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QUANTIZATION OF POISSON GROUPS

FABIO GAVARINI

Let G be a connected simply connected semisimple al-
gebraic group, endowed with generalized Sklyanin-Drinfel’d
structure of Poisson group; let H™ be its dual Poisson group.
By means of quantum double construction and dualization
via formal Hopf algebras, we construct new quantum groups
U, ,(h) — dual of Ué‘:’; (g) — which yield infinitesimal quanti-
zation of H™ and G7 ; we study their specializations at roots
of 1 (in particular, their classical limits), thus discovering new
quantum Frobenius morphisms. The whole description dual-
ize for H™ what was known for G7, completing the quantiza-
tion of the pair (G™,HT").

Introduction.

“Dualitas dualitatum
et omnia dualitas”

N. Barbecue, “Scholia”

Let G be a semisimple, connected, and simply connected affine algebraic
group over an algebraically closed field k of characteristic zero; we consider a
family of structures of Poisson group on G, indexed by a multiparameter 7,
which generalize the Sklyanin-Drinfel’d one. Then every such Poisson group
G7 has a dual Poisson group H7, and g” := Lie(G") and h7 := Lie(H")
are Lie bialgebras dual of each other.

In 1985 Drinfel’d and Jimbo provided a quantization of U(g) = U(g"),
namely a Hopf algebra Ug?(g) over k(q), presented by generators and rela-
tions, with a k[q, qil]—form $9(g) which for ¢ — 1 specializes to U(g) as
a Poisson Hopf coalgebra. This has been extended to general parameter
7 introducing multiparameter quantum groups UZ2,(g) (cf. [Re], [CV-1],
[CV-2]). Dually, one constructs a Hopf algebra F’[G] of matrix coeffi-
cients of UZ(g) with a k|[q,¢!]-form F”[G] which specializes to F[G], as
a Poisson Hopf algebra, for ¢ — 1; in particular F”[G] is nothing but the
Hopf subalgebra of “functions” in F, (f [G] which take values in k [q, q_l] when
“evaluated” on U%(g) (in a word, the k[q, q_l]—integer valued functions on
19(g)). This again extends to general 7 (cf. [CV-2]).
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So far the quantization only dealt with the Poisson group G (or G7);
the dual group H is involved defining a different k:[q, qil]—form U"(g) (of a
quantum group U/ (g)) which specializes to F'[H] (as a Poisson Hopf alge-
bra) for ¢ — 1 (cf. [DP]), with generalization to the multiparameter case
possible again. Here sort of a “mixing dualities” (Hopf duality — among
enveloping and function algebra — and Poisson duality — among dual Pois-
son groups) occurs, which was described (in a formal setting) by Drinfel’d
(cf. [Dr], §7), and by Etingof and Kazhdan (cf. [EK-1], [EK-2]). This leads
to consider the following: Let F;?[G] be the quantum function algebra dual of
U, (9), and look at the “dual” of U”(g) within F?[G], call it F?[G], namely
the Hopf algebra of k:[q, q_l]finteger valued functions on U”(g); then this
should specialize to U () (as a Poisson Hopf coalgebra) for ¢ — 1; the same
conjecture can be formulated in the multiparameter case too.

Our starting aim was to achieve this goal, i.e., to construct Fi?[G] and its
k [q, qil] -form F°[G], and to prove that F?[G] is a deformation of the Pois-
son Hopf coalgebra U(h). This goal is succesfully attained by performing
a suitable dualization of the quantum double construction; but by the way,
this leads to discover a new quantum group, which we call Uy* (h), which
is for U(h) what Uy'(g) is for U(g); in particular it has an integer form
19 (h) which is a quantization of U(h), and an integer form U () which is a
quantization of F'*°[G] (the function algebra of the formal Poisson group as-
sociated to G ). Furthermore, we exhibit a Hopf pairing between Uy’ "(g) and
U,'(h) which gives a quantization of the various pairings occurring among
the algebras attached to the pair (G, H). Once again all this extends to the
multiparameter case. Thus in particular we provide a (infinitesimal) quan-
tization for a wide class of Poisson groups (the H"’s); now, in the summer
of 1995 (when the present work was already accomplished) a quantization of
any Poisson group was presented in [EK-1] and [EK-2]; but greatest gener-
ality implies lack of concreteness: in contrast, our construction is extremely
concrete; moreover, it allows specialization at roots of 1, construction of
quantum Frobenius morphisms, and so on (like for 49 (g) and U”(g)), which
is not possible in the approach of [EK-1], [EK-2].

Finally, a brief sketch of the main ideas of the paper. Our aim is to
study the “dual” of a quantum group U,%,(g) (M being a lattice of weights).
First, we select as operation of “dualization” the most naive one, namely
taking the full linear dual (rather than the usual — restricted — Hopf dual),
the latter being a formal Hopf algebra (rather than a common Hopf alge-
bra). Second, as Ui,(g) is a quotient of a quantum double Dy (g) =
D (U}, (b-), Uy, (b1),7,) , its linear dual Uy (g)" embeds into D}’ (g)".
Third, since Dé‘fw(g)A = U)p(by) ® Ugi,(b-) (as coAalgebras) we have
Dy, (g)" = U, (by) @U),(b-)" (as algebras), where & denotes topolog-
ical tensor product. Fourth, since quantum Borel algebras of opposite sign
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are perfectly paired their linear duals are suitable completions of quantum
Borel algebras again: Thus we find a presentation of U,%, (9)" by generators

and relations which leads us to define Ui (h) := Uﬁ;(g)* (where M’ de-
pends on M ) and gives us all claimed results; because of their construction
we call the new objects Uy, (h) (multiparameter) quantum formal groups.
In contrast, we also present an alternative approach, yielding other new
objects — denoted by F,;*[G] — which we call (multiparameter) formal
quantum groups; the similar but different terminology reveals the fact that
Uyip(h) and F'0°[G] provide two different quantizations of the same classi-

cal objects U(h™) and F>° [GT], arising from two different ways of realizing
F>[GT].

Acknowledgements. The author wishes to thank C. Procesi for several
fruitful conversations, and C. De Concini for some useful talk; he is also
endebted with M. Costantini, M. Varagnolo, and I. Damiani for many helpful
discussions.

1. The classical objects.

1.1. Cartan data. Let A:= (ay),;_, , bean xn symmetrizable Car-
tan matrix; thus a;; € Z, a; = 2, a;; < 0 if ¢ # j, and there exists a vec-
tor (di,...,d,) with relatively prime positive integral entries d; such that
(diaij)i,jzl,m,n; is a symmetric positive definite matrix. Define the weight
lattice P to be the lattice with basis {w1,...,wp}; let Py :=>"" | Nw; be
the subset of dominant integral weights, o ==Y ;" | ajjw; (j =1,...,n) the
simple roots, @ = Z?:l Zoj (C P) the root lattice, and Q4 = E?:l Ny
the positive root lattice. Let W be the Weyl group associated to A, and let
Il := {a1,...,op}: Then R := W(II) is the set of roots, Rt = RN Q4
the set of positive roots; finally, we set N := #(R*) (= |[W]). Define bi-
linear pairings (| ): @ x P — Z and (| ): Q@ x P — 7Z by (a;|lw;j) = 0;;
and (o;|wj) = 0;5d;. Then (oy|oj) = d;aj, giving a symmetric Z-valued
W-invariant bilinear form on @ such that (ala) € 2Z. For all a« € R™,

let d, := (aéa) ; then d,, = d; for all + =1,...,n. We also extend the
(]1):QxP — Z to a (non-degenerate) pairing ( | ): QQ x QP — Q
of Q-vector spaces by scalar extension, where Q7T := Q ®z T(T = Q, P):

Then restriction gives a pairing ( | ): P x P — Q (looking at P as a sublat-

tice of QQ ), which takes values in Z [D™!'], where D := det <(aij)2j:1> .
Given any pair of lattices (M, M’), with Q < M, M’ < QP , we say that
they are dual of each other if M' = {y € QP| (M,y) C Z}, M = {a: €
@P‘ (x, M'") C Z} , the two conditions being equivalent; then for any lat-
tice M with Q < M < P there exists a unique dual lattice M’ such that
Q <M <P and (|): QP x QP — Q restricts to a perfect pairing
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(]): M x M — Zj; in particular P’ = @Q and Q' = P. In the sequel we
denote by { p1,...,pn } and {vy,... 1, } fixed Z-bases of M and M’ dual
of each other, i.e., such that (p;|v;) = d;; forall i, =1,...,n, and we set
M+ =M n P+ .

In the following our constructions will work in general for the pairs of dual
lattices (P, Q) and (@, P); but in the simply laced case (in which (|, ) =
(,)) (M, M") will be any pair of dual lattices.

1.2. The Poisson groups G and H. Let G be a connected simply-
connected semisimple affine algebraic group over an algebraically closed field
k of characteristic 0. Fix a maximal torus T' < G and opposite Borel sub-
groups By, with unipotent subgroups Uy, such that By N B_ = T, and
let g := Lie(G), t:= Lie(T), by := Lie(By), ny := Lie(Uy); fix also
T:=(T1,... ,7T) € Q" such that (7, ;) = —(75,04) forall i,j=1,... n:
When 7= (0,...,0) we shall simply skip it throughout. Set K =G x G,
define G™ := G embedded in K as the diagonal subgroup, and define a
second subgroup

H = { (u—t_,tyuy) ‘“i €Uty €Tt ty €exp () }
( <B_xBy<K)

where 7 :=>"" | k-h_q,42r, D ha12rn, <tOt < gdg=t:= Lie(K); hence
we have h7 := Lie(H") = (n_,0) @ " @ (0,n4). The triple (K,G",HT) is
an algebraic Manin triple (cf. [DP], §11), whose invariant form is defined
as follows: First normalize the Killing form (, ) on g so that short roots
have square length 2; then define the form on ¢ = g ® g by!

1 1
(x1 ® Y1, 02 ®ya) = 5 (1,42) = 5 (21,22).

In general, if (¥, ¢’,h’) is any Manin triple, the bilinear form on ¢ gives
by restriction a non-degenerate pairing (, ): h’ ® g’ — k which is a pairing
of Lie bialgebras, that is

<l’7 [Z/l, 3/2]> = <5($)7 Y1 ® y2> ) <[I’1, $2]7y> = <$1 & x2, 5(y)>
where ¢ is the Lie cobracket; we shall call it Poisson pairing. In the present
case we denote it by 75 (h,g) := (h, g); it is described by

(1.1)

(£, £5) =0 () =0 {fe) = —5 byd;”
<hZ, fj>1: 0 . <hZ7 hj> = az-jdj_ = ajz-di_ <hz-, €j> =0
<ez—7fj> =73 Z]d; <ez—ah]> =0 <e;r76j> =0

where the f7, hl, eI, resp. fs, hs, es, are Chevalley-type generators of

b7, resp. g7, embedded inside ¢ = g ® g, namely ] = f; &0, h] =

Y Warning: Beware of the normalization of the invariant form of €, which is different
from [DP].
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h—as+27's @has+27—s > eg = 0des, and fs = fs@fSa hs = hs@hs, es = esDes
(see §§1.3-4 below).

1.3. The Poisson Hopf coalgebra U(g™). The universal enveloping al-
gebra U(g™) = U(g) can be presented as the associative k-algebra with 1
generated by elements |, f;, h;, e; (i = 1,...,n) (the Chevalley generators)
satisfying Serre’s relations; it has a canonical structure of Hopf algebra, given
by A(z) =2z®1+1®x, S(x) = —=z, e(x) =0 for x = f;, h;,e;; finally,
the Lie cobracket § = d4-: g7 — g7 ® g” extends to a Poisson cobracket
0:U(g") — U(g")®@U(g") (compatible with the Hopf structure) given by

§(f;) = at2milontdn) gy o fy — ARt pogp o (k) =0,

a;—27; |0 —27; o —27; |0 —2T;
5(61') — (ai=27i]ai—27i) l% i=27i) hai_gn X e; — {oi=2milo—27i) ’é i—27:) e Q hai_gn. .

1.4. The Poisson Hopf coalgebra U(h7). From the very definition and
the previous presentation of U(g”) we get for U(h™) the following presen-
tation. U(h7) is the associative k-algebra with 1 generated by f7, h7, e
(i=1,...,n) with relations

hfh7 —WTh =0,  off] —ffe] =0

hz—f;— — f;—h;— = <Oé7; — 27’2', Oéj> ij y hfe} - e;hz = <O£Z' + 27'1',0(]') e;
1—a;;
1—az~ l—a;i—keTer . .
I S e G L e (GO I )
k=0
1—[11']' 1
— Qg ™1—a;;—k 1/ 1 . .
S (U ) ettt =0 £
k=0
for all 4,7 =1,...,n; its natural Hopf structure is given by
(1.3) Alz)=z1+1®x, S(z) = —u, €(z)=0

for x = ff,h[, e7, and the co-Poisson structure § = dy-: U(h7) — U(h") ®
Uu®mT) b
0(f7) =di- (0] @ff —f7 @h])
+2d7 Y ehdads - (e, @ — fF ®e])
a,BeERT
(1.4) 6(h]) =4d;! Z dy (v]ei) - (] @ 1T —£7 @ e])
YERT
6(ef) =d;- (e] ®h] —h] ®@e€])
+2d7 - Y e pdads - (£ @€, — €], @ 15)
a,BERT
with the el’s and the {]’s given by <efy,f,7> = +<5W7d7/2, <efy,hi> =0,
<e§,en> =0, and <fvT’fn> =0, <fwthi> =0, <fvTv€n> = —0y,dy /2 (fy and
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ep being root vectors in g7), and the c s given by [fa,eﬁ] = B - fi,
[ases] = & .

2. Quantum Borel algebras and DRT pairings.

2.1. Notations. For all s,n € N, let (n), = q;__ll (€ klgl), (n),! =

n n (n),! n_g—n _
[T (1) (D), = ey (€ Ma), and [a], := L= (€ Klg,q7)),

|
(n],t =TTy [, [’Z]q == % (€ klg.q7]); let gq := g% for all
a € R, and ¢ := qa, - Let Q, P be as in §1; we fix an endomorphism ¢ of
the Q-vector space QP := Q ®z P which is antisymmetric — with respect
to (| ) — and satisfies the conditions

©(Q) CQ, %(cp(P) |P)CZ, 2AYA™' € Mat,(Z)

(i) = D25 1 yjicy, we set Y = (yij); ... We
also define 7, := %+ ¢(a) for all & € R (so 7o, = 7;). It is proved in
[CV-1] that (idgp + ) and (idgp — ¢) are isomorphisms: Then we set
ri=(idgp +¢) 7', 7= (idgp — ¢)

where, letting 7; := 7 ola
i

2.2. Quantum Borel algebras. From now on M will be any lattice such
that Q@ < M < P; then M’ will be the dual lattice defined in §1.1, accord-
ing to the conditions therein. As in [CV-1], Uy, (b-), resp. Uji,(by), is
the associative k(g)—algebra with 1 generated by L, (n € M), Fi,...,F,,
resp. L, (ne M), Ex,..., Ey,, with relations

LO g 1 y L“Ll/ == L,LL—‘rl/?

1 I
(21)  L,F;=q “@WEL,, > (—1)8[ “”] FPFFf =0
pts=l—ay; s gi
1 I
resp. L, E; = q+(af|“)EjLu ; Z (1) [ aw] E}E;E} =0
pts=1—aj; s i
for all 4,5 =1,...,n and pu,v € M ; both are Hopf algebras, with
A@(FZ) :Fi®L—Oti—Ti +LT¢ ® Fi, 6@(Fi) =0, SSD(FZ) = _FiLai
Ap(Ly)=Ly® Ly, €o(Ly) =1, Se(Ly) =Ly

Ap(Ei)) = E; ® Lr, + La,—, @ By, €,(E;) =0,  Sy(Bi) = —L_o,E;

for all @ = 1,...,n, p € M. We also consider the subalgebras Uji,(t)
(generated by the L,’s), Uy ,(n_) (generated by the F;’s), Ug,(ny) (gen-
erated by the E;’s). In the sequel we shall use the notation K, := L,
M, =L,, Ay = L,Vo € Q,p € M,v € M) (and in particular
Ki =Ky, , Mj:=M,, A;j:=A,,),and UY :=Uy i, (b-), UX :=Uy,(by),
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Utlo = Ugp(t), U i=Ugp(n_), Uy :=Ugp(ny). If o =0 we just skip it
througout.
Finally, multiplication yields isomorphisms

M ~ M ~ M M ~ M ~ M
Ugo,g =Up-® U(p,O =Us0® Up, Ucp,z SUps ® Uap,O = U<p,0 ®Up,4-

2.3. DRT pairings. If H is any Hopf algebra, we let H°P be the same coal-
gebra with opposite multiplication, and H,, the same algebra with opposite
comultiplication.

From [CV-1], §3, there exist perfect (i.e., non-degenerate) pairings of
Hopf algebras

Vi Ve op
Ty (U:XS)OP ® Uﬁfz — k(q), Tyt U(%S ® (Uﬁ;) — k(q)

’ 7\ P
Ty (ng)op ®Uge — k() To: Ugs ® (Us];%) — k(q)

To(Ly, L) = ¢~ "W r (L, E;) =0,
q—(T(Ti)\Ti)

To(Fi, L) =0,  mo(Fi, Ej) = 6ij————
(7" — @)
F@(Lﬂv L)) = q-&—(r(u)\u)’ @(EZ,LV) =0,
gt (Tilm)
(a-q')

These pairings were introduced by Drinfel’d, Rosso, Tanisaki, and others,
whence we shall call them DRT pairings. If 7 is any DRT pairing we shall
also set (z,y). for m(z,y).

W(LWFJ) =0, @(El?FJ) = 5ij

2.4. PBW bases. Let N := #(R"), and fix any total convex ordering
(cf. [Pa] and [DP], §8.2) a',a?,...,aN of RT: Following Lusztig we can
construct root vectors Eqr, (r = 1,...,N) as in [DP] or [CV-1] and get

PBW bases of increasing ordered monomials {Lu . H,],Vzl Fg:ﬁ ’u e M,

Flo I eN} for UY_ and {L#-ny:lEz?
for ng or similar PBW bases of decreasing ordered monomials; the same
construction also provide PBW bases for U_, U}’, and U,.

Now, for every monomial € in the E;’s, let s(€) := % p(wt(£)), r(€) :=
L r(p(wt(€))), T(€) = 4 T(p(wt(€))), where wt(€) denotes the weight of
& (E; having weight «; ), and similarly for every monomial F in the F}’s,
(F; having weight —a; ). Then

1 1
T (H Fl L, J] Egz-Ly> =

r=N r=N

uEM;el,...,eNGN}
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(%)

+
v— S 17 a" (5 qo/“
H er’fr _1 r

dor — qar)

_ o (=r(Ihon £l2)

22) 7 <L,, ITEs Lo - H Fj:) =
r=N

_ r-r{i el Sl

er ' r
N Far H (5er,f7« qa fa
Gar — an )

gives the values of DRT pairings on PBW monomials (cf. [CV-1], Lemma
3.5, and [CV-2], §1, up to normalizations). Now define modified root vectors
F{: =L, F,=F,L,, , Ef =L, E, = E,L,, forall a € R (and set
F?:=Fy, F/ :=F% ). Then

(2

1 1

Ty (H (F;DT)fT ’ 1+<p (m)> H ’ )
r=N r=N

K (3

~(nlv=s(ITi=n BR)) = Ehar(faton| fra®) ar

=q ® r=N Har h<k\JhToh|JE H(Ser,fr _1 . )

1
_ P \ér fr) _
(23) 7 (L(lgo)(,u)' IT &) Lo H Far) =
r=N r=N

N [6 ] | qf(e;)
_ H(ulv=s(TTr =y FF))+ X her(entonlena®) H(; g™ 2o
q er,fr —1\¢ér

r=1 (qa'r - qar)

(cf. [CV-1], Lemma 3.5, and [CV-2], Proposition 1.9). In the sequel U, _,
resp. Uy, ., will be the k(g)-subalgebra of UZ'_, resp. UJ!., generated by the
F?’s, resp. by the E7’s (i = 1,...,n); these too have PBW bases of ordered

monomials of modified root vectors.

c—s+1y,
2.5. Integer forms. Let X (") .= Xm/[m]qi! and (ch) =T1., %

be the so-called “divided powers”; let ilg{ < be the k:[q, qil]—subalgebra of
Uyl generated by {F-(m), (M“C) JME

(2 t K3
U5 is a Hopf subalgebra of UJ!_, (cf. [CV-2]) having a PBW basis (as a
k[q, q 1] -module) of increasing ordered monomials

e (M;; 0 —Ent(t;/2) al (nr)
H ts MZ HF&T

=1 r=1

m,c,tEN;izl,...,n}. Then

tl,...,tn,nl,...,nNEN}
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and a similar PBW basis of decreasing ordered monomials; in particular
Uy is a k[q, qil]fform of Ugl.. Similarly we define the Hopf subalgebra
U7, and locate PBW bases for it.

Let Eor := (qar —qo}l) Eory Y7 = 1,...,N, and let U}, be the
k [q, q_l]—subalgebra of Uj .. generated by {E,... ,EaN}U{Mli, oy MY
then (cf. [DKP], [DP]) U;’, is a Hopf subalgebra of UJ!,, having a PBW
basis (as a k[q, qil]—module)

n N
{ 1M T] o
i=1 r=1

of increasing ordered monomials and a similar PBW basis of decreasing
ordered monomials; in particular Uy, is a k [q, q_l] -form of UJ!, . The same
procedure yields the definition of the Hopf subalgebra UJ’_ and provides
PBW bases for it. The same integer forms can also be constructed using
modified root vectors instead of the usual ones, hence these integer forms
have also modified PBW bases of ordered monomials in the M;’s and the
modified root vectors. Similar constructions and results hold for the algebras
Up,, Ul Up,y, providing integer forms U, _, Uy, 1, and so on. Finally, we
have decompositions

Yo Zl,_ @UG = U@ Uy, U

tl,...,tnez;nl,...,nNeN}

= 8oy @ Ugg ZUS @ Ly,

0,0 = w,> = »,0 —
M ~ M ~ M M ~ M ~ M
u§07§ = u3077 ® u(P70 = u@)o ® Z/{w’,, ugo’z = Z/{(p7+ ® uSD»O = @70 ® u<p7+'

2.6. k[q,qil}—duality among integer forms. The very definitions and
(2.3) imply that integer forms of opposite “fonts” (namely $ or U ) are
k[q, q_l] -dual of each other in the following sense: for every DRT pairing,
if we take 4 on one side, then the form U on the other side coincides with
the subset of all elements which paired with i give a value in k [q, qil]; and
similarly reverting the roles of £l and U. For instance

Vo= 1{ve U |me(Uiow) Sklaa™'] |
= {90 € Ul @(fﬂauéf(')) C klg.q"] }

Yo ={ve U |me(Whw) Shlaa™] |
= {@ e U |7 (2. 10) C kla.a ] }
S, = {x eU,._ ‘% (x,u@,+> C k[g,q7"] }
= {y € Up,- ‘@(U¢,+,y> Cklg,q7"] }
Uy, ={z U |m(v.)L) Chlo.a] }
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= {v et m(wly) Chlad) )

3. The quantum group U;,(g)-

3.1. The quantum double. Let H_, H be two arbitrary Hopf algebras
on a ground field (or ring) F, and let 7: (H_)OP®H+ — F be any arbitrary
Hopf pairing. Then the Drinfel’d’s quantum double D = D(H_7 H,, 77) is
the algebra T' (H _® H+) / R, where R is the ideal of relations

lg. =1=1py, TRY =2y for x,y € Hy or xz,y€ H_

> e re) rw©ye = Y (Y Ta) Yo © e
(%),(y) (%),(y)
forxe Hy,ye H_.

Then (cf. [DL], Theorem 3.6) D has a canonical structure of Hopf algebra
such that H_, H, are Hopf subalgebras of it and multiplication yields
isomorphisms of coalgebras

(31) H,®@H_ «—— D®D—"-D, H_ ®@H, — D®D—"-D.

Now consider D!, (g) := D(Ug,gangano); by definition, DJ!,(g) is
generated by K., L,, F;, E; — identified with 1® K, L, ® 1, 1® F;, £;®1
via D} (g) = UL, @Ui. — (weQ, pne M, i=1,...,n) while the

relations defining R reduce to

KoLy = LyKa Kol = q;(aj‘a)EjKa ; Lk = qi_(ajm)FjLu
L, — K_,,
(3.2) EiFj — FjE; = 0 ————*.
qi — 4q;

Finally, PBW bases of quantum Borel algebras provide PBW bases of
Dy’,(g). In the sequel we shall also use the notation D, := Dg,(g)-

3.2. The quantum algebra Uji,(g). Let &) be the ideal of D, (g)
generated by the elements L® 1 -1 L, L € gfo; Ry is in fact a Hopf

ideal, whence Dg,(g) / R, is a Hopf algebra. Then from above we get a
presentation of U, (g) := Dfl‘f@(g)/ﬁgfz It is the associative k(g)-algebra
with 1 given by generators Fj, L,, F; and relations
Lo =1, L,L,=Ly,=L,L,,
L,F; = q_(a”“)FiLM, L,E; = q+(aj|”)E¢LM
i —La;

L
(3.3) EiFy, — FyE; = 6ip——FH
qi — g,
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1—ay; 1
k - aij 170,”'7]6 k
qi

Qij
Z [ %] FT S =0
k=0 qi

(for all we M, i,j,h=1,...,n with i # j) with the Hopf structure given
by
(3.4)
A@(Fl) =FQ®L_q-r+ Ly ®F;, 6@(Fi) =0, S<P FZ) = —FiLq,
Ap(Ly) = Ly ® Ly, €o(Ly) =1, Se(Lp) = Ly
Ap(Bi) =Ei® Ly, 4+ Lay—r, ® F;,  €,(E;) =0,  Sy(F;) =

For ¢ = 0 one recovers the usual one-parameter quantum enveloping

algebras. Finally we let pry,: Dyl (g) — Dﬁp(g)/ﬁfj =: Uy, (g) be the

canonical Hopf algebra epimorphism; we shall also use notation K, := L,
M, =L, VaecQ,ue M.

3.3. Integer forms of U, (g). Let (/(g) be the k[q,q!]-subalgebra of
U,is(9) generated by {Fi(e), (Mfc) ,Mifl, Ei(m)
this is a Hopf subalgebra of Uyt (g) (cf. [DL], §3), with PBW basis (over
k[q,q71])

{ H B <J\4tz70> pEntEi/2) HFéTT)
i=1 ¢

this is also a k(g)-basis of UJ’,(g), hence U (g) isa k lq, ¢! ]-form of Uyi(g) -
§12L)et U} (g) be the k[q, ¢~ ']-subalgebra of U}? (g) generated by (cf. [DP],

bic,t, meNyi=1,...,np;

Ny, ti,my € N,Vr, i };

{Fal,...,FaN} U {Mlil,...,Mnil} U {Eal,...,EaN};

this is a Hopf subalgebra of U£¢(g), having a PBW basis (over k[q, qil])

IR

"\t € Z,n.,m, € N,Vi, 'r}
r=N

the latter is also a k(q)-basis of U;%,(g), hence U7’ (g) is a k([q,q ']~form of
Ugip(9)-

Like for quantum Borel algebras, the same forms can also be defined
using modified root vectors, hence they have also PBW bases of ordered
monomials in the M;’s and the modified root vectors.
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3.4. Specialization at roots of 1 and quantum Frobenius mor-
phisms. When dealing with specializations, if any scalar ¢ € k\ {0} is
fixed then k is thought of as a k[q, qfl]—algebra via k= k:[q, qil] /(q —0).

Let ¢ be a primitive ¢-th root of 1, for £ odd, ¢ > d := max; {d;},, or
¢ =1. Then we set $2/ (g) := 1 (g) / (q — )42 (g) = U (g) @pigqr b

When ¢ =1 (ie., € = 1) it is well-known (cf. e.g., [CV-2] or [DL])? that
1',(g) is a Poisson Hopf coalgebra, and we have a Poisson Hopf coalgebra
isomorphism

(3.5) U,(e) =U(g");

in a word, 43/ (g) specializes to U(g") for ¢ — 1: In symbols, {43/(g) e

U(g")-

When ¢ > 1, from [CV-2], §3.2 (cf. also [Lu], [DL]) we have an epimor-
phism
(3.6) Srgr: Uy (g) — Uil (e) = Ulg")

of Hopf algebras defined by (recall that M; := L, )

(3.7)
4
F Fls/0 ‘ <M¢;0> (Mi;o)
b lg=e = g=1"\ ° q=¢ BN q=17
B B if ¢]s
Frgr: 0= a=1
Fi(s) — 0, (Mg()) ‘ — 0, Ei(s) — 0 otherwise
q=¢ q=¢ q=¢
~1
; 1
\ i ‘qzl ~
If ¢ =0 — whence 7 =0 — and ¢ = p is prime, it is shown in [Lu],

§8.15, that Frgo (for M = @) can be regarded as a lifting of the Frobenius
morphism Gz, — Gz, to characteristic zero; for this reason, we refer to
Stgr as a quantum Frobenius morphism.

Similarly, we set U2, (g) = U (s) /(a — &)U (8) = U (8) Byigq) b
when ¢ = 1 it is known (cf. [DP], Theorem 12.1, and [DKP], Remark
7.7(c)) that

(3-8) Ui',(9) = FH]

as Poisson Hopf algebras over k: Here Hj, is the connected Poisson group
with tangent Lie bialgebra h” — defined in §1.2 — and M the character
group of a maximal torus. In a word, Uy’ (g) specializes to F' [H},] as ¢ — 1,

2This result is more general than in [CV-2] or [DL]: Tt can be proved on the same
lines of Theorem 7.2 below.
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or UY(g) =5 F[H]]. When ¢ > 1, from [DKP], §§7.6-7 we record the

existence of a Hopf algebra monomorphism
(3.9) Frygr: F[Hy] = U () —— U, (a)

(cf. also [DP] for the one-parameter case) defined by (v € R, € M)

(3.10)
Frgr: Fg — Fof , Ea‘ — Eag
q=1 q=1

, L M) — L /f‘ ‘ .
q=¢ q=1 q=¢ q=¢

Again, we refer to Frg- as a quantum Frobenius morphism: If ¢ = 0
and ¢ = p is prime it is a lifting of the Frobenius morphism Hz, — Hz, to

characteristic zero® .

4. Quantum function algebras

4.1. The quantum function algebras F [B.]. Let F[Bi] be the

quantum function algebra relative to Ué‘j{;(bi), defined as the algebra of ma-
trix coefficients of positive* finite dimensional representations of Uﬁ;(bi).

Then F,,[B+] is a Hopf algebra, which we call dual of Ué"{;(bi) for there
is a perfect Hopf pairing (evaluation) among them; in fact FJ{[Bi] is a
Hopf subalgebra of Uq":{;(bi)o (the — restricted — Hopf dual of Uq]‘:{;(bi),
in the sense of [Sw|, Ch. VI). The DRT pairings provide Hopf algebra iso-

morphisms
(4.1) FM[B,] = (U;{;)Op, FiB] = (U)

induced by the pairing 7, , resp. 7, ; by means of these, the DRT pairings
can be seen as natural evaluation pairings (cf. [DL], §4, and [CV-2], §§2-3).

op

4.2. Integer forms of F,,[By]. Let
(42)  FYIBL) = { f e BB | (£ (b2)) S kla.a™]
FBe) = { f € R (Bl | (£.U)'(b2)) S kla.a7] |

where (, ): F},[Bi] ® Uﬁ;(bi) — k(g) 1is the natural evaluation pairing;
then

(43) gfg[Bi] = (ug(b$))opa Fgclzw[Bi] = (ufg(b$))opa
3 Here Hyz, denotes the Chevalley-type group-scheme over Z, associated to H.

4Namely those having a basis on which the L,’s (v € M") act diagonally by powers of
q.
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because of §2.6 and (4.1): In particular §F}[B+]| and F}'[B] are integer

forms of F) [By].

4.3. The quantum function algebra F{ [G] and its integer forms.
Like in §4.1, we define the quantum function algebra F|G] (relative to
U(ﬁ;(g)) to be the algebra of matrix coefficients of positive finite dimen-
sional representations of Uﬁ;(g) (cf. [DL], §4, and [CV-2], §2.1); it is a
Hopf subalgebra of Ué‘i’;(g)o, perfectly paired with U(ﬁ;(g) by the natural

evaluation pairing (whence we call it dual of Uq”’{;, (g)). As for integer forms,
let

(44 SG={feRLIG| (£9 (@) S kla.a]
76 = { F e RLIG| (1ul (@) S klaa™] |

where (, ): FJ,[G]® Uﬁ;(g) — k(gq) is the natural evaluation pairing; we
shall later prove that these are k [q, qil] -integer forms (as Hopf subalgebras)
of FJL[G].

4.4. Specialization at roots of 1. Let ¢ be a primitive ¢-th root of 1
in k& (with the assumptions of §3.4 on £), and set X, [G] := F [G]/ (q —
e) 35 (Gl = FL[G] ®pjgq—1y k. For £ =1, we have F',[G] = F[G],] as
Poisson Hopf k-algebras (cf. [CV-2], [DL]), i.e.,

K3 e/ i AT

here G7, is the connected Poisson group with tangent Lie bialgebra g™ and

M as character group of a maximal torus. In fact this result arises as dual

of ilgl(g) i U(g™). When ¢ > 1, another quantum Frobenius morphism,

namely a Hopf algebra monomorphism

(4.5) Srgr: F [G;\-/I] = Ilvip[G] - 32/,[90[(;] ’

is (dei;lned (cf. [CV-2], §3.3), which is dual of Frgr: ilé‘:ﬂ;(g) — ﬂf;(g) =
U(g™).

5. Quantum formal groups.

5.1. Formal Hopf algebras and quantum formal groups. In this sub-
section we introduce the notion of quantum formal group. Recall (cf. [Di],
Ch. I) that formal groups can be defined in a category of a special type of
commutative topological algebras, whose underlying vector space (or mod-
ule) is linearly compact; following Drinfel’d’s philosophy,we define quantum
formal groups by simply dropping out any commutativity assumption of the
classical notion of formal group; thus now we quickly outline how to modify
the latter (following [Di], Ch. I) in order to define our new quantum objects.
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Let E be any vector space over a field K (one can then generalize more
or less wathever follows to the case of free modules over a ring), and let E*
be its (linear) dual; we write (z*,z) for z*(z) for x € E, z* € E*. We
consider on E* the weak *-topology, i.e., the coarsest topology such that for
each x € F the linear map x* — (z*,2) of E* into K is continuous, when
K is given the discrete topology. We can describe this topology by choosing
a basis {e;};c; of E: To each i € I we associate the linear (coordinate)
form e} on E such that (e],e;) = d;;, and we say that the family {e}},_; is
the pseudobasis of E* dual to {e;};.;; then the subspace E' of E which is
(algebraically) generated by the e} is dense in £*, and E* is nothing but the
completion of E', when E’ is given the topology for which a fundamental
system of neighborhoods of 0 consists of the vector subspaces containing
almost all the e]; thus elements of E* can be described by series in the €]’s
which in the given topology are in fact convergent. Finally, the topological
vector spaces E* are characterized by the property of linear compactness.

Let now E, F' be any two vector spaces over K, and u: F — F' a linear
map; then the dual map u*: F* — E* is continuous, and conversely for any
linear map v: F* — E* which is continuous there exists a unique linear
map u: E — F such that v=u"*.

The tensor product E* ® F* is naturally identified to a subspace of
(E®@F)" by (" @y"2@y) = (z",2) (y*,y); thus if {e;},c; and {f;},;
are bases of & and F', and {e },.; and {f; }jE , are their dual pseudobases in
E* and F*, then {ef ® f;}iel,jEJ is the dual pseudobasis of {e; ® fj};c ;e
in (E® F)*. Thus (E® F)" is the completion of E* @ F* for the tensor
product topology, i.e., the topology of EF* ® F* for which a fundamental
system of neighborhoods of 0 consists of the sets E* ® V + W ® F* where
V, resp. W, ranges in a fundamental system of neighborhoods of 0 made
of vector subspaces; we denote this completion by E* & F*, and we call it
the completed (or topological) tensor product of E* and F*; the embed-
ding F* ® F* — (E® F)" = E*®F* is then continuous. Finally, if
u: By — Fy, v: F} — Fy are linear maps, then (u®v)*: (Fy ® F)* =
Ey* @ Fy* — (B, ® F1)" = E;* ® Fi* coincides with the continuous exten-
sion to Fy* ® Fy* of the continuous map u* ® v*: Fy* @ Fy* — E* @ Fi*;
thus it is also denoted by u* ® v*.

We define a linearly compact algebra to be a topological algebra whose
underlying vector space (or free module) is linearly compact: Then lin-
early compact algebras form a full subcategory of the category of topologi-
cal algebras; morever, for any two objects A; and A in this category, their
topological tensor product A; ® Ay is defined. Dually, within the category
of linearly compact vector spaces we define linearly compact coalgebras as
triplets (C, A, €) with A: C — C®C and e: C — K satisfying the usual
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coalgebra axioms. The arguments in [Di] (which never require commutativ-
ity nor cocommutativity) show that ( )*: (A,m,1) — (A* m* 1*) defines
a contravariant functor from algebras to linearly compact coalgebras, while
() (C,A€) — (C*,A*, €*) defines a contravariant functor from coalge-
bras to linearly compact algebras. Finally, we define a formal Hopf algebra
as a datum (H,m,1,A,¢,S) such that (H,m,1) is a linearly compact alge-
bra, (H,A,¢) is a linearly compact coalgebra, and the usual compatibility
axioms of Hopf algebras are satisfied. “Usual” Hopf algebras are particular
cases of formal Hopf algebras.

We define quantum formal group the spectrum of a formal Hopf algebra
(whereas classical formal groups are spectra of commutative formal Hopf
algebras: cf. [Di], Ch. I).

Our goal is to study Ué”,{p(g)*. Since U,",(g) is a Hopf algebra, its lin-
ear dual Uyl (g)" is a formal Hopf algebra. The functor ( )" turns the
natural epimorphism pr, : Dy — Up,(g) into a monomorphism j,, =
(pry)*: Uyip(8)" = D™ of formal Hopf algebras: Therefore we begin by
studying D,,*. The following is straightforward:

Proposition 5.2. Let H_, H. be Hopf F-algebras, let : (H_)Op ®
H, — F be an arbitrary Hopf pairing, and let D := D(H_, Hy, ) be the
corresponding quantum double. Then there exist F'-algebra isomorphisms
dual of the F—coalgebra isomorphisms D =2 Hy @ H_, D =2 H_ ® H;
(cf. 83.1).

5.3. Quantum enveloping algebras as function algebras. The DRT
pairings induce several linear embeddings, namely

(5.1)
. 1 % /RS .
Up, = Up, ™, imay: Uy — Uy, UL —— UZ  (induced by )
- S !k . R
Upyy = Up, ™, i Uy —— Uy, UL —— UZl. (induced by 7,)

the right-hand-side ones being also embeddings of formal Hopf algebras.
Therefore we identify the various quantum algebras with their images in the
corresponding dual spaces.

Lemma 5.4.
1 _ fr _(f2'r) g Ir ;
(a) The subset { [T,_n (=1)"qpr 2’ (For) | f1,-- - [N €N} of Uy, is
the pseudobasis of U, dual of the PBW basis of . of decreasing ordered
_(Ir
monomials, while the subset {H}:N (—1)frqar(2)(F(fr)(fr)’ fi,...,fn € N}

of Uy, _ is the pseudobasis of U* dual of the PBW basis of U, of decreasing
ordered monomials. A similar statement holds with the roles of U_ and U,
reversed.
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(b) ULy (hence Ully) contains the pseudobasis By (relative to imay),

resp. By, (relative to im,y,), of U M qual of the PBW basis ofila/’/.
(c) U£’<, resp. Uy, (hence Ul , resp. UZl.) contains the pseudobasis

of UL, ", resp. of U“>*, dual of the PBW baszs of il<p<, resp. of U3

The elements of this pseudobaszs have form F? -, resp. - E¥, where }"‘p

resp. £¥, is an ordered monomial in the F ’s, resp. the ESO s, and Y € so ‘-
Proof. Claim (a) is trivial. As for (b) and (c), let &, - u, be any PBW

monomial of ﬂg@ =~ 4, @ UM with u, := [, (Az;0> -A;Ent(ti/m (r =

(tl,.. tn) €N") and €, :=[[,_n E (e’“) (n=(e1,...,en) € NV). Let also

= [y F2) (¢ = (fl,...,fN) € N} be any (modified) PBW
monomlal of Uy, . Then (for all p € M, ve M)

T (f£ L1ty € Lu) = ey By - g M) g wls(En)

by (2.3), where ¢, := (—1)ZkN=1ek q Sk (enonleral) -ngﬂda’“(?) is in-
dependent of y and v. Therefore only PBW monomials of shape F z -z
(2 € UJy) give non zero values when paired with &, - L, , hence also with
¢, - u; . Now direct computation gives

<‘7:f; “L_(11¢)(u)> € - Ur> _

Te
g WD) T (7:‘) Lgdme Bt/ gy e N
i=1 > /4

where we identify M, = N" so that My > u = mypr + -+ + mppn =
(my,...,my,) € N*. Then endowing N" with the product ordering (of the
natural ordering of N) we have

<fﬁ L (14) () € - ur>ﬂ¢ A0 <= 7=p

<fﬁ . L,(lJW,)(T), @n . u7_> =cp- q*("'|5(@n)) . q*T(T) V7 e N”
Te

where T(r) := Y1, dit;Ent(t;/2); in particular C,,, := ¢, - ¢~ Ws(E)) .

q_T(T) is invertible in k[q, q_l]. Thus we have formulas (for all 7 € N™)

Ff L)) = O (€ ur) 4 <7?§’ L)) € u7'>ﬂ;(€n )

T'<T

which tell us that {f‘p —(140)( )}T € N"} is obtained from {(&, - u,)"|7 €
N”} by means of the matrix M := <<.7-"ﬁ “L_(14¢)(r) €n u7/>7r

v/ T,m'eNn
which has lower triangular shape, all entries in k [q, q_l] , and diagonal entries

invertible in k [q, qil] : then the inverse matrix M~! has the same properties,
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whence (c) follows for U_. The same proof applies for 1/, with 7, instead
of m,, and also gives (b) for n =0. O

Remark 5.5. Since D,y 2 UM @U? =2 U, @ U} ® Uy ® U_, we have
D,,* = Ui/ll* ® Ug* ~U*® UOM'* ® ng* ®U_*: hence from Lemma 5.4 we
deduce that:

Every element f € D,;* has a unique expression as formal series

f= Y armes F-M-L-E
FMLE

in which aF m e € k(q), M € By, L € Bp, and the F¥’s, resp. the E¥’s,
are ordered monomials in the FY’s, resp. in the E4’s.

In particular, every f € D,py* can be uniquely expressed as a formal series
in the F(fl, e ,FfN,Esl, e EﬁN with coefficients in (Ué”/ ® Uég)* o
v eug.

Similarly the triangular decompositions U, @ U}" @ U_ = Ué“/ (9 =2U_®
U @U, give UXQUM RU_* = UqM'(g)* ~ U QUM @U.*, whence
Lemma 5.4 implies that:

Every f € Ué”/ (g)* can be uniquely expressed as a formal series in the
F? . Fry, EY ... EYy with coefficients in U

In the sequel when considering the composed embedding U} — UM'" —
Ué”'(g)* we shall always mean that the first embedding is induced by 7,
(cf. (5.1)).

*

Proposition 5.6.  The monomorphism j : Ué‘i;(g) — D,/ (cf. §5.1)
s given by
(5.2)

IvE F;p — F;‘D ® 1, L# — L—(1+90)(M) () L(l—SO)(M)’ E;p —1® E:O Vi,

in particular the image of ju is the closure of the subalgebra generated by
the set

{ Ef @b Loip)u @ La-g)pn: 1 © Ef

izl,...,n,ueM}.

Proof. For PBW monomials we have pT‘M<E L K- F) =F L -K-F,

therefore (5.2) comes out of the definition j,, := (pr,,)". As an example

<j]\/[(L,u)7E'Ll/ ® K, - F> — <Lu7E'LV K, - F>7 = 0p1-0py - gt

T

<L7<1+¢><u> ® L)) £ Ly @ Ko F > =0p1opy gt

Te®@Tp
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whence jy (L) = L_(140)(0) @ L(1—p)(u) - Since jyy := (pry,)" is continuous
(cf. §1.1), by Lemma 5.4 and Remark 5.5 it is uniquely determined by (5.2).
O

Remark 5.7. Now we can identify j,, (Ué‘ll (g)*> with the space of formal

. . . . . . 1%
series in the FY), ..., FOy E7 ... E”\ with coefficients in jy, (UM ) . In

order to locate the image — under j,, — of the pseudobasis of j,, (U é‘ﬁ;(g)*)
dual of the PBW basis of il:f’ (g), let

1 n N
e AZ7O —Ent(t;
&= [[ B w ::H( t; >'Az‘Et(t/2), g0 =] R
k=N i=1 t k=1

1

N
Xpro =Cp-ur Ty, Foo= ][] (Fik)fk7 &= ] (EL)™
k=1

k=N

and Lﬁ’® = L_(11o)(w) @ L—¢)(w) - Then (2.3) gives (for some a,b € Z
and ¢ = =+1)

<fg LY E8 €@ u, 3a>> -

T QT

_ 5(;5,77 577& . Eqa+b—(u|s( ;Lls S¢ H < > fdimi-Ent(ti/Z).

=1

Thus among the elements of the form .7-"£ . Lﬁ@ - &7 only those with
(¢,m) = (71,¢) and p =< 7 takes non-zero value on &; ® u, - 55 Therefore

f%ﬂ LLPP gg =eq® X5+ Z <J—“‘,§ CLP® . Sg, Xﬁ,fr,¢;> X
/<7

_ z * *
=eq" - Xy.5 + E Crr - Xar o

T/ <T

(with 2z € Z, ¢, € k:[q, _1] ; we set also ¢y = e€q¢® and c¢; v := 0 for
7' A 7); then we turn from { X, - }7" eN"} to {f%-Lf@-Sg | TeN"}
by means of a lower triangular matrix M, ; := (chT/)T’T/ e whose entries
belong to k[q,q_l] and whose diagonal entries are invertible in k:[q, q_l};

then letting (M, ;) ' = (c’ ) o e find that X, . => . ¢
7,7/ ENn -

7!

”77'a

7_7—
Fe-LE® gw Now let BS®, = 3" /<7 Crt -L%%: then
(5.3) Xyt = Fy B €5
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thus { F7 - Bn - 5g |7 €NV, 7 €N", ¢ € NV} is the image pseudobasis
(of ju (U(ﬁa( ))) we were looking for; in particular we stress the fact that:

The pseudobasis of ja (Uﬁ;(g)*) dual of the PBW basis of i,(f‘f/(g) is
contained in ju (Ué‘i;(g)*) N (Uy,- @ 20 @ Uy, ) -

5.8. Integer forms. We want to study the subspaces of linear functions
on Uﬁ;(g) which are “integer-valued” on its integer forms. Thus we define

W@ = { e U@ | (£9 @) Ckle.q7] }
uy'(e) = { f e Ual@)"| (£ @) C kla.a7'] }
3= { e (Ui | {1 @) < vina )
= {renfein) (e o) <o)
e ) <la
{fe 5| (o) < klaa™ |

notice that j,, restricts to isomorphisms 7j,,: ilf‘;/(g)*—ﬂ@ and

v ugf’(g)* — TN

Proposition 5.9. (a) ilfgl (9)" is the k[q,q ] -submodule (of Uﬁ;(g)*) of
formal series (cf. 85.5) > rp ygo F€ -0 EP in which 1 € ilﬁlo* and the
F*#’s, resp. the E¥’s, are monomials of the PBW basis of U, _, resp. of Uy ..

In particular L[Zg, (g)* s a formal Hopf subalgebra of U(ﬁ;(g)*.

(b) L{g,(g)* is the k[q,q ']-submodule (of Ué”i;(g)*) of formal series
(cf. §5.5) ZW@,W $¢ - ¢ - €% in which ¢ € Ué‘,{é* and the §¥’s, resp. the
€¥’s, are monomials of the PBW basis of U, _, resp. of U, ..

In particular Z/{Sg/’/(g)* is a formal Hopf subalgebra of Ué‘g(g)*.

Proof. Let us prove (b). Let f € Ué‘f; (g)* be given, and expand it as a series
f= Z¢ neENN S;-‘Pgn -€7 in which the S‘O’S resp. the €;’s, are PBW mono-
mials of U, _, resp. of U, ,, and @‘p UM/ Let (I)gm =Y renn 05, anan
and ju (BY,,) = Zuj/T ALe® = BfT@n For all monomials & - L, - F g
of a PBW basis of ;" (g) we have

<f’ fﬁ‘Lv'f¢‘>> = Zaé,n'<3£'3f'@ﬁ7 fﬁ‘Lu'ﬂs>

é,7,n

= Z%n ZC“ < ~(146) (1) 5?7'Lv>%' (La—g) - € Fo)me
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_ a+b Z T . @
- 5 (BF Lo (u(eg) 60
o

— fq0td [ HP
=+ <(I)r7,¢’ LV—(S(€$)+S(377))>

for some a,b € Z depending only respectively on 7 and ¢. Then if ‘b? . €
gf[/)* we have <f, Eq-Ly- .7-"qg> € k[q, qil] for all 7, v, ¢, hence f €
Ug’l(g)* ; conversely, the latter gives <@§$’LV’> €klg,qt] forall v € M’,

¥ /*

hence <I>M—s €Uy -
Now consider the Hopf structure. Let f € Ugﬂ (g) , and expand A(f) asa
series A(f) =3, (8 ¢o - €5)® (gﬁ’ L@l - Q}ﬁ') so that ¢, Q¢ # ¢, R,
for all o, 7, such that (gﬁ,eﬁ,gﬁ’, osﬁ’) ] (gf,@f,gf’,@f’) (this is always

possible). As f € L{g/ (g), then A(f) is integer-valued on Z/{:O”/ (9) ®Z/{g/ (9).
Fix any &: Exploiting (2.3) we get the existence of unique (non-modified)
PBW monomials €5, F5, 5, F5 such that

<A(f), (56 ® g%) ’ (LV ® LV’) ) (fa ® -,'r(/?)> = ich'<¢a®¢¢lyv Lu+£®LV’+£’>
for all v,/ € M’ (for some ¢z € Z and £,& € Q(C M’) independent of v,
V'); since A(f) is integer-valued, ¢z @¢% is integer-valued on I/Igfé@ gé, that
is ¢5 @ Pl € (u;;{/()*@@ UMG)" = UM BUMY s but ¢s @ ¢ € UMY @ UMY,
thus ¢z, 95 € ULy -

Finally, we have 1 € L{f;"(g)*, because 1 := ¢, E(Uf'(g)*) - k[q, q_l]
because € :=1* and 1 € Ué‘f’(g) , and S(L{g/(g)*) = L{g/(g)* because S :=
S* and* S(Z/{:O”/ (9)) = L{g"(g) . Thus Z/{g/ (g)" is a formal Hopf subalgebra of
Uﬁ;(g) , q.e.d. O

Definition 5.10. We call A the subalgebra of Uj'. @ U7 . ( C Dg’/*)
generated by { F¥ @1, LY, 1®Ef}i: 1,...,n; p € M }. Then we set
W= {feAY (1,4 (o) Shle.a'] } =AY N3y
AY = e AY (LU (@) Cha.q7"] } =AY Ty
Lemma 5.11. (a) A} isa k|q,q '] -integer form of Ay, generated as a

kz[q, q_l] -subalgebra by

{Fﬁh X ]., Lﬁ’®, 1 ®Ezk

h,k:l,...,N;MeM}.

(b) AY is a k:[q, q_l] -integer form of Aj, generated as a k[q,q_l]—
subalgebra by
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Q.
{(r2)@ o1, (L‘”t | ) LEe (B)"

’h,k,izl,...,n; a,t,dEN;cEZ}.

Proof. Definitions yield a linear isomorphism ®,,: A} =, Up,- @UZ,®Uy, ¢
given by ®,: F/®1— Ffelel, L% — 10L,81, 18Ef — 1010EY ;
but this restricts to ®: AY SUy QU @ Uy, , ©: A S8, @ UY @
Uy 1, s0 §3.4 gives the claim. O

The following result stems from [CV-2], Lemma 2.5 (which extends [DL],
Lemma 4.3), relating our quantum formal groups to quantum function alge-
bras; in particular we prove that §F}/[G] and F'[G] are integer forms (over

k [Qa q_l]) of F),|G| as Hopf algebras.

Proposition 5.12. (a) The monomorphism of formal Hopf algebras j,;
U(ﬁ;(g)* — Dg’/* restricts to an embedding p: FJ[G] ——— Di‘f'*
whose image is contained in Af‘g.

(b) The embedding in (a) preserves integer forms, namely §[G] =
poar ! (Ql:ff) , FG| = st (Ag), so that restriction provides embeddings
of k[q,q']-algebras puy: SH Gl —— AL, py: FIG] —— AY . It
follows that

5, [G] is a Hopf subalgebra of F',[G], and a k[q, q_l] -integer form of it,
F,'|G] is a Hopf subalgebra of F,,[G], and a k[q, q_l] —integer form of it.

Proof. (a) The first part is obvious. As for the second, recall that the
! . . !/ ] ® j—
identification D, = U, @ Ug,g is given by U2\, ® Ug’SLDM/ ®

D,5D,, where j,: U:D”g — D,y and j_: Uig — D,y are the nat-
ural Hopf algebra embeddings, mp is the multiplication of D,,,, and we
look this composition as a Hopf algebra isomorfism; then the identification
Dyt = UM."®UZ_" is given by (mpo(jy ®j-))" = (j1 ®j*) omjy. If
my is the multiplication of Ué‘ﬁ;(g), we have my o (pry, @pryy) = pryy omp,
hence dualizing yields (pryompo(jy ®3j-))" = (pryoji) ®
(pragroj—) omjy; but prygojy = ix: U(ﬁ;(bi) — Ué”/(g) (the natural
embedding), thus (prM/ omy o (J+ ®j7))* = (zi @z*_) omy;. Now mj; is
the comultiplication A of Ué‘i;(g)*, which restricts to 0 [G], while pi =
(A Ué‘f{;(g)* — Ué‘i;(bi)* is the “restriction” map, which maps F%,[G] onto
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Fp,[BlE; using also (4.1), we obtain

(oo (s @ 1))° (F2G) = (o1 B p-) (A (FLIGN) ) € U o U
in other words, jy, maps F,[G] into U @ UZ .. From the very definition
we get that fuy, (Fq% [G]) vamshes on ﬁ
123, (Fét{p[G]) C Ay, qed.

(b) The first two claims are obvious by definition. Let now, for in-
stance, f € F2'[G]: Then 1, (S(f)) € AY by (a), puar (S(f)) = S (pae(f))

and (S(us(£), U2 (@) = (), SU'()) = (sl ) U (@) €
klg,q '], hence uy(S(f)) € &Y, thus S(f) € FM[G]; similarly,
Alu()) € A © A2 and (Auy(9).U (8) U (0)) € k[a.q7"].
hence (,uM®uM)(A(f)) €AY @AY+ We have only to remark that

. ’ ®2 * ’ ®2 _
(Aﬁ@A:;f)m{qﬁegM (((%(g)) ) )W, ' @)%) < kla.q 1]}
= Ay ® AY;
we conclude that A(f) € F'[G] ® F}'[G]. Therefore F)/[G] is a kla,qa7']-
Hopf subalgebra of F,0,[G]. Finally, let f € F}[G]; then ,uM( (@)f) =
c(q) - pu(f) € A} for some c(q) € klg,q7']. Thus c(q)f € pa (AZ’) =
F)G], and f = ﬁ - (clq)f) with c(q)f € FY[G]: Hence k(q) ®ppq,q-1]
MG = F)LIG], ie., §Y[G] is k[q, ¢ ']-integer form of 7 [G], q.e.d. The
same procedure works for .7-;’” [G] too, so the proof is complete. O

hence — by Proposition 5.6 —

M’

5.13. Matrix coefficients. The result above can be refined, extending
embeddings to isomorphisms. Let p € My := M NP, , and let V_, be an
irreducible U:D%fmodule of lowest weight —p (recall that U(ﬁ;(g) = éf’ol (9)
as algebras, hence their representation theory is the same). Let v_,, # 0 be
a lowest weight vector of V_,, and let ¢_, € V_,* be the linear functional
on V—u defined by (a) ¢_,(v—,) =1 and (b) ¢_, vanishes on the unique
MO —invariant complement of k(q).v_, in V_,; let ¢_, := Cé_,v_, bethe
corresponding matrix coefficient, i.e., ¢¥_,: 2 — ¢_,(r.v_,) for all z €
Ucﬁ;(g). The following refines Proposition 5.12, improving [DL], Theorem
4.6, and [CV-2], Lemma 2.5:

Theorem 5.14.  Let p:=> " i ({p1,-..,pun} being our fized Z-basis
of M, ¢f. §1.1).

The algebra monomorphisms fu,; FM [G] — Ay, s SZK [G] ——
Y and py: FNG] —— AY Tespectwely extend to algebra isomorphisms

wi FLIGI 0T AL g BE1G) [wm] 2y

—p —p
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s FGY [025] = A
moreover, uM(FﬁD[G]) and Ay, resp. MM(SZZ’[G]) and Ay, resp.

13Y; (]{é‘f[G]) and AY, are dense in jy (U“{‘;(g)*> , resp. I

M
0 q o » TESD. Iw .

Proof. 1t is proved in [DL], Theorem 4.6, that pp: F§[G] — Aj ex-
tends to an isomorphism of k|[q, ¢~ '] -algebras pp: F§[G] [w:;] ing: in

[G][v_}] iAg . This is easily

particular scalar extension gives up: F7F, »

9,0
extended to general ¢ and M.
Now, computations like in [DL] give also pa(¢—,) = Lf’f for all pu €
M, ; therefore pi,, (1/17;) = L$®. Again from the proof in [DL] we get

FELZy, L3 B € (FJL[G)), hence (FP)VLEG L7, (B9 €

par (FJLIG])  too;  then  Proposition 5.12(b)  gives (Ff)(f)Lf’ﬁi,

Lf’gi(Ef)(e) € ,UM(.H;W[G]); similarly we find that Lfﬁ. = pum(z) €
pae (F2[G)) | with 2 := _,,, € F¥[G]. Then

LE® = (H iMf;) L5 € o (BTG [wT)) )
j=1

hence (F;O)(f) ®1 1® (Ef)(e) € /LM<.7:M[G]['¢_;]>; moreover,

©
(Lf?c) = (“M(f");c) = pae ((%79)) , and (%5°) € FM[G], thus (Lf?c> €
fiar (F2'[G) [4=,]) - Then Lemma 5.11 gives puy, (FM[G][¢~)]) = AY . The
same can be done for the other integer form.

Now let v; be the image of u, (cf. the proof of Lemma 5.4) in the k(q)-
algebra isomorphism 6: U =, M given by L, — L_, (v € M'):
Then { Uy ‘ TeM, =N } is a basis of Ué”l ; a quick review of the proof of
Lemma 5.4 shows that v} (with respect to im,: Ugly — U™ ) is a linear
combination of elements L_,, (u € My). Then jy(L_,) = Lf’f (cf. (5.2))
and Lff? € pu (F)LIG]) imply ju(vi) € pa (F)L[G]), for all 7€ My ;
since L, € U(’)W* is a series of v} (7 € M) with coefficients in k[q, q_l],
then LY = jy, (L) lies in the (topological) closure of jiy, (Féﬁo[G]), for
all u € My, so the same is true for Lf@ = U (1/):;) : This proves the
denseness claim for FM [G]. As Lf’f € nu (FYG)), Lf’f € liy (fJI[G]),D

q7(p
this argument works for integer forms too.

5.15. Gradings. Recall that UJ', has a Q-grading UJ', = @aecq, (Ué/[)a
given by decomposition in direct sum of weight spaces for the adjoint action
of Ug{o; also U% < has an analogous () _-grading. These are gradings of Hopf
algebras (in the usual obvious sense), inherited by the integer forms, and
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DRT pairings respect them, that is e.g., 7 ((U%s
B € Q_,v€ Q4 such that g+ #0.

The gradings of quantum Borel subalgebras induce a Q-grading of the
Hopf algebra D, := U}, ® Ué‘iS (inherited by its quotient Hopf algebra
Ugs(8)), where the subspace (U‘KZ)B ® (Ug’ﬁ)v has degree 8 + v, and
also a @-grading of the subalgebra Uj', ® Ug,é of D,,/; since D,/ is
a completion (via formal series) of this subalgebra, it inherits on its own
sort of a “pseudograding”, in the sense that every element of D,,/* is a
(possibly infinite) sum of terms each of whom has a well-defined degree:
Namely, given f € D, * with formal series expansion (cf. Remark 5.5)

=2 repee F2 ¢ E¥ (Where ¢ € (U%(I) ® Ugo)*, and F¥’s and £¥’s

)ﬂ’ (UMI )fy) = 0 for all

P>

are PBW monomials ), we define the degrees of its various summands as

given by
deg (F? - ¢ £7) 1= deg (F¥) + deg (£¥)

where deg (H::N (Ffr)f’) = =N fra”, deg (ny:l (Efr)eT> =
Zivz pera” (this degree is again a weight for a suitable action of U2, on
UY.@UZ. ). Now U ®@UZ . is dense in D,,*, and the restriction of the
pairing D,,* ® D,y — k(q) to (U%S ® Usiz) ® (Ugjlz ® Ugé) is nothing
but (7@ ® @) oTo3 (With m3: 2®@Y®2@w— r®2®y®w;) therefore,
since 7, and 7, respect the gradings, also the pairing D,/ ® D, — k(q)
respects the pseudogradings we are dealing with.

Finally, the pseudograding of D,,” is compatible with the formal Hopf
structure. For example, look at S(z), for homogeneous = € D,,*: given
homogeneous y € D,,;, we have <S(J;),y> = <1:,S(y)> = <m,y’> where
y' := S(y) is homogeneous on its own of degree deg(y’) = deg(y) (for the
grading of D, is compatible with the Hopf structure); therefore

<S($)7y> #0= deg(y) = deg(y/) = deg(:z:) = S(l’) S (DM'*)deg(z)

that is deg (S(z)) = deg(), q.e.d.
5.16. Umbral calculus. In this section we provide concrete information
about the Hopf structure of our quantum formal groups. This will be espe-
cially important for defining integer forms and specializing them at roots of
1.

The counit €: D,/ — k(q) is € := 1*, hence e(z*) := (2*,1) for all
z* € D,/ ; thus
(5.4) e(Ffo1)=0, €(LE®) =1, €(10E)=0;
the elements above generate the algebra j,, (Ué”/(g)*) (in topological sense,

cf. Theorem 5.14), hence (5.4) uniquely determines e: jM(Ué%(g)*) —
k(q).
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The antipode of D,,” is by definition the dual of the antipode of D,,,
hence it is characterized by (S(z*),z) = (2*,5(z)), for all z* € D,
x € D,;. Now consider (Ff)f ®@le Ul . @U;, <Dy, feN:itis
sﬂ)f

homogeneous of degree — fa; , whence S ((FZ ® 1) has the same degree.

Thus writing S (( V@ 1) as a series

S ((Ff)f ® 1) - ZFU B, E,

we have deg (F¥ - @, - EF) := deg(F¥) + deg(Ey) = —fa; . Now, the pseu-
dograding of D,,” induces a pseudograding of Jg too; hence, since JY is a
formal Hopf subalgebra of D, (Proposition 5.9), we can apply the same
procedure and get

(5.5) S((Ff)f®1) =N FL 0. E2

where ¢, € uMO and the F¢’s, resp. £2’s, are PBW monomials of U, _,
resp. Uy ., such that deg(F¥) + deg(€¥Y) = —fa;. An entirely snmlar
argument yields

(5.6) S((F) 1) =305% 00 €

where ¢, € Llé”' and the §&’s, resp. €7, are PBW monomials of , _,
resp. U, such that deg(F5) + deg(€y) = —fa;. Now remark that 7}

and Z}' can be compared through the natural embedding ZJ' = {3 (g)" —
’ * L ’ ’ . — f s _s
U ()" = 3 (dual of U (g) — 88 (9)); since () =TTy (% —a)-

(F;Dh)(f), (Ezkyi = H;c:l (QZk — q;,f) : (E:k)(e) , comparing (5.5) and (5.6)
we find

n  fn ek f
§2-00-¢¢ e II TITI (4on —at) - (5 — @.%) H T B 51
h,k=1r=1s=1 u=1

for 3¢ =TTr_n (F;fh)(fh) , €8 = ch\le (Ezk)(e’“) . Therefore

G.7) S ((F.“’)(f) ® 1) _

—Z H H 1Hs 1(q h_qah)'u(qzk_q;ff) %ﬁgﬂ){,(’fﬁ
o h,k=1 H ( )

in particular from every coefficient in (5.7) we can pick out a factor of type

TThey TIe T12 (6" —a77) < (¢8 — q=%) with S5 (an +by) = Sopey (fn +
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er) — f; then we can rearrange the terms of the series (5.7) and write it
again as
(5.8) 8 ((Ff)” )@ 1) -

ap by

S Y e o) )%

n=0 %", ap+b,=n h=1r=1s=1
where X, € U, _® Z/{:D%* ® iy, . Similarly occurs for the other generators
of A : Thus
.0,

For any root of unity ¢, the series S ((Ff)(f) ® 1), S ((L“zt ’ )),
S (Lfﬁ) and S (1 ® (Ef)(e)) are finite sums modulo (q — €).

In principle, one can compute all the terms of these series up to any fixed
order n; actually, we need to know them only up to n =0. For S(Ff ® 1)
the first term (call it Fy), with index n = 0 in (5.8), corresponds to the
terms §5 - do - €, in (5.6) such that Zé\;l(fs—kes) = 1; but these must have
degree deg(§5) + deg(€5) = —a; too, whence §5 = F; and €5 = 1. Now,
F; takes non-zero values only on the free U} "~module with basis {EZ}, call

it V14 Direct computation shows that Fi + q(allaﬂm) . ﬂwa’g is zero in
V172~ , therefore F1 = — (az|az+7'z) .F?Lfg , whence

S(Ff @ 1) = —q (lotm) . prped mod (¢—¢7").

Similar arguments give

L7 0 o (L% 0 _
S(( “1 ))E—L@m‘ “1 mod (q—q 1)

S(l ® Ef) = —q+(°‘i|arn) . LffiEf mod (q — qil) .

As for the coproduct A: D,/ — D,/ ®D,,”, it is the dual of the
product of D,,s, hence it is characterized by <A(:1:*),y ® z> = <:r*,y . z>.
Mimicking the procedure used for S, we find that A ((Ff)(f ) ® 1) is given
by a series of type

ap by

AN @) = > Y e -0 @)
n=0 zh(ah+ah+ h=1r=1s=1
+bp,+b} )=n

af b
(5.9) 1111 (qw - q‘r/) : (qs/ - q‘s/) Yy,

r’'=1s'=1
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/ 2
in which Y,, € (il QUL : ®il<p,+) . Similar formulas exist for all the

generators of AZ (Wthh are topological generators of j,, (Ué‘g(g)*»: In

particular this implies:
®.
For any root of unity e, the series A ((Fi‘p)(f) ®1), A ((Lﬁit ’C>>,

A (Lfﬁ%) and A (1 ® (Ef)(e)) are finite sums modulo (q — €).

Direct computation gives us the following congruences modulo (q — q_1)2
(using notation F® := Ff @1, Li® 1= L_(144), ® La_g)» BEFC =
1® EY, and so on)

QY
A(FP®) =
°,® ® ® °,® L&@;O ©,®
SEPeI® 190 R + (-1 (7))@ FF
+(@a—a") Y. Chiaa—aa)(as—a5") - LEPEL® @ FY®
a,BeERT

.
(%)
1
L% 0 Li®: 0
Hi ® 1® + 1® ® Hi
1 1
L% 0 Li®; 0
+(Qi—1).</‘11 >®<ml

+ @ (d)y Y (=D Id ][], - LEPES® @ FPOLES

YERT
QY —
® ©,® ©,® ® ©,® L£;®§O
=1L +E"®1°+(¢;—-1)-E/" ® ,
— — 7® ,
—(ai—a ") - Y, Cislda—ai")(as—a5 ") EL® @ FPOLE
a,BeERT

where the C’Zf;’s are given by the equations Wf([Fa,Eg]) = C;_ﬁ - Fy,
W;r([Fa,E/g]) = C’;’;El (m; = Uf(g) — k(q)-F; and 7'(' UQ( ) — k(q)-E

being the canonical maps).

6. The quantum group Uy, (h).
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6.1. The quantum enveloping algebra U, ,(h). The results of §5 can
be given an axiomatic form: To this end, we introduce a new object U, (h)
which is with respect to U(h7) what U,",(g) is for U(g"). Here M is a fixed
lattice as in §2.2.

We define H to be the associative k(g)-algebra with 1 with generators

F?, Ly, Ef (ANeM;i=1,...,n)

and relations

(6.1) Ly =1, L@L@ = Li+y, EfFf — FfEf =0
LﬁFf — q(aj|(1+@0)(u))ijPL/f’ LﬁE}P — q(a.fl(l—w)(u))E;PLﬁ
1—a;; 1
ko1 —ag 1—aij—k k C
Z(_l)qurcm[ B ZJ:| (Ef) aij Ef(Ef) =0 Vi#j
k=0 q;
l—aij

1—ay —aii— S
(_qu_cg[ k] (FO) TR (D =0 Vi

k=0 gi

where cf’] = (k‘alh] (1-— )7i) — (o ! — k)7;) for all 4,

J, k. We also use notation M“O = L,“fz (i=1,. ) {,ul, ..y in} being a
fixed Z—basis of M, cf. §1.1.

Now consider F;pl,...,FfN in U,_ (€ HY ), the elements By, :=

D ri <7 Crt - LY, (cf. §5.6) in U)y (CHY ), and EY,,...,E?y in Uy, (C

H} ).
We define U,",(b) to be the completion of Hy, by means of formal series,
with coefficients in k(q), in the elements of the set

I
B}, =

1
:{H (F‘F’ 7’¢ H EQO o fr‘)wn_(er) GNN;TGNn}.

r=N

Thus U,%,(h) is the completion of Hg with respect to the topology (of
H; ) for which a fundamental system of neighborhoods of 0 is the set of
vector subspaces of Hg which contain almost all the elements of BY,, and the
set BY, is a pseudobasis of Uy (h). Roughly speaking, U.%,(h) is an algebra
of (non-commutative) formal series with (6.1) as commutation rules. Finally,
thanks to Lemma 5.3, we can identify U " (b) with the space of formal series
in the F%,’s, E¥,’s with coefficients in UM

From §5 we can explicitely realize U, Mv(h) and endow it with a Hopf
structure: In fact, the definition of U, (h) is nothing but a presentation of

Uéf{;(g)*, as the following shows:
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Theorem 6.2. There exists an isomorphism of topological k(q)-algebras
v Upt () —— g (Uat(a)")

given by: Ff — Ff @1, LY — LYY, EY — 1 EY . Then the pull-back of

the formal Hopf structure of 7 (Ué‘i;(g)*) uniquely defines a formal Hopf

structure on UyL,(h), so that vl and jutov¥, are formal Hopf algebra
1somorphisms.

Proof. By construction Hy = U, @UJ,®@U, = Al (g Jm (U(ﬁ;(g)*) )

as vector spaces; now FY ®1, Lﬁ’@), 1QEY € Ugfg & U:;,Z , hence comparing

(6.1) and (2.1) we see that formulas above gives a well-defined isomorphism
of algebras vy;: H) — A} . Moreover, A} contains a pseudobasis B,
of jur <Ué‘i;(g)*> (cf. Lemma 5.4, Proposition 5.6, and Remark 5.7) such
that vi;(BY,) = BY,, hence v, continuosly extends, in a unique way, to
an isomorphism of topological algebras vy : Upl(h) — ju (Uﬁ;(g) ),
q.e.d.

Remark 6.3. Notice that. setting Y,* , := Fy - B? -Eg, (notations of

TG T 0,7,¢
§5), Theorem 6.2 and definitions give v{; (Y,",,) = X, for all n € NV,
€N, ¢ € NV (cf. §5.7).

Lemma 6.4. The subset O i= {& = X, Ff - 0 - B € U, (h) | @ ¢
2o VJ} (where x =Y, Fy - @5 - E5 is the expansion of x € Uyl (h) as

a series with coefficients in Ug(/)*) is a formal Hopf subalgebra of Uy, (h).

Proof. 1t is clear that QJf is a subalgebra of Uji,(h). Now let z =} EY

o' EY e Q' : then ¢ = > uenm Crulfi with ¢, # 0 for finitely many

.
Let S(z) = Y., Ff - &7 - EF: For any fixed &, we must prove that

PL € :D‘fo (g Ué”l*>, so that S(Qf};’) = Qg ; to this end, we use the

identification U.%,(h) = Uyi,(g) (cf. Theorem 6.2). For (2.3) there exist
two PBW monomials £ and F5 such that

<S($)756'y'76> = <F5'@§'E§,<€5‘y‘f5> = <F6755>'<E6uf5>'¢§(y'l/a)
forall y € Ué”/ , with « := S(Fa—)—‘rS(Ea—) and c5 1= <F5,55>-<E5,.7:5> #0:
In other words, &% = c5 ! - ((L—a -.7:5) >S(z) < 55)

denote standard left and right action, cf. [DL], §1.4), hence we have to
study (S(z),& -y - L_oF5) as a function of y € gfé; by linearity we

, (where < and >
U



QUANTIZATION OF POISSON GROUPS 247

can assume y = L,, v € M'. By definition, <S(:1:),5(—, Sy L_a]-}r> =
<x, S(E5yL_q ~]~})> ; in order to compute the latter we have to “straighten”
S(Sg-y-L_a}}), i.e., to express it in terms of a PBW basis of U,(X)Ué”'@U+ .
Since 5(55 -y‘L_a}"(;-) = S(L_a}"(;-) -S(y) -S(E;,) , let us consider the various
factors.

First, S(L_a}},) € Ué”’, and S(L_a}},) does not depend on y. Second,
S(y) = S(L,,) = L_, . Third, 5(55) € Uﬁll , and 5(55) does not depend on
Y.

Now we straighten the product. Commuting S(L_a]-}) and S(y) =
L_, produces a coefficient ¢~ %) = <LfﬁE,Ly>ﬁ, where (5 € (Q_ is the
weight of S (.7-"5). Straightening the product S (L,a}}) -5 (55) produces a
sum ), xj of terms which do not depend on y. Straightening the product
S(y) = L_, - > .z produces for each term xj a coefficient g Whew) =
<L‘f%,k,Ly>ﬁ, where vz € Q1 is the weight of the “positive” part x,": of
x (with respect to the triangular decomposition).

Therefore <x, S (55 R L_af5)> depends on y according to the functions

L?,, L” and % oS to be precise, B¢ = (L_oF5 1> S(z) 1&5)

—Bs7 T,k

v
is a linear combination of functions of type Lfﬁ5 - (2£'09) - L, .=
> e CT,uqu—,aﬁ—%’k , 80 &7 € UMy, q.e.d. An entirely analogous proce-

dure — slightly simpler indeed — works for comultiplication, thus proving
that A(QY) C Q¥ ®QY . The thesis follows. O

Now we introduce integer forms of U;%,(h) and prove their first properties.
We freely use the term pseudobasis to mean a topological basis of a topo-
logical module, so that any element in the module has a unique expansion
as a series in the elements of the basis.

Definition 6.5. We define Hj/ to be the k[q,q_l]—subalgebra of Uyi,(h)
generated by {Fw Ly, EiT r=1,....N;ueM } ,; and U3 (h) to be its

a”
closure in U,%,(h).

Theorem 6.6. U} (h) is a k[q, qfl] -integer form (in topological sense) of
Uyis(h), as a formal Hopf algebra, with k:[q, q_l]—pseudobasis

(6.2)

@ff = {ch

n,7,¢ n,7,¢

’T € N";n,cbeNN} = {]—“5-3“" 'é’j‘r eN"n,¢c NN};
in particular v, (Ug(f))) = Ju (ﬂfgﬂ(g)*) =Ty .

Proof. By construction BY, C Uy (h), so the claim follows from §6.1 or
Remark 6.3. 0
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Let QY := Qyn (yﬁ)_l(lg’); notice that (cf. Proposition 5.9(b))

QY = {x =% 0¢- €8 € U (h)

(e

»,07

Foel, ,of ey, el ., va}.

Definition 6.7. We call $; the k[q, qil]—subalgebra of Uyi,(h) generated
o\ (f) (MPc e\ —1 @\ (e) ci—

by {(FZ ) , ( i ), (Mz) , (EZ) f,c,t,e € Nyji = 1,...,n}, and

U5 (h) the set

(6.3) {x e QY

+o0o
T = an,
n=0
N ap,bp
me > I @-a7)(-qa") oY vn}.

Y h@nt+bp)=nh=17s=1

Theorem 6.8. U}/ (h) is a k:[q,q_l]-mteger form of Uy, (h) and Q.

Proof. By construction UJ(h) is a kz[q,q_l]—subalgebra of Uyi,(h) and QJ;
moreover Theorem 6.2 and Proposition 5.9(b) ensure that Qfg isak [q, q_l]-
integer form (in topological sense) of €2}/ (as an algebra), hence also U3 (h)
is. Proposition 5.9(b) and Lemma 6.4 imply that Q7 is a formal Hopf
subalgebra of €2}f. Finally the analysis in §5.16 (especially (5.8) and (5.9))
via vy ! gives S(UY (h)) = UM (h) and A(UY(h)) € U (h) @ﬂg’(h). O

6.9. Presentation of 4}/(h). By the similar result available for {4} (g) =

20(g) (cf. [DL], §3.4) we get a presentation of U (h) by (topological)
generators and relations. The algebra f)ﬁf of §6.7 is the associative k [q, q_l] -
algebra with 1 with generators

ME, (MF) <Mi;";c> (B (FF)©
(i=1,...,n;c€Z,t,r s eN; here we set Mf := L}, ), and relations
MEQp T == upy e, (M) = ()T )
o (4 - () o

M?: M?:0
(5Y 2o (M) 2

MPie\ (MPie—t t+s M?;c
= Vi
< t )( s t ) \t+s) ?
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Mfe+1\ 4 (Mf5e\ _ (Mfsc Vi1
¢ U A N =

M¢C> pSC,t( )(t C M(PO
) ()05 e
( t Z Py \t—1

p=0
MSO _ ¢ —1 Mcp
i) 2 Z (—1)Pg~Hetp)tp(p+1)/2 pte 1_’0 , Ve>1
t = p t—p
MPie+1\  (Mf;c — gt MQP Vt>1
t t t\t—-1 B

wp (7)) = grlestra ( ij)( g

M? (F%’)(’” g o5 0=0) Ff)(p) M

? J

<M ><Ef)(p) (Ef)@) <M£p;c+p(0‘i’<1+@)(ﬂi))>
<M;:;c> (Ff)(m B (Ff)@) <Mf;c+p(ajt»\(1 —90)(,”))>
w0 =717 @ e = [T e

S (EDHVENEN =0, Vit
S () EEENY =0, Vit

@) =1 @)E)Y = )@Y, )0 =1
Then }/(h) is the completion of § obtained by taking formal series

in the PBW monomials of 4, _ and i, ., with coeflicients in 2{0, which

satisfy the condition in (6.3). Finally, formulas in §5.16 yield — via v§, —
the following (where K := L§,):

P\ — P ® K70 ® -1\—1
A(F)=F ol+1aF +(a-1)- (] |oF +(6—q )

Z C’“r qgl)(q5—q51)KfE§®Fg mod (q—q_1)2
a,BERT

®. v, @,
()= (1)o7

+(g:—1)- <M’? 0) ® <M{; O) + @) (),
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> (a=Dld), [(wil)], - MPES @ Ff MY mod (¢—q°)°
YERt
©Y — ® ® ® Kﬁ 0 —1\—1
A(Ei):1®Ei+Ei®1+(Qi_1)'EZ’® 1 _(Qi—qi )
Y Coplaa—aa") (a5 — a5 ") E © FYKY mod (¢—¢")’
a,BeRT

S(Fi(p) = _qi_2 : Ff(Kf)_17 S(Ef) = —qzﬂ ) (Kf)_lEc'p mod (q - qfl)

)

s ((Mi 0)) = —(M$)™" (M{; 0) mod (q—q)
e (FF) =0, e((M’f;())) —0,  c(Bf)=o.

Definition 6.10. We call ¢, the embedding of formal Hopf algebras

&= () Lopf s FMLIG) —— UM (h).

Theorem 6.11. The embedding &5 : FyLIGl = Uy, (h) induces algebra
monomorphisms  £5: FpLIG]  —  HY, & §Y[G] — HY,

& FMG] — HY and algebra isomorphisms £ 2 FL[G][¢7)] iHZ‘f ,

37 551G W:;] ng, 0 FG] [1#:;] if)g whose images are dense
respectively in U7, (h), in UL (h), in U ().

6.12. Quantum Poisson pairing. In this section we define perfect Hopf
pairings  Uji,(h) ® Ué‘i;(g) — k(g) which provide quantizations of the
Hopf pairings F [GT|®@U(g") — k (or F®[GT|®@U(g") — k) and U(hT)®
F[HT] — k and of the Lie bialgebra pairing h” @ g” — k: Therefore we call
them “(multiparameter) quantum Poisson pairings”; moreover they also pro-
vide new interesting pairings between function algebras. Since j, !ov{:

Ucﬁp(h)iUcﬁ;(g)* , evaluation gives a perfect Hopf pairing
ot Uge(h) ® Uglo(a) — k(q)

defined by 72 (h,g) := (ju ' (v§i(h)),g) forall h e UM (h), g€ UM (g).

We call 7%, (multiparameter) quantum Poisson pairing.
By previous analysis, the integer forms of quantum enveloping algebras
are k [q, qil]—dual of each other (cf. §2.6) with respect to w2’ ; so the latter

q?Lp ’
restrict to perfect pairings
7 s U (0)0UY (@) — k[a.q7"] . 75 U ()@ (@) — k[g.q7]
same symbols will also denote the Hopf pairings 7720 Hy, F! '[G] QUL (g) —
k[q, q_l] , TeSp. T or 55 [G] ®ilf‘g/ (g) — k‘[q, q_l] , got by restriction of

q, M
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the previous ones: Hereafter we identify F,',[G] with its image in UL, (h)
via &7, and similarly for integer forms.

7. Specialization at roots of 1.

7.1. The case ¢ — 1: Specialization of }/(h) to U(h”) and conse-

quences. Recall (cf. §2.1) that 7 = (71,... ,7,) := 5 (p(a1),...,p(an)).

Now set
Y, (0) = 4 (0) /(g = 1) 42 (6) = Y (B) Bpig g

let pf: Uz (h) — 4’,(h) be the canonical projection, and set f :=

)
7 ((Ff)( )), m! = py ((M{;())), el :=p7 ((Ef)(l)), (where M, := Lf;,)
foralli=1,...,n.

Theorem 7.2. For ¢ — 1, U3/ (h) specializes to the Poisson Hopf coal-
gebra U(H7) ; in other words, there exists an isomorphism of Poisson Hopf
coalgebras

Uy, (h) = U(DH7).

Proof. The proof mimick that for 43’ (g) = U(g"). From the presentation
of U (h) we get U, (h) = ﬁfg|q:1 = f)f;’/(q — 1) 9y, hence we are re-
duced to study f)f}f‘ _, ; moreover the presentation of £ provides one of
Sﬁfg‘q:l Now the definition of ﬁM } and the explicit form of the PBW

basis of L)/ (cf. §2.5) imply that the elements (Ff)(r), (M;:;()), (M),
(Ef)(s) (i = 1,...,n;rt,s € N) are enough to generate g; finally,
straightforward computations give p{ (( F;p)(r)> = %7 Py ((sz ?0>> —

(9. () = 1 pf (@H9) = LI (where () =
mf(mf71)(mf72)---(mf7t+1)>’ hence u{{@(h) _ 5;)1[;1

t!
f7’s, m’s, e]’s, with some relations.

When M= () this presentation is exactly the same of U(h7) (cf. (1.2)),
with hj = m] ; comparing (1.3) with formulas in §6.9 (for ¢ = 1) shows that
also the Hopf structure is the same. In particular ilﬁ(p(h) is cocommutative,
hence has a canonical co-Poisson structure given by § := (Aq_ﬁop )|q 1
described by formulas — deduced from those in §6.9 — which do coincide
with (1.4), as a straightforward checking shows.

Finally, for M # @ we prove that $' (h) = ilﬁ‘p(h) as Poisson Hopf

coalgebras: Since U (h) 2 UZ(h) by definition, it is enough to check that

is generated by the
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5(1;4‘q:1 — ng‘q:l as k-vector spaces. Assume we are in the simply laced
: P ._ TP R o Y ._ TN © \Cij
case. Since M7 := L, and K7 = L§,, it is KI = [[;_; (Mg;)™, where

®.
¢ij € Z are such that a; = > ¢;p;. Then <Kﬂt ’0) ‘q:l = > c-

follows, whence $; ‘qzl = 53}

MZ50 M — (@
< ) ‘q:l so that U7, =4, =1

t _ ®, ‘ _
q=1 q=1
g.e.d. In the other cases M = P, and this argument still works, mutatis

: N ¢ ._ 1" P \aij
mutandis, because «; = >, a;w;, hence K[ := [[;_; (L&,)™" , so that
K?:0
J
t

Remark. Thus ﬂg(b) provides the announced infinitesimal quantization
of HT. This can be partially explained as follows. 4Z(h) is a subspace of

t

b .
=30 a (Li ’0> ’ and we are done again. O
q=1 q=1

Uéf{;(g)* made of series satisfying a certain “growth condition” (cf. (6.3)):

~Y

then specializing ¢ at 1 one gets an isomorphism of Hopf algebras 4}’ ,(h) =
{f € FIHL]"|d3n e N: f(e") = 0} where ¢ := Ker (e: F[H],| — k),
and e = m., where m. is the maximal ideal of F'[H],] associated to e € HJ, .

Since { feF[HL]" ‘ dneN: f(m!) = O} =~ U(h7) as Hopf algebras, we
conclude that there exists a Hopf algebra isomorphism 3% (h) = U(h7).
But regarding co-Poisson structure, such an analysis gives no information,

thus the proof of Theorem 7.2 given above is really necessary.

The previous theorem has two interesting consequences. As for the first,
set

1G] = FYIG] [ (0= 1) FYG) = FYIG) @xigqon) K

Theorem 7.3. The Hopf algebra F}'[G] specializes to the Poisson Hopf
coalgebra U(H7) for q — 1; in other words, there exists an isomorphism of
Poisson Hopf coalgebras

FielGl=U®).

Proof. Consider the monomorphism ¢%): FG] ——— U (h) and com-
pare it with the isomorphism &% : FG] [@b:ﬂ iﬁfg C U4 (h). When
0L weget W (0) = oY, = (FrC)v=] )| = ALGI[es)], ]
but £F (1/1:11)) = L; =1, M (cf. Theorem 5.14), hence &}, (zp:ll)) ‘q:l =
T, Mﬂqzl =1 because M/ =1+ (¢; —1)- (M;:;O) =1 mod (¢—1).

Therefore U3, (h) = F1',[G] [w:}) ‘q:l] = F1',|G], whence the thesis. O
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Remark. Thus F}{,[G] too yields an infinitesimal quantization of HT ; com-
pared with Uji,(h) the advantage is that F[G] is a usual Hopf algebra,
whereas Uy, (h) (or U (h)) is a topological Hopf algebra. Furthermore, for
the classical groups there exists a presentation of F q’f o [G] by generators and
relations, hence — at least in principle — one can study F , [G] exploiting
such a presentation. For G = SL(n + 1) this is done in [Gal].

q—)l

Theorem 7.3 gives 7/[G] — U(h7), which is the dual result (in the

sense of Poisson duality) of Z/{g' (9) Kt F[H7,]. The original proof of the

latter result in [DKP] (see also [DP]) is lenghty involved and complicated,
requiring very hard computations; on the contrary, we can deduce it as an
easy consequence of Theorem 7.2:

Theorem 7.4. The Hopf algebra U} (g) specializes to the Poisson Hopf
algebra F [HY,| for ¢ — 1; in other words, there exists an isomorphism of
Poisson Hopf algebras

UL, (a) = U (9) /(g — DU (g) = FH]].

Proof. Since Uy (g) is perfectly paired with il:f/(h) , we have that U}, (g) is
perfectly paired with uf:o(f)) = U(h7): The latter is cocommutative, hence
the former is commutative. Then U{",(g) is a finitely generated commutative
Hopf algebra over k, hence it is the algebra of (regular) functions of an
affine algebraic group, say H'; moreover U (g) = F[H'| inherits from
U} (g) a Poisson structure, so H' is a Poisson group. Like in [DP] it is
clear from the presentation of U}’ (g) that F[H'] (= Uﬁo(g)) = F[H},] as
Hopf algebras, hence H' = HI, as algebraic groups (the non-trivial part in
[DP] is that dealing with Poisson structures). Now the Hopf pairing among
il{{fp(f)) = U(h7) and U (g) = F[H'] = F [H],] is compatible with Poisson
and co-Poisson structures, that is <h, {f,g}> = <(5(h),f ® g>, where 0 is
the Poisson cobracket of i”;(b) = U(h™) and { , } is either the Poisson
bracket { , }, of HJ, or the Poisson bracket { , }  of H': since the pairing
is perfect, we must have {, }, ={, },, whence the thesis. O

7.5. The case ¢ — 1: Specialization of U}(h) to F>[G],]. We are

going to show that U}’ (h) is a quantization of F'*° [G],] (= F> [GT]); such

a result can be seen as (Poisson) dual counterpart of U’ (g) R [H7,]

(cf. Theorem 7.4). As usual, we set

UL, (0) i= UL (6) /(a = UL (B) = UL (B) By g
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Theorem 7.6. The formal Hopf algebra Z/IM(U) specializes to the formal
Poisson Hopf algebra F> [G7,] (= F*° [G7]) for q — 1; in other words, there
exists an isomorphism of formal Poisson Hopf algebms

Ui, (h) = F>[G7].

Proof. Recall that F*° [G],] = F* [G"] is isomorphic to the linear dual of
U(g™), that is F*>[G],] = U(gT)*. On the other hand, we have a formal
Hopf algebra isomorphism j,, ' ov¥: Uyis(h) =, Uéf{;(g)*, and Theorem
6.6 ensures that this restricts to

(7-1) jM_IOVM uM(h)—’uM/(g)*-

When ¢ — 1, we have that ilM (9) specializes to U(g™), therefore (7.1)
implies U (h) = U (g)" ®pg -1y k = W (a)" = U(g")" = FX[GT] =
F>*[G7,], qed. O

7.7. The case ¢ — ¢: Quantum Frobenius morphisms. Let € be a
primitive /~th root of 1 in k, for ¢ odd, ¢ > d := max;{d;}, and set

4, (0) i= WY (0) /(q — 2) 4 (B) = L (b) Dppgqon) K
First of all we remark that

(7.2) U, (h) is a usual Hopf algebra over k, isomorphic to $y

q=¢
for every element of 42’ (b) is a formal series of terms in §J which is a finite
sum modulo (¢ — €), and §5.16 and Theorem 6.2 tell us that A(ﬁg‘qze) C

5:;[‘(1:5 ® f’)f‘;‘qza, and S(Y)M‘q E) = ﬁg}ng. Now we are ready for next
result, the analogue for Uy, (h) of (3.6).

Theorem 7.8. There exists a Hopf algebras epimorphism
%’th ué{ap(b) - ﬂfcp(b) = U(bT)
defined (for all i =1,...,n) by

.

20! . F@(s/f)‘ 7 (Mf,o) . (Mf;o) ’
i g=¢ i g=1 s y=c s/t _
BP0 o EpU) if {]s
S'Ch‘r : a== =1
F;o(s) - 0, (M;-;O)' — 0, EZSO(S) — 0 otherwise
q=¢ q=¢ ==
(M| et
q=1
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which is adjoint of Frg- (cf. (3.9)) with respect to the quantum Poisson
pairings, that is

WfH]Tw, (gtbf(h)ag) = WzH&,(ha}-TgT(g)) V he ugip(b)) g€ uff;(ﬂ)-

Proof. The formulas above uniquely determine an epimorphism §ryr — if
M50 ¢ _1‘ ¢ (s)’ i
_’ < ) ’qzsa (M) e’ (EF) - are (al

any — because (Ff)(s) d

gebraic) generators of H¥| = UM () (cf. (7.2)). Consider the embedding
@ €,
q=¢

Frg-: F[HT, | {”;(g) — Ug{;(g) of Hopf algebras (cf. (3.9)): its linear

dual is an epimorphism of formal Hopf algebras Uaf‘i;(g)* — L{{‘i; (g)* On
the other hand we have an embedding 4, (h) — L{Q’g(g)* provided by the
specialized quantum Poisson pairing 77, : UM, (h) ® Mgi;(g) — k.

M ’ ’

o . . . !’ *
Now composition yields a morphism Fry-: U (h) —— U, (g)

the very construction then gives (Feyr(h), 9)
WfHXy (Fry-(h),g) = wzHITW(h,]:rgr (9)), hence Fry- is adjoint of Frg-(g

~—

)

O

is described by the previous formulas and has image il{/ip(f)), q.e.d.

Similar arguments prove next result, which is the analogue of (3.9); as
usual, we set

UZL(b) == U (D) [ (= ) U (B) = U (D) @yggg b

Theorem 7.9. (a) There exists a unique continuous monomorphism of
formal Hopf algebras

Fryr : FZ[G] = UL (H) —— Uz, (h)
defined (for all « € R, p € M) by

frhfi FLP

«

l
= £ =P
q=1 ~ (Fa> ‘q:s7 L’f‘qzl ~ <L;f) ‘ ’ Ea

q=¢

— N\Y
~ (£2))
q=1 q=¢

which is the continuous extension of Frgr (cf. (4.5)) and is adjoint of Fegr
(cf. (3.6)) with respect to quantum Poisson pairings, that is

Wzag,(frw(h)vg) = chh(h,gtgr (9)) vV he Uﬁa(h% g€ ilﬁf;,(g).
(b) The image Z§ (%]:rw Z/lﬁp(h)) of Fry- is a formal Hopf subalgebra
contained in the centre of UX,(h).
(c) The set {]:M "By iein - Em ‘ peNN reN", UENN} is a pseudobasis
of Z§ over k.
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(d) The set {.7-"¢- orm € ‘7‘ S {O, 1,..,0— 1}n;¢,77 € {O, 1,..,0— 1}N}
is a basis of U2, (h) over Zy ; therefore also the set of ordered PBW mono-
mials {f¢-Mf-5n‘u e {01, -1 " e {0,1,...,6—1}N}

a basis of U, (h) over Zy . Thus UX,(h) is a free module of rank dim(HT)

over Z§ .

Proof. (a) Since F.| Lﬁ’ ” E?
q:

generators of Ui, (h), the formulas above uniquely determine a continuous

(e € RT, p € M) are topological

monomorphism Fry-, if any. Now consider Frgr: ﬂgﬂ;(g) — il’l”ilp(g) =
U(g™) (cf. ( 6)), a Hopf epimorphism, and its dual, a formal Hopf monomor-
phism il ( )" — ug{;,(g)* ; composing the latter with the isomorphisms

Ulw(b) — UM ( )*, ﬂgﬂ;(g)* =, U, (h) (given by specialized quantum

P}i)isson palrmgs) provides a monomorphism Fry-: Ui, (h) — U, (D);
then

(Fror().9) = 72 g (Fror (1), g) = 7{ g (. e (9))
v heU,(v), v € W (q)

hence Fryr is described by the formulas above. Moreover, with notation of
§6.1 and §6.3,

(Fror (Yien), Xeow) _ﬂ-aGT (Fror (Vi) Xeow)
= 7T1,G;M (Vs Brar (Xeow))

:XZNN(G) ’ X[Nn(e) ’ XZNNW) <Y¢cn)X1 e %~9,%4w>

(where x 4 18 the characteristic function of the sublattice £.5 C S, for any
abelian semigroup S), hence Fryr ( Mn) = Y w4y for all ¢, ¢, n, thus
Fry- maps elements of the pseudobasis (6.2) of U, (h) onto elements of the
analogous pseudobasis of U7, (h): Therefore F rbf is continuous.

Finally, since §vgr: F[G],] = §11,[G] — §2,[G] too is defined as (Hopf)
dual of Frgr: ﬂgfw( ) = 111#,( ) = U(gT) (cf. [ L], Proposition 6.4), then
Fry-: F2IGL] = U, (h) — UM, (h) is extension of Frgr: F[G],] =

1,[G] = F,[G]; since §[G] is dense in ilg’(g)* = U, (h) it is clear that
this extension is by continuity.

(b) This easily follows from the analogous result for U (g) (cf. [DP],
Theorem 19.1) and comparison among U, (g) and U, (h).

(c) This follows from the previous analysis, namely from Fry- (Yfm) =
Y¥#

£ ¢ ln "
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(d) The span of { BY.,|(¢,¢,n) € ((NV x N* x NV) } (inside 127, (h))
coincides with the span of { L ‘ A€ IN" =0My }; from this and from the
explicit form of the pseudobasis of U’ (h) we get the claim. O

At last we prove the dual counterpart of (4.5), regarding

FLIG = FYIG) [la =) F(G] = F(G] Suggq b

note that we obtain a quantum Frobenius morphism which is surjective
instead of injective.

Theorem 7.10. There exists a Hopf algebra epimorphism

Fror: FoolG) —— FLIGI=U®7)

dual of Frgr: F [HL,} = LlL(p(g) — Z/{é‘:f;(g) and adjoint of it with respect
to the quantum Poisson pairings.

Proof. Since FY[G] — U2, (h), we can restrict Fryr to F[G], thus ob-

taining a Hopf algebra morphism Frpy-: F'L[G] —— Jl‘ﬂp(f)) =2 UBhT).

But Theorem 9.3 gives Fi'[G] = ), (h) = U(h7), whence the thesis. [

We call also §ryr, Fry-, and Fry- quantum Frobenius morphisms,
because they can be thought of as liftings of classical Frobenius morphisms
to characteristic zero.

7.11. Specializations of quantum Poisson pairings. From §§7.2-6 we
.. . ’ y 1 .
get that thef Hopf pairings W;H&. $2 () © U (g) — kla,qa7'], W;G&.
Uy (h)euy (g) — k[q,q7'] (cf. 6.12) respectively specialize to the natural
Hopf pairings 77 : Ub)@F[H] — k, mgr,: F° [GT 10U (g7) — k;
~ (p 7 A~ _
B q:l’g|q:1) ’ Trq,Gg/I (h’g)‘qZI -
urei (h’qzl, §|q:1) . Thus the quantum Poisson pairing is a quantization of

in other words, W;H]TM (ﬂ,g)\qzl = TFH}M(A

the classical Hopf pairing on both our Poisson groups dual of each other.
In addition we show that it can also be thought of as a quantization of the
classical Poisson pairing 75: h” ® g7 — k, and of new pairings between
function algebras. We use notations | , | == m —m?, V := A — A%?
(superscript “op” denoting opposite operation).

First of all, we define a suitable grading on 4Z2(g) (as a k [q, q_l]—module)
by

r=N r=1

- - KSDO nt(t al
deg<H Hl< N >( B )
1 n N

= my +;t +Zm

r=N



258 FABIO GAVARINI

and linear extension. Then let k[q,qil] =y cUy c--- C ﬂf c---(C
U2(g)) be the associated filtration, and set d(z) := h for all z € UF\Ly ;.
Notice that a similar notion of degree exists for U(g”), defined by means
of the filtration Uy C Uy C -+ C Uy C --- C U(g") induced by the
canonical filtration of T (g") (the tensor algebra on g7), and similarly for
U(g") @ U(g"). Finally define

78 p(h,g) = (g 1)"9 - 72(h,g) V¥ heul(b), geul(g);

this yields a perfect pairing m;p : 42(h) x UZ(g) — k‘[q, q_l](qil) (the

latter being the localized ring). In particular 71';073 can be specialized at
q=1.
Theorem 7.12. W:P D U2(h) x U2(g) — k‘[q, q_l](qil) specializes to a
PairIng

75 U(h) x U(g") —— k

which extends the Lie bialgebra pairing 775: h” @ g7 — k (cf. §1.2) and is
such that

Tl"p(Oé'l'-i-ﬁ'y,Z):Oé'ﬂ"p(ﬂ?,Z)-i-,B‘ﬂ'p(y,Z)
mp(z,a-u+f-v)=a- -mp(x,u)+ - mp(x,v)

mp(z -y, 2) =mp(z®y,A2)), mp (2,2 - w) = 7p(A(2), 2 @ W)
Wp([x,y},z) = 7r7>(a: ® y,5(z)), 7T7)(.CL‘, [z,w]) = 71'7;((5(3:)72 ® w)

forall o, €k, x,y € U(h), z,w,u,v € U(g) such that d(a-u+ [ -v) =
d(u) = 9(v) .

Proof. Let x € U(h7), z € U(g"), and pick 2’ € U2(h), 2’ € UZ(g), such

that o = :L‘"qzl, z= zl‘q:l' By definition, mp(z, z) is given by

— (4= )" my ()|

wp(z,2) = mgp (x', z') ‘

q=1 g=1

in particular, we can select 2’ and 2’ such that d(2') = 9(z), 9(2') = 8(z).
Now, the first two identities follows directly from similar properties for =, p ,
which are directly implied by definitions. As for the other identities, using
Leibnitz’ and co-Leibnitz’ rules and identities d(x - y) = 9(x) + d(y) =
J(x ® y) we are easily reduced to prove that they hold for z,y € h and
z,w € g, which again follows from definition. Finally to prove that mp is an
extension of the classical Poisson pairing a straightforward check works. [
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7.13. The pairings F [GT|xF[H| — k, F®|[G"|x F[H"] — k. The

construction in §7.11 can be reversed as follows. Define a grading on U:; (g9)
(asa k [q, q_l]—module) by

deg(ﬁ ﬁ((L“" ) ﬂ ) :

r=N =1 r=1
1 n N
= E my + E li + E Ny
r=N =1 r=1

and linear extension; then let k[q,¢ '] =2 U§ c U7 C--- Cc U] C---(C
UZ(g)) be the associated filtration, and set d(x) := h for all x € Uy \U;_,
(h € N). Then extend 7g: Uy, (h) ®UZ,(g) — k(q) to a perfect pairing
of formal Hopf algebras 7 : UP S(h)U ,(g) —— k (ql/D, q_I/D) (where
D is the determinant of the Cartan matrix) by the rule 7§ (Ly, L,,) := ¢*")
(where (A|p) is defined in §1.1). Finally define

7l (hg) == (qa— 1) 78(h,g) V¥ heUl®), gcUl(s);

this yields a perfect pairing WZID,@ tUG(h) x U (g) — k [ql/d, q_l/d] , whose
set of values is an ideal coprime with the principal ideal (ql/ D_ 1); fur-
thermore, restriction gives also a similar pairing m), : §2[G] x UL (g) —
L [ql/d’ q—l/d]'

Now we can specialize these pairings at ¢ = ¢*/% = 1, which gives the
following:

Teorema 7.14. The pairing 7rq¢ Uy (h) x U (g) —— k [ql/d,q_l/d]

and the pairing w" s SoGl x U (g) —— k [ql/d,q_l/d} specialize to

PaITINGS "
ol F*[GT|® F[H) ——k, 7. :F[G|@F[H]——k
such that
(a-z+ B y2) =0 a7 (2,2)+ 08 77 (y,2)
a7y (z,u)+ - (z,v)

xr

(@0 ut o) =a-xf
7l (z-y.z) =7f €@y, AR)), 7L (2,2 w) =] (M), 2 @ w)
77 ({=, y} =1l (r @y, V(2), 7w (z,{zw}) =77 (V(z),2z®w)

forall a,B €k, x,y € FIGT] or z,y € F*[G"], z,u,v € F[H"]| such that
INa-u+pf-v)=0(u) =0(v) (with d(z) =0 (') for any z' € U] (g) such
that x"qzl = ).

Proof. Just mimick the proof of Theorem 7.12 above. O
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8. Formal quantum groups.

8.1. Formal quantum groups versus quantum formal groups. The
heading of this subsection is not a play on words: in fact we wish to discuss
the possibility to develop two different notions which are to be quantum ana-
log of the notion of formal group; the different position of the word quantum
in the previous expressions just refer to two different ways to conceive the
notion of formal group, which give rise to two different “quantizations”.

In §7.1 we start from the fact that a formal group is given by a commu-
tative formal Hopf algebra, which can be realized as U(g)* — the dual of
U(g) — thus we defined the quantum formal groups as spectra of formal
Hopf algebras, and we looked at Ué‘fp(g)*.

An alternative method stems from the fact that the topological Hopf
algebra of a formal group may be obtained as a suitable completion of a
usual Hopf algebra. Namely, let F*°[G] be the formal Hopf algebra of a
given formal group; let G be an algebraic group with associated formal group
equal to the given one; let m. be the maximal ideal of F'[G] associated to the
identity e € G; then F*°[G] is the m.—adic completion of F[G]. Moreover
we remark that m, = ¢ := Ker(e), where € is the counit of F|[G].

The previous remarks motivate the following way of “quantizing” F*°[G]:
first, constructing a Hopf algebra Fy[G] which quantizes F'[G]; second, con-
structing the €-adic completion of Fy[G], with € := Ker (e: Fy[G] — k(q)) .
We shall call an object obtained in this way formal quantum group.
When considering formal Poisson groups we require also that such a quan-
tization is one of the Poisson structure.

We have all the ingredients to perform this construction. The first steps
are trivial.

Definition 8.2. Let M be a lattice as in §2.2, and let FL[G], T
F,'[G] be the quantum function algebras defined in §4.

Let E, := Ker (e: FOIG —— k(q)), €, := Ker (53 5y 1G] ——
k[, q ] ) ,and €, :=Ker (e: FM[G] —— k[q,¢7']) . Then we define

[G], and

Féﬁm G] = E —adic completion of Fét io [G]
3:;1»00[(;] = €,-adic completion of &ZZI [G]
Fy'=[G] == (q—1)- Ep-adic completion of FJ[G].

Lemma 8.3. Let H be a Hopf algebra over a ring R, let E be the kernel
of the counit of H, and let w € R be a non-invertible element of R.
(a) Let H be the E-adic completion of H. There exists a unique structure

of topological Hopf algebra over R on H which extends by continuity that of
H.
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(b) Let ﬁu be the u-E-adic completion of H. There exists a unique struc-

ture of topological Hopf algebra over R on f[u which extends by continuity
that of H.

Proposition 8.4. §3*[G] and F)"<[G] are k:[q, q_l] -integer forms of
F}o>[G] as topological Hopf algebras.

Definition 8.5. Let ¢': H}j — k(q) be the k(g)-algebra morphism defined
by € (Ff):=0, € (Lf) =1, €(Ef):=0, (Vi=1,...,n, p € M) and set
E, := Ker (¢), E}, := E, N HY, E, := E,n 9. We call Up=(h) the
E/,-adic completion of H, U3">(h) the E{,~adic completion of HJ', and
Uz>(h) the (¢ — 1) - IAE:O-adic completion of $¢f, with its natural structure
of topological k [q, q_l] -algebra.

Proposition 8.6. There exists a unique isomorphism of topological k(q)-
algebras® €5 F}=[G] iUé‘@“(h) which extends 52 F[G] —
H) and &0 F,[G] W:,l)] ing It restricts to ggf’w[G]%ugm(h)
(which extends &5: FY[G] — AY and &5 FY[G[Y-,] — AY) and
to F1[G] iﬂfg’“’(b) (which extends &5 : F)'[G) — AY and £
F)G] [1&:;] i%{f"f) Then by push-out the right-hand side algebras get
structures of topogical Hopf algebras, so that £5;°° is always an isomorphism
of topological Hopf algebras.

Proof. From definitions, Theorem 6.11, and formulas for €: U5, (h) — k(q)
in §6.9 it follows that & (E,) C E:D , hence there exists a unique continuous
extension of £5,, £5°°: F, 1o <G = Ugiz=(h), which is a monomorphism

of topological k(g)-algebras. On the other hand £5;: F)%,[G] [w:;] =, H},
with &§ () = LY, (cf. the proof of Theorem 5.14); then ¢ (1 —1_,) =
(€1 —v_p) =€(1 - L?,) =0, hence (1—1_,) € Ker(e) =: E,; but
then ¢~} = 3720 (1 —p_,)" € F)*[G], whence F* [G][¢~}] canonically
embeds into F,*[G], thus & (F}0°[G]) 2 H] and then by continuity
& (Fre=[Gl) = Ugis=(h) .

To prove the other parts of the claim, we can proceed as above; we
only have to note, in addition, that L?, = [[L, L7 . = [, (M#)~!,

n
hence Lj = [[", M{, and M7 =" (1 — (Mffl) =yt (—=di)," -

(=07 (O)0) e (0479 € B but 47)7! = 6 () 50

5 Of course by morphism of topological algebras we mean a morphism of algebras which
is continuous.
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()79 = g, ((#4:°)). with (¥4 € & then o) =TI, woh, =
| J A (—di)qn (g=1)"- (w_qi;o)” € F,">[G] and we conclude like

n=0

for (a). O

Theorem 8.7. The topological Hopf algebra § (G| specializes to
F>[G7,] = F*[G"] as topological Poisson Hopf algebra for ¢ — 1, that is

BIIG] = §(6] fla - 1) FY[6] = F® (G

= U2 (0) [l — UL () = W17 (b).

Proof. Recall that F'*°[G7],] is the e-adic completion of F[GT,]. But §}>[G]

is by definition the €,-adic completion of F[G]; since F}[G] g (Gl

as Poisson Hopf algebra (cf. (4.6)), §'*[G] does specialize — for ¢ — 1

— to the €¢7-adic completion of F'[G],], with €] := &, ; but €] = e,
q:

whence the thesis. O

Remark 8.8. So far we found two topological Hopf algebras, that is §,">[G]
=Uy">(h) and U (h) = iJ.f‘g/ (g)", which both contain S5 [G] and for ¢ — 1

do specialize to the same object, namely U;">(h) = 3, >[G] =
q=1

q=1
/ *
w@| | =upm|
Now, next theorem shows that this is “singular fact”, i. e. for “general ¢”
we have

U= (h) = FU<[G] % UM (g)" = UM (D).

Theorem 8.9. There does not exist any isomorphism of topological Hopf
’ *

k(q)-algebras among Uy(h) = F 0G| and Uyl (9) = Uyi,(h) whose

restriction to I',[G] is the identity. Hence similar statements hold for the

integer forms too.

Proof. The second part of the claim follows from the first because of Propo-
sition 8.4. Let now ©: Uy*(h) = F;@“[G];Uq]‘j’é(g)* = U,i»(h) be an
isomorphism of the above type; then © (qu) = L7, forall pe My . Let
{an},en € k(g) be any sequence in k(q);nsince (L?, —1) = ((M;")f1 -
1) € E,, we have Sohee an((Mpf1 —1) € F}°[G]; therefore continu-

2

ity implies © ( oo an((Mf)_1 — 1)n> =Yr>*e <an((Mf)_1 - l)n) =
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= an((Mf)_1 - 1)n; the last should belong to Uﬁ;(g)* , i.e., it should
be a linear functional on Uﬁ;(g) : but on A;':=L_,, its value would be

<+§an<<Mf>1 . 1>",AZ.1> =S e (a7 - 1) A7)

n=0

—Zan g —1)"

and for general {a,},y the right-hand s1de is not an element of k(q), con-
tradiction. U

Thus Uy><(h) = F><[G] is a quantization of F>°[GT] different from
Uy (h) = ily'(g) ; so also }>(h) = F2'~[G] is another quantization of
U(h7), different from L3 (h):

Theorem 8.10. For q — 1 the topological Hopf algebra L} > () =F)">[G]
does specialize to U(h™) as a Poisson Hopf coalgebra, that is

FUSIG) = F[G] /(0 = 1) F*[G) = U(p)
= 10=(h) /(g — 1) 42=(h) = 47 (v).

Proof. From definitions follows F;'" F1..7 1G] = F,[G] as Poisson Hopf coalge-
bras; but for Theorem 7.3 is 77", [ ] U(h7) (as Poisson Hopf coalgebras),
whence the claim. O

We finish with a quantum Frobenius morphism. Let € and £ be as in §4.3,
and set

V(G = FEIG] [ (a-)FE 1G] Z UL (0) [ (- U (b) =5 U™ ().

Theorem 8.11. There exists a unique monomorphism of topological Hopf
algebras

Sgr « PG 2UE () = 8157 (G —— S257 1G] = U2 (b)

which extends Frg-: F[GY] = F1,[G] —— FLLG] (cf. (4.7)): it is
defined by

o . TP
Fro=: Fg

= (B oL o] E
q=¢ q=¢

—on\l )
g=1 q=1 q=1 -~ (Ea) ’q=6’

its image F'™ is the topological Hopf subalgebra of Uﬁ’;"(h) topologically
generated by { (7w)€ (L,f)e, (Ei)e ’ a€ R peM }, and it is contained
in the centre of F25°(G].
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Proof. Since §rgr: F [G},] = {@,[G] — §,[G] is a Hopf algebra mono-
morphism we have gtgf Sﬂ’q )= 30| ; but then §rgr extends uniquely

by continuity to a topological Hopf algebra monomorphism SM“’[G] —

2.5°[G] that we call Ftg,. Now both §t, and Fryr are continuous exten-

sions of §rgr, hence they coincide on §{,[G]; in particular Fry- (1—p) =
Star (¥—p), so that Fryr (1/1:[1)) = Fror (@b:;;) ; therefore §rZy and Fryr
coincide on F{',[G] [1/1:2,] = M}, thus from Theorem 7.9 we get the for-
mulas above for §rZ: These uniquely determine it because the elements
Fq}‘q_l, Lﬂq_l, Eﬂ _, are topological generators of L{ﬁ’f(h) = ng" G].

Then the description of Ftg (gM =G ]) = F7"™ is obvious, while the fact

that F"™ is contained in the centre of FX°[G] = UM< (h) easily follows
either from Theorem 7.9(b) or from [CV-2], §3.3. O

Appendix: The case G = SL(2,k).

For G = SL(2,k) the algebra U (h), resp. U7 (h), is generated by F, L+,
resp. K*! = L*2 E. The formal Hopf algebra structure is given by

e(F)=0, e(Lﬂ):1 e(K*) =1, €(BE)=0

A (F) F®1+Zq (g—q¢ V" KE"® F**,

A=Y (¢-¢ )" LE"® F'L
ALY =L"'eL ' = (¢—¢ ") L 'E® FL ™,

AK) =Y (¢-¢ )" KE"® F'K
n=0
AK Y =Kok~ (q-q ") 2,

+Hg—g ") KB 0 F2K

K 'E® FK!

o
AE)=10E+> ¢ (¢-q¢ )" B @ F'K
n=0

S (F) _ _q—2 . Z (q _ q—1)2n. Fn+1K—(n+1)En

oo

S(L) — Z (q _ q—l)zn‘ FTZK—(R-I—I)ETZ
n=0

S(LY)=L-(qg—q¢ "’FL'E,



QUANTIZATION OF POISSON GROUPS 265

S(K) — Z (q _ q71)2n_ Fan(n+l)En
n=0

S(K™) =K - 2], (a - q—1)2. FE+ (q— q_1)4-F2K_1E2
S (E) E _q+2 . Z (q _ q—1)2n X FnK_(n+1)En+1.
n=0

In particular from this one can prove directly all the specialization results
of §7.
The quantum function algebra F[[G] = FJ[SL(2,k)] is known
(cf. [APW], [SV]) to be generated by elements a, b, ¢, d with relations
ab = qba, cd = qdc, ac = qca, bd = qdb
bc = cb, ad —da = (q—q %) be, ad —qbc=1

with Hopf algebra structure defined by formulas

Ala)=a®a+b®c, AbD)=a®b+b®d
Alc)=c®a+d®c, Ald)=cb+d®d
S(a’) = d7 S(b) = _qb7 S(C) = _qilc 3 S(d) =a
€la)=1, e(b) =0, e(c) =0, e(d)=1
moreover §7[G] is nothing but the k [q, q_l]—subalgebra of F/[G] generated

by a, b, ¢, d.
The embedding &p: F'[G] ——— U/ (h) is described by formulas

¢ a—L—(q—qg VFL'E, b —(q—q ") FL !,
cr— (q - q_l) L'E, d— L%

then one can check directly that this is a morphism of formal Hopf algebras.
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