopy there are only two topological
models for the joint structure of the stable and unstable foliations in the
universal cover [Fe3], which we now describe.

F~u

F~s F~s

F~u

(a) (b)

Figure 1. a. Product type. b. Skewed type. The diagrams are bounded
in the horizontal direction and unbounded in the vertical direction.
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The set O is homeomorphic to H = (0, 1)×R, which is more convenient
for our description of R-covered Anosov flows. In the product type the
foliation F̃s is a foliation by horizontal segments in H and F̃u is a foliation
by vertical lines. Notice that any leaf F of F̃s intersects every leaf of F̃u

and vice versa.
In the skewed model F̃s is again a foliation by horizontal segments in H

and now F̃u is a foliation by parallel segments in H making an angle θ 6= π/2
with the horizontal. Hence any leaf of F̃s does not intersect all leaves of F̃u

and vice versa.
We now analyse the skewed type in more detail. Since M̃ is simply con-

nected F̃s, F̃u are transversely orientable and we fix a transversal orienta-
tion. For any leaf G ∈ F̃u let F ′ ∈ F̃s with F ′ ∩ G 6= ∅. Then there is a
unique leaf F ∈ F̃s in the positive side of F ′, so that F ∩G = ∅, but for any
stable leaf E between F and F ′ it follows that E ∩ G 6= ∅. This strongly
uses the fact that Φ is R-covered (so that between F and E always makes
sense) and of skewed type (to find F with F ∩G = ∅). It is easy to see that
F depends only on G. We then say that G is asymptotic to F in the positive
direction (transversally to F̃s). This defines a map

Θu
+ : Hu → Hs, Θu

+(G) = F,

which, by the description of the skewed structure, is easily seen to be
a homeomorphism. In the same way the asymptotic stable leaf to G in
the negative direction defines Θu

−(G). An analogous construction defines:
Θs

+,Θs
− : Hs → Hu.

F=

L= (G)

(F)

(G)

F'

Θs
-Θs

+

Θu
+

Θu
-

(L) =G=

F 

∋F s~(a) (b)

Figure 2. a. Leaf space homeomorphisms. b. Intrinsic ideal points of a
stable leaf.

Choose the transversal orientation to F̃u so that

Θs
+ = (Θu

−)−1 and Θs
− = (Θu

+)−1,
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see Fig. 2a. This description will be essential for all the results in this
article.

Suspensions have product type and geodesic flows have skewed type.
Given a leaf F of F̃s, it is topologically a product of flow lines with the

strong stable direction. Ideal points of F correspond to all negative limit
points of flow lines in F and the common positive ideal point, which is
denoted by F+ [Fe3] see Fig. 2b. Geometrically, F resembles the hyper-
bolic plane H2 where the flow lines correspond to geodesics in H2 having
a distinguished ideal point in the circle at infinity of H2. If G ∈ F̃u, then
G− ∈ ∂∞G is the common negative point in ∂∞G of all flow lines in G.

Given x ∈ M̃ let W̃ s(x) be the leaf of F̃s containing x. Similarly define
W̃ u(x) and W̃ s(γ), W̃ u(γ) for γ orbit of Φ̃.

Given γ an orbit in F ∈ F̃s ∪ F̃u, let γ− ∈ ∂∞F be its intrinsic negative
limit point so that for any x ∈ γ:

γ− = x− = lim
v→−∞

Φ̃v(x) ∈ ∂∞F,

where the limit is computed in F ∪∂∞F . Similarly define γ+ and x+ ∈ ∂∞F .
We now explain how one can “naturally” relate points from distinct in-

trinsic ideal boundaries. Notice that all but one of the ideal points in ∂∞F ,
F ∈ F̃s are negative ideal points. Since flow lines in unstable leaves are
asymptotic in the negative direction, negative ideal points in a stable leaf
should be naturally associated to ideal points in nearby stable leaves. That
is, let p ∈ ∂∞F ′ a negative ideal point and γ a flow line in F ′ with γ− = p.
Then for sufficiently nearby F ∈ F̃s, it follows that W̃ u(γ) ∩ F 6= ∅ and
this intersection is an orbit α in F . If q = γ′− ∈ ∂∞F , then p should be
associated to p′. If Φ is R-covered and skewed, this approach does not work
for all ideal points of ∂∞F ′ as we now explain: We will again refer to Fig.
2a. Fix a leaf F ′ ∈ F̃s and fix a nearby F ∈ F̃s in the positive side of
F ′. Then as seen in Fig. 2a, there are unstable leaves intersecting F ′ which
do not intersect F (corresponding to those in the back side of G). This
shows that the association of ideal points of flow lines in the same unstable
leaf cannot be carried out for all ideal points in ∂∞F ′. In order to produce
a homeomorphism between the entire boundaries ∂∞F ′ and ∂∞F we will
strongly use the R-covered hypothesis. We stress that in the skewed case
not all ideal points will be mapped to ideal points of asymptotic flow lines
in the same unstable leaf.

We now prove Theorem A of the introduction.

Theorem 2.1. Let Φ be an R-covered Anosov flow. Then for any F,L ∈ F̃s

there is a canonical homeomorphism XL
F : ∂∞F → ∂∞L. In addition if

E ∈ F̃s then XE
F = XE

L ◦ XL
F . This defines the stable ideal boundary Ss

∞
of Φ as the quotient of ∪

F∈F̃s∂∞F , by the homeomorphisms above. Then
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for any E ∈ F̃s there is homeomorphism ζE : ∂∞E → Ss
∞ so that for any

F,L ∈ F̃s, it follows that ζF = ζL ◦XL
F .

Proof. Case 1: Φ has product type.
For any F,L ∈ F̃s and any negative limit point p of F , there is a unique

flow line γ in F with γ− = p. By the product description there is a unique
flow line β in L so that γ and β are in the same unstable leaf of F̃u. Let
XL

F (p) = β− ∈ ∂∞L. Let XL
F (F+) = L+.

Case 2: Φ has skewed type.
Let p ∈ ∂∞F and assume that L is in the positive side of F . Assume first

that p is not F+. Then there is a unique orbit γ in F with γ− = p. Let
G0 = W̃ u(γ). If G0 ∩ L 6= ∅, then G0 ∩ L is a flow line in L and let

XL
F (p) = (G0 ∩ L)− ∈ ∂∞L.

If L = Θu
+(G), then let XL

F (p) = L+.

F

L

G1

G3

G2

G0

γ

Figure 3. Identifications of intrinsic ideal points.

In the other cases let G1 = (Θu
−)−1 ◦Θu

+(G). If G1 ∩ L 6= ∅, let

XL
F (p) = (G1 ∩ L)−.

If L = Θu
+(G1) then XL

F (p) = L+. By the description of the skewed structure
one eventually arrives at a leaf Gi which either intersects L or is asymptotic
to L. The construction of the map is finished by induction. The case p = F+

is treated similarly.
In both cases it is easy to check that for any F,L,E ∈ F̃s then

XE
L ◦XL

F = XE
F .
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Hence the idenfications are well defined. The space Ss
∞ is the quotient of

∪
F∈F̃s∂∞F by the homeomorphisms between distinct intrinsic ideal bound-

aries. Then Ss
∞ is homeomorphic to a circle and there is a well defined home-

omorphism ζF : ∂∞F → Ss
∞ for any F ∈ F̃u, satisfying ζF = ζL ◦XL

F . �

In the skewed case there is an equivalent description of Ss
∞, Su

∞ using
only the structure of F̃s, F̃u in M̃ , which is given by the Θ maps. The
composition

χu : (Θu
−)−1 ◦Θu

+ : Hu → Hu

is an orientation preserving homeomorphism of Hu without fixed points and
the quotient Hu/χu is a topological space V u which is homeomorphic to a
circle. Let πu : Hu → V u be the projection map. Similarly χs : (Θs

−)−1◦Θs
+ :

Hs → Hs yields V s and πs.

Proposition 2.2. There are natural homeomorphisms ξs : Ss
∞ → V u and

ξu : Su
∞ → V s.

Proof. Let F ∈ F̃s. Given p ∈ Ss
∞ let p′ = (ζF )−1(p) ∈ ∂∞F . If p′ 6= F+

then p′ = γ−, γ flow line in F . Then set

ξs(p) = ξs(ζF (p′)) = πu(W̃ u(γ)).

If p′ = F+ then Θs
+(F ) ∈ F̃u and then let

ξs(p) = ξs(ζF (p′)) = πu(Θs
+(F )).

The proof that ξs is independent of the leaf F of F̃s is exactly the same as
the proof of Theorem 2.1. Similarly for ξu. �

Lemma 2.3. If g is a covering translation of M̃ then g induces homeomor-
phisms in V s and V u.

Proof. First notice g acts by homeomorphisms in O and in the leaf spaces
of F̃s and F̃u. Therefore g takes asymptotic pairs of leaves to asymptotic
leaves. If g preserves transversal orientations then:

Θu
+ ◦ g(G) = g ◦Θu

+(G), ∀G ∈ F̃u.

Similarly g commutes with Θu
−,Θs

+,Θs
−. Hence g induces orientation pre-

serving homeomorphisms in V s and V u.
If g reverses orientations to either F̃s or F̃u then by the R-covered prop-

erty it follows that it reverses both transversal orientations. Therefore

g ◦Θu
+(G) = Θu

− ◦ g(G) ∀G ∈ F̃u

and then g induces orientation reversing homeomorphisms in V s and V u. �



210 SÉRGIO R. FENLEY

Corollary 2.4. If Φ is R-covered and of skewed type, there is a natural
action of π1(M) into the 2 dimensional torus T 2 = V s × V u.

For instance if g is associated to a periodic orbit of Φ then the correspond-
ing homeomorphism of T 2 has 4 fixed points, one of which is attracting, one
repelling and the other two of hyperbolic type.

If g is a covering translation of M̃ , then it induces an homeomorphism
gL
F , between ∂∞F and ∂∞L, for any F ∈ F̃s and L = g(F ) as follows: If

p = γ− ∈ ∂∞F , let gL
F (p) = (g(γ))− ∈ ∂∞L and let gL

F (F+) = L+. Using
Lemma 2.3 and Proposition 2.2 one obtains the following result.

Corollary 2.5. Any covering translation g ∈ π1(M) induces a homeomor-
phism gs of Ss

∞. This means the following: Fix p ∈ Ss
∞. Let now F ∈ F̃s

be an arbitrary leaf and L = g(F ). Then ζL ◦ gL
F ◦ ζF

−1(p) depends only on
p and not on F . This induces an action of π1(M) in Ss

∞.

Remarks. 1) If Φ is the geodesic flow in the unit tangent bundle T1N
2 of

a closed surface of constant curvature −1 (for simplicity), then a stable leaf
F of F̃s is isometric to the hyperbolic plane H2. The positive limit point of
F is just the positive limit point of the geodesic of H2 through any x ∈ F (x
is a point in H2 with a unit tangent vector). The homeomorphism between
ideal boundaries in Case 2 of Theorem 2.1 is just the identity map in the
circle at infinity.

2) In general one should think of the the stable ideal boundary Ss
∞ as

being “rotated” by moving transversally to leaves of F̃s. Rotation means
that the distinguished positive ideal point is moving around Ss

∞ and returns
to its original position after a “2π” turn, that is, after applying (Θs

−)−1◦Θs
+.

This is exactly what happens for the geodesic flow.

3. Equivariant continuous extension.

From now on assume that M3 is ncl. Let Φ be an Anosov flow in M . As
proved in [Fe3], Φ cannot have product type and is therefore of skewed type.
This fact will be implicitly used from now on. Assume in addition that Φ
has CEP. Then we can define two maps η−, η+ : M̃ → S2

∞ by

η−(p) = lim
v→−∞

Φ̃v(p) ∈ S2
∞.

The same ideal point is obtained for all points in the orbit γ of Φ̃ through
p so we will also use the notation η−(γ). Similarly define η+.

As a consequence of the detailed analysis of R-covered Anosov flows and
intrinsic ideal points in the previous section, most results in this section will
be straightforward.

Proposition 3.1. The maps η+, η− : M̃ → S2
∞ are continuous.
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Proof. Let xi → x in M̃ . By the local product structure of Φ̃, there are
yi ∈ W̃ s(xi) with yi ∈ W̃ uu(x) (for i big) and yi → x. Then η+(yi) = η+(xi).
Let G = W̃ u(x). In the intrinsic structure of G the flow lines through yi are
converging to that through x, which means that (yi)+ → x+ in ∂∞G. By
the continuous extension of ϕG : G → M̃ to ϕG : G ∪ ∂∞G → M̃ ∪ S2

∞, it
follows that

η+(xi) = η+(yi) = ϕ∞G ((yi)+) → ϕ∞G (x+) = η+(x), as i →∞.

�

Lemma 3.2. If F ∈ F̃s, G ∈ F̃u are asymptotic, that is, either F = Θu
+(G)

or F = Θu
−(G), then ϕ∞F (F+) = ϕ∞G (G−).

Proof. Suppose F = Θu
+(G), the other case being similar. Let E ∈ F̃s with

E ∩ G 6= ∅ and let E ∩ G = γ, orbit of Φ̃. Let γi ⊂ E, γi orbits of Φ̃
with W̃ u(γi) ∩ F 6= ∅ and γi → γ in E, see Fig. 4. Let βi = W̃ u(γi) ∩ F .

G

F

E

i

i

β

γ

γ

Figure 4. Equal ideal points.

Then the sequence {βi}i∈N escapes to infinity in F as i → ∞ and hence
(βi)− → F+ in ∂∞F as i → ∞. By CEP, η−(βi) = ϕ∞F ((βi)−) → ϕ∞F (F+).
Since βi ⊂ W̃ u(γi), η−(βi) = η−(γi), hence

ϕ∞G (G−) = η−(γ) = lim
i→∞

η−(γi) = lim
i→∞

η−(βi) = ϕ∞F (F+).

�

We now prove Theorem B of the introduction.

Theorem 3.3. Let Φ be an R-covered Anosov flow in M3 ncl and assume
that Φ has CEP. Then there is a continuous map ϕs : Ss

∞ → S2
∞ so that for

any F ∈ F̃s, ϕ∞F = ϕs ◦ ζF .

Proof. Let q ∈ Ss
∞ and let p ∈ ∂∞R,R ∈ F̃s, be a representative of q. If p =

R+ let F = R, G = Θs
+(F ) and L = Θu

+(G). Otherwise let p = γ−, where γ

is a flow line in R. Then let G = W̃ u(γ), F = Θu
−(G) and L = Θu

+(G).
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By the description of Proposition 2.2, it suffices to show that if pE is a
representative of q in E ∈ F̃s, where E is between F and L, then ϕ∞E (pE)
is independent of the particular leaf E. If E = F , then

pE = F+ and ϕ∞F (pE) = ϕ∞F (F+).
If E 6= F,L, then pE = (γE)− ∈ ∂∞E, where γE = E ∩G. As γE ⊂ G, then

ϕ∞E (pE) = ϕ∞E ((γE)−) = η−(γE) = ϕ∞G (G−).
If E = L, then pE = L+ and as in the first case, ϕ∞L (pE) = ϕ∞L (L+).
By the previous lemma ϕ∞F (F+) = ϕ∞G (G−) = ϕ∞L (L+), which finishes the
proof. �

We now have various maps associated to a given covering translation g of
M̃ , all of which are homeomorphisms:

• gL
F : ∂∞F → ∂∞L, where F ∈ F̃s and L = g(F ),

• gF = gF
F , if g(F ) = F ,

• g∞ : S2
∞ → S2

∞, continuous extension of g : M̃ → M̃ , which exists for
any M3 ncl [Gr] and

• gs : Ss
∞ → Ss

∞, gu : Su
∞ → Su

∞.
Using Theorem 3.3, together with Lemma 2.3 and Proposition 2.2 it im-

mediately follows that:

Corollary 3.4. The extension ϕs : Ss
∞ → S2

∞ is invariant under covering
translations, that is, for any covering translation g of M̃ , g∞ ◦ ϕs = ϕs ◦ gs

and similarly for the unstable foliation.

We now prove Theorem C:

Proposition 3.5. Let Φ be an R-covered Anosov flow in M3 ncl and as-
sume that Φ has CEP. For any A any open in Ss

∞, ϕs(A) contains an open
set in S2

∞.

Proof. Since Φ is transitive, the periodic orbits are dense in O [Sm]. Notice
that A is homeomorphic to an open set B ⊂ ∂∞F , F ∈ F̃s, where there is
a periodic orbit γ in F with p = γ− ∈ B. Let g be the covering translation
associated to the closed orbit π(γ) of Φ so that g(F ) = F . By Corollaries
2.5 and 3.4, g∞ ◦ ϕ∞F = ϕ∞F ◦ gF . Recall that gF fixes 2 points p and
F+ ∈ ∂∞F and we may assume p is the expanding fixed point. For n > 0
big enough, (∂∞F − gn

F (B)) is contained in a small enough neighborhood of
F+. By continuity of ϕ∞F it follows that ϕ∞F (∂∞F − gn(B)) is contained in
a small neighborhood of ϕ∞F (F+). Therefore ϕ∞F (gn

F (B)) contains an open
neighborhood of ϕ∞F (p). Since g∞ fixes ϕ∞F (p) it follows that ϕ∞F (B) =
g−n
∞ (ϕ∞F (gn

F (B))) will contain an open neighborhood of ϕ∞F (p) as desired. �
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4. Non injectivity of the continuous extension.

Proposition 4.1. Let Φ be an R-covered Anosov flow in M3 ncl and as-
sume that Φ has CEP. Let F be a periodic leaf of F̃s with γ the periodic
orbit in F . Let p = γ−. If ϕ∞F (F+) = ϕ∞F (z) for z ∈ ∂∞F then z = F+ and
similarly for p.

Proof. Suppose that ϕ∞F (F+) = ϕ∞F (z). If z = p then γ is an orbit of Φ̃
with same ideal points in the forward and backward directions. But π(γ) is
a closed orbit of Φ in M , so it is freely homotopic to a closed geodesic of M

[Gr]. Hence γ is a quasigeodesic in M̃ and it cannot have identified ideal
points [Gr].

Let g be a non trivial covering translation of M̃ with g(F ) = F and assume
that p is the attracting fixed point. If ϕ∞F (F+) = ϕ∞F (w) with w 6= F+, p,
then gn

F (w) → p (in ∂∞F ) as n → +∞, so

ϕ∞F (F+) = gn
∞(ϕ∞F (F+)) = gn

∞(ϕ∞F (w)) = ϕ∞F (gn
F (w)) → ϕ∞F (p).

Hence ϕ∞F (F+) = ϕ∞F (p), contradiction to the above. Similarly for p. �

We say that p ∈ Ss
∞ is in the class of a periodic stable point, if there is

F ∈ F̃s periodic and γ the periodic orbit in F , so that either p = ζF (γ−) or
p = ζF (γ+). We now prove Theorem D:

Theorem 4.2. Let Φ be an R-covered Anosov flow in M3 ncl and assume
that Φ has CEP. If p ∈ Ss

∞ is in the class of a periodic orbit, then ϕs(p) =
ϕs(q) implies that p = q.

Proof. Let F ∈ F̃s periodic, γ periodic orbit in F and p = ζF (γ−). Let
z = γ− ∈ ∂∞F and let w ∈ ∂∞F with w = (ζF )−1(q). By Theorem 3.3

ϕ∞F (z) = ϕs(p) = ϕs(q) = ϕ∞F (w).

By the previous proposition, z = w, hence p = q. Similarly if p = ζF (γ+).
�

Since ϕs(Ss
∞) = S2

∞ and Ss
∞ is homeomorphic to a circle, it follows that

ϕs is not injective. One open question is to decide whether this map can be
infinite to one. This is impossible in the quasigeodesic, non R-covered case
[Fe4]. We will prove there are uncountably many points in Ss

∞ which have
the same image under ϕs as some other point of Ss

∞.

Definition 4.3. We say that an orbit β of Φ̃ is pinched if η+(β) = η−(β).
Since for any covering translate g(β) of β, g∞(η−(β)) = η−(g(β)), this is
really a property of π(β). We then say π(β) is liftable pinched.
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A pinched orbit is reminiscent of a horocycle in hyperbolic space. Recall
that a horocycle has well defined limit points which are the same in both
directions. Clearly it is not quasigeodesic.

Proposition 4.4. There is a pinched orbit of Φ̃.

Proof. Fix F ∈ F̃s and let p 6= q ∈ ∂∞F with ϕ∞F (p) = ϕ∞F (q). If p or
q is F+ then we are done. Otherwise let x, y ∈ F with p = x−, q = y−.
Let L ∈ F̃s, in the positive side of F , which is asymptotic to W̃ u(x) and
intersects W̃ u(y) or vice versa. Assume L = Θu

+(W̃ u(x)), then L+ = XL
F (p).

Since XL
F (q) 6= L+, the result follows from:

ϕ∞L (L+) = ϕ∞L (XL
F (p)) = ϕ∞F (p) = ϕ∞F (q) = ϕ∞L (XL

F (q)).
�

Proposition 4.5. If γ is a liftable pinched orbit of Φ then any orbit in its
closure γ is also liftable pinched.

Proof. Let α ⊂ γ, but not γ itself. Let x ∈ α, y ∈ γ. Then there are
vi ∈ R, |vi| → +∞, with Φvi(y) → x. Let x′ ∈ M̃ with π(x′) = x and
choose yi ∈ π−1(Φvi(y)), with yi → x′. Then η−(yi) → η−(x) and similarly
for the positive direction. Since γ is liftable pinched, η−(yi) = η+(yi) for all
i. Then η+(x′) = η−(x′) and α is liftable pinched as desired. �

If γ is a closed orbit of Φ then γ is not null homotopic in M [An]. It
follows that any lift γ̃ to M̃ is a quasigeodesic. Hence (γ̃)− 6= (γ̃)+ and we
conclude that γ is not liftable pinched. The following is immediate:

Corollary 4.6. If γ is liftable pinched then γ does not contain a closed
orbit. In particular no dense orbit of Φ is liftable pinched.

Recall that an orbit of a flow is almost periodic [Bo] if its closure is a
minimal set. Bowen [Bo] proved that non periodic, almost periodic orbits
of Axiom A flows form a dense set in the non wandering set. We restate
Theorem E as follows:

Theorem 4.7. Let Φ be an R-covered Anosov flow in M3 ncl and assume
that Φ has CEP. Then there are uncountably many liftable pinched orbits of
Φ. In particular there are uncountably many such orbits which are almost
periodic.

Proof. By Proposition 4.4 there is an orbit β of Φ which is liftable pinched.
Then β contains a minimal set of the flow which by Corollary 4.6 cannot
be a closed orbit, hence it is the closure of an almost periodic orbit γ. By
Proposition 4.5 any orbit in this closure is liftable pinched. The closure does
not contain isolated orbits since it is a minimal set and not a closed orbit.
Consider the intersection of γ with a small transversal disk to the flow Φ.
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By the above this is a perfect set and therefore a Cantor set. Since any orbit
intersects this disk at most countably many times, there are uncountably
many orbits in γ. �

Some remarks are in order here. One may be tempted to prove a result
similar to Corollary 4.6 for almost periodic orbits. For instance, using the
fact that an almost periodic orbit γ is recurrent, any return of γ near to
itself defines by the shadow lemma [Bo] a nearby closed orbit of Φ, which
could theoretically be used to prove that there are no liftable pinched, almost
periodic orbits. One of the problems with this argument is that as γ keeps
returning near itself the sequence of closed orbits obtained by the shadow
lemma gets more and more complicated, in particular their lengths go to
infinity and very little information can be recovered.

As a matter of fact, almost periodic orbits do not behave “almost” like
periodic orbits. Their complexity can be understood using symbolic dynam-
ics: Bowen and Walters [Bo, Bo-Wa] proved that the flow restricted to the
closure of an almost periodic, non periodic orbit is conjugate to a variable
time suspension of a subshift (not of finite type). The key fact is that gen-
eral subshifts can be quite complicated, far from having the good properties
that subshifts of finite type possess, in particular, the flow restricted to the
closure of an almost periodic orbit can be quite complicated.
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