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THE ALEXANDER POLYNOMIAL OF A CONFIGURATION
OF SKEW LINES IN 3-SPACE

Rudi Penne

In Penne, 1995, we observed that the multi-variable Alexan-
der polynomial can be computed by means of “multi-variable
Burau matrices”, the entries of which can be visualized by
a “path model”. In this article we introduce the Alexan-
der polynomial for line configurations. The correspondence
between “adjacency of lines” in a configuration, and the fac-
torization of its Alexander polynomial can be well understood
by way of the path model.

1. Introduction.

In a previous paper ([12]) we introduced a new machinery to compute the
multi-variable Alexander polynomial ∆L of a link L with k components.
Although everything was stated for pure links, the techniques of [12] apply
for general links if one makes a small additional observation (Theorem 1).

Let us quickly repeat the basic facts of the (non-reduced) Alexander poly-
nomial. If we regard the link L as a closed braid β, β ∈ Bn, and if we use
Artin’s representation of the braid group as free automorphisms,

ξ : Bn → Aut(Fn),(1)

we can present the group of L, G(L) (the fundamental group of its comple-
ment), by n generators x1, . . . , xn subject to the relations

xi = ξ(β)(xi), 1 ≤ i ≤ n.(2)

For more details, we refer to [2, 3]. It is well known that each of the n
relations in (2) is implied by the others, allowing us to drop one relation,
and we come up with a group presentation for G(L) of “deficiency 1” (one
less relation than generators):

G(L) = (x1, . . . , xn : r1, . . . , rn−1).

With the aid of free differential calculus in the group ring Z[Fn], as intro-
duced by R.H. Fox in [7], we can construct the Jacobian of G(L):(

∂ri
∂xj

)φ
i,j

(3)
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where the quotient map φ : Fn → G(L) is extended to go from Z[Fn] to
Z[G(L)], acting entry-wise on the matrix. Finally, if we consider the abelian-
izer from G(L) to H = G(L)/[G(L), G(L)], and extend it to the correspond-
ing group rings, it can be applied to the entries of the Jacobian, resulting in
an Alexander matrix A(L) for L. We refer to [8] for more details. One can
show that the abelianization H of the link group G(L) is torsion free with
rank equal to k, the number of components of L. So, A(L) has its entries in
the ring Z[t±1

1 , . . . , t±1
k ]. This matrix highly depends on the chosen presen-

tation for G(L). However, the ideal I generated by the maximal minors of
A(L) is a group invariant, and hence a link invariant. In the case k = 1, L
is a knot and I is a principal ideal, whose generator is exactly the classical
Alexander polynomial ∆L(t) ([1]). If k ≥ 2, I is the product of a principal
ideal I0 and the augmentation ideal, motivating R.H. Fox to define the gen-
erator of I0 as the multi-variable Alexander polynomial ∆L(t1, . . . , tk) of L.
In any case, ∆L is only defined up to multiplicative units in Z[H].

Let now A(β) denote the n×n matrix whose i-th row consists of the free
partial derivatives of ξ(β)(xi), canonically mapped to Z[H]. That is,

A(β)ij = a

(
∂

∂xj
ξ(β)(xi)

)
,(4)

where a : Z[Fn] → Z[H] composes the quotient map with the abelianizer.
Notice that

(A(β)− In)ij = a

(
∂

∂xj
ξ(β)(xi) · x−1

i

)
,(5)

such that an Alexander matrix A(L) for L is obtained by deleting any row of
A(β)− In ([3]). We conclude that the Alexander polynomial of a link L = β
is immediately obtained once we have computed A(β). In this article, A(β)
will be computed by associating so-called multi-variable Burau matrices with
the crossings of β, multiplying them in order of appearance. This generalizes
the well-known procedure for knots (k = 1), where A(β) is obtained as the
Burau representation τB(β) of β.

The fundamental properties of the multi-variable Burau matrices can be
found in [12]. In this article we focus on some of their applications, show-
ing how they can improve our understanding of the Alexander polynomial.
As pointed out in [12], the entries of a multi-variable Burau matrix can be
easily visualized by considering topological paths on the involved braid dia-
gram, which are evaluated by appropriate weights. This path model will be
explained in Section 4. The main goal of this article is to illustrate the ele-
gance of the path model by obtaining fundamental combinatorial proofs for
classical theorems of Morton, Torres and Sumners-Woods on the Alexander
polynomial (Section 5 and Section 6).
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Most of our material will be stated in terms of a special class of links.
More precisely, we are motivated by the isotopy problem of line configura-
tions, that are configurations of a finite number of lines in RP3. Two line
configurations are called rigidly isotopic if there exists an ambient isotopy
that connects them and during which the geometric lines are maintained.
We will moreover always assume that the lines are pairwise disjoint (non-
singular configurations). If we pull back such configurations to the covering
space S3 of RP3, we come up with mutually linked circles. Links which are
obtained in this way are called Klein links. The classification of Klein links
is an interesting variation of the general theme in Knot Theory, while on the
other hand it provides a natural relaxation for the rigid isotopy classification
of line configurations.

In the Appendix we list the multi-variable Alexander polynomials for
all non-singular line configurations of at most six lines (more precisely, we
present the Alexander polynomials for their Klein links). In [16], O.Ya.
Viro introduced the concept of adjacency for line configurations. Two lines
in a configuration are called adjacent, if they can be brought “arbitrarily
close to each other” by a rigid isotopy of the entire configuration. The ad-
jacency relation in a line configuration corresponds to “simple factors” of
its Alexander polynomial, which is very striking in the list of the Appendix.
This correspondence is elaborated in Section 6.

2. Multi-variable Burau matrices.

In this section we explain our technique for computing the non-reduced (=
multi-variable) Alexander polynomial ∆L(t1, . . . , tk) of a link L with k com-
ponents. Following the original construction by R.H. Fox in [8], ∆L is ob-
tained from the (n − 1) × (n − 1) minors of an Alexander matrix A(L),
which corresponds to a presentation of the link group G(L) with n gen-
erators and n − 1 relators. More precisely, let Fn denotes the free group
on n generators, and H = G(L)/[G(L), G(L)] the abelianization of G(L).
The n− 1 rows of A(L) contain the n formal partial derivatives of the rela-
tors of G(L), first “freely” computed in Z[Fn] and then canonically mapped
to Z[H] ∼= Z[t±1

1 , . . . , t±1
k ] ([7, 8]). In this construction we did some im-

plicit assumptions. First we assumed a fixed ordering on the components
of L, (C1, . . . , Ck), and a fixed orientation C∗i for each of them. Further,
the oriented loops x1, . . . , xn which generate G(L) are chosen such that
link (xp, C∗q ) ∈ {0,+1}. It is known that for any q = 1, . . . , k all genera-
tors xp with link (xp, C∗q ) = +1 have the same image under the canonical
projection G(L) → H, which uniquely determines the q-th generator tq of
the free abelian group H = 〈t1, . . . , tk〉. So, the canonical homomorphism a
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from Z[Fn] to Z[H] as considered in the construction of A(L) is defined by
the assignment a(xp) = tq (link (xp, C∗q ) = 1).

In the introduction we argued how to obtain A(L) by dropping any row
from the matrix A(β)− In, if we regard L as a closed braid L = β, β ∈ Bn.
Such a strategy corresponds to a presentation of G(L) with n generators,
subject to Equation (2). However, since the right hand sides of the relations
in (2) might be words of considerable length, their free partial derivatives
might be tedious to compute. It would be more convenient to have a direct
computation scheme in terms of Z[t±1

1 , . . . , t±1
k ], in order to pass by the free

differential calculus. In case of knots (k = 1), it is well known that such
a scheme is provided by the Burau representation τB of Bn over Z[t, t−1].
Indeed, an Alexander matrix for a knot K = β is obtained by deleting the
last (or any) row of the n × n matrix τB(β) − In. Notice that τB(β) is
most easily found by multiplying the basic Burau matrices τB(σi) in order
of appearance of the braid generators σi in a word for β. Recall that

τB(σi) = In − tEii + tEi(i+1) + E(i+1)i − E(i+1)(i+1), 1 ≤ i ≤ n− 1,(6)

where Eij are the elementary matrices. A similar phenomenon can be ob-
served for pure links, L = β where β ∈ Pn is a pure braid. In this case,
k = n and A(β) is exactly τG(β), where τG denotes the Gassner representa-
tion of Pn. But then again, in order to avoid free differential calculus in the
computation of τG(β), one should re-express β as a word in the pure braid
generators Aij:

Aij = σj−1σj−2 · · ·σi+1σ
2
i σ
−1
i+1 · · ·σ−1

j−2σ
−1
j−1, (1 ≤ i < j ≤ n),

after which τG(β) is found by multiplying the basic Gassner matrices τG(Aij)
in the appropriate order.

In a previous paper, [12], we offered a new method for computing A(β)
(and hence A(L)), avoiding free differential calculus, using only multiplica-
tion of matrices over Z[t±1

1 , . . . , t±1
k ]. In particular, this method provides a

new and fast way to obtain the Gassner matrix of a pure braid without pass-
ing to pure braid generators first. To this end, we introduced multi-variable
Burau matrices, the definition and main properties of which will be recalled
in this section.

Let L = C∗1 ∪ · · · ∪ C∗k be a link with ordered, oriented components,
represented as a closed braid L = β, β ∈ Bn. First, for each ordered pair
(i, j), 1 ≤ i 6= j ≤ n, we consider two symbols, sij and s−1

ij . Each (geometric)
braid β ∈ Bn can be transformed to a word in these symbols by labeling the
braid strands from left to right from 1 to n, where sij (resp., s−1

ij ) encodes
the positive (resp., negative) crossing “i goes over j”. In this procedure
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all crossings are processed in the order they occur in a geometric picture
of β. The resulting word is called a labeled word for β, denoted by Ψ(β).
Next, we introduce the basic multi-variable Burau matrices, with entries in
Z[t±1

1 , . . . , t±1
n ]:

µ(sij) = In + (tj − 1)Eii + (1− ti)Eij(7)

µ(s−1
ij ) = µ(sij)−1 = In + (t−1

j − 1)Eii + t−1
j (ti − 1)Eij.(8)

If these matrices are multiplied in the order as dictated by the word Ψ(β),
we obtain the multi-variable Burau matrix µ(β) for the braid β. In [12] the
matrix µ(β) is proven to be well-defined for β ∈ Bn, that is, it is independent
from the geometric representation of β1 .

Example. If β = σ1σ2σ
−1
3 ∈ B4, we can take Ψ(β) = s12s13s

−1
41 .

µ(β) =


t2 1− t1 0 0
0 1 0 0
0 0 1 0
0 0 0 1



t3 0 1− t1 0
0 1 0 0
0 0 1 0
0 0 0 1

×


1 0 0 0
0 1 0 0
0 0 1 0

−t−1
1 + t4t

−1
1 0 0 t−1

1



=


t2t3 1− t1 t2 − t1t2 0
0 1 0 0
0 0 1 0

−t−1
1 + t4t

−1
1 0 0 t−1

1

 .
If we specialize t1 = t2 = . . . = tn = t in µ(β) we get the Burau matrix

τB(β) of β up to a permutation of the columns, motivating the name “multi-
variable Burau matrix”. Furthermore, if β is a pure braid then µ(β) is
exactly the Gassner matrix τG(β). But even if β 6∈ Pn, µ(β) immediately
leads to an Alexander matrix for L. In order to formulate all this in a proper
way, we need the canonical homomorphism from the braid group Bn to the
symmetric group Sn, determined by

p : Bn → Sn : σi → (i, i+ 1) (1 ≤ i ≤ n− 1).(9)

Observe that the number of disjoint cycles of p(β) equals k, the number of
components of L = β. For each strand label 1 ≤ i ≤ n we put c(i) equal

1 As a matter of fact, we introduced relations on the sij and s−1
ij , yielding a presentation

of a group called LBn, the labeled braid group. This makes Ψ a well-defined mapping from
Bn to LBn, and moreover, µ is a linear group representation for LBn over Z[t±1

1 , . . . , t±1
n ].
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to the label of the component of L it belongs to in the braid closure. The
substitution

ti → tc(i)(10)

extends to a ring homomorphism, called the component specializer :

c : Z[t±1
1 , . . . , t±1

n ]→ Z[t±1
1 , . . . , t±1

k ].

Its entry-wise action on the matrix µ(β) will be denoted by µ(β)c. Notice
that for pure braids β c is just a permutation of the variables ti (k = n).
In the next theorem, πρ denotes the standard n× n matrix representing the
permutation ρ ∈ Sn.

Theorem 1. Let L = C∗1 ∪ · · · ∪ C∗k be a link with k ordered, oriented
components, represented as closed braid, L = β. Then

A(β) = µ(β)c · πp(β).

In particular, if µt(β) is the image of µ(β) under the specialization t1 =
. . . = tn = t,

τB(β) = µt(β) · πp(β),

and if β is a pure braid,
τG(β) = µ(β).

Proof. The connection between µ(β) and the Burau and Gassner representa-
tions has been elaborated in [12]. The general statement, which relates A(β)
to µ(β)c is implicitly present in the same article. It follows from the construc-
tion of µ(β) as the Magnus representation corresponding to a representation
ϕ of the labeled braid group LBn into Aut(Fn), having the property

πp(β) ◦ ϕ(Ψ(β)) = ξ(β),

where ξ is Artin’s representation, and where πp(β) is now regarded as a free
automorphism.

3. Isotopy of Line Configurations.

In this section we exhibit the motivating problem behind this paper, namely
the classification of line configurations up to (rigid) isotopy. A configura-
tion of n lines RP3 is called non-singular if no pair intersects in projective
space. Two such configurations, L = {L1, . . . , Ln} and M = {M1, . . .Mn},
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are called rigidly isotopic if there exists a homotopy (ht)t∈[0,1] of the ambi-
ent space such that h0 = id, h1(L) = M and ht(L) is a non-singular line
configuration for all t. Furthermore, we can consider (rigid) isotopies of or-
dered configurations, where we require that h1(Li) = Mi for 1 ≤ i ≤ n. The
isotopy classification of (unordered) line configurations for n ≤ 5 has been
accomplished by O.Ya. Viro in [16], for n = 6 by V. Mazurovskii in [9], and
recently for n = 7 by A. Borobia and V. Mazurovskii in [4]. For a treatment
of line isotopy from the view point of projective geometry we refer to [5].
The connection between non-singular line configurations and links in R3 is
straightforward. Indeed, lines in RP3 can be pulled back to circles in S3,
which in their turn can be stereographically projected from the north pole
of S3 to circles in R3. By this way, a non-singular line configuration L is
mapped to a configuration γ(L) of mutually linked circles, called the Klein
link associated with L. See [5] for more details. It is a natural relaxation
to consider flexible isotopies of the associated (topological) link γ(L) rather
than rigid isotopies of the (geometric) configuration L. We know that for
n ≤ 7 the flexible isotopy classification of line configurations coincides with
the rigid isotopy classification.

If we choose the plane at infinity such that it does not contain any of the
lines of L then we can regard L as a configuration of n mutually skew lines
in R3. The planar layout of this affine part is a projection of the lines upon
a plane in R3 such that no line becomes a point, no pair becomes parallel
and no triple becomes concurrent. Furthermore, we visualize over and under
crossings at the intersections in a planar layout in the same fashion as in
knot and braid diagrams (Fig. 1).

Let us now describe the procedure to obtain a diagram of the associated
Klein link γ(L) from a given planar layout of L. Imagine a circle U drawn
in the plane which contains all crossings of the planar layout of L. Choose
an arbitrary point p on the circle U . This determines an order on the lines,
namely, the order in which the lines are encountered during a counterclock-
wise trip on U starting at p. At the same time, this “pointed circle” (U, p)
yields an orientation of the lines, by directing the lines from their “first”
intersection with U toward the “second” intersection. See Fig. 1 for an or-
dering and orientations in a planar layout, coming from a certain choice of p
on U . Notice that if one is only given the order of the lines, without knowl-
edge of the point p on U , ambiguity appears in the sense that the resulting
orientations of the lines are only determined now up to total reversal. We
will use the term semi-orientation in this context. Now it should be obvious
how to turn this picture into a (geometric) braid, as in Fig. 1. Let α = α(L)
denote the braid thus obtained (implicitly depending on the choice for p!).
If a braid can be obtained in this way, it is called a line braid. The following
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432

1

Figure 1: The planar layout of four skew lines in 3-space. The chosen order
of the lines determines the shown braid at the right (braid diagrams are
oriented from bottom to top in this article).

operation will be used to turn line braids into pure braids:

ˆ: Bn → Bn : σi → σn−i.

By checking the defining relations of the Braid group, the reader can convince
himself that ˆ can be extended to an automorphism of Bn. To support the
intuition, the effect of ˆ on a geometric braid β represented in the cylinder
D2 × I is a rotation of β of 180◦ around the cylinder axis. Therefore, ˆ is
called the flip operator. Now we can introduce the double of a line braid by
taking αα̂, where α ∈ Bn. It is straightforward that the double of a line
braid is a pure braid, and so, its closure can be regarded as an ordered link,
the components of which have inherited their labels from the braid strands.
In [5] it is proven that if α = α(L) then the closure of αα̂ represents the
link type of γ(L)2 , yielding a procedure to draw a diagram for γ(L) when a
planar layout for L is given (Fig. 2). In fact, this diagram transformation is
a special case of a general procedure to go from projective diagrams of links
in RP3 to the affine diagram of the twofold covering in S3, as described by
Yu.V. Drobotukhina in [6].

Notice that an orientation A∗ for a line A of L leads to an orientation
γ(A)∗ of the corresponding component of the link γ(L). If {A∗, B∗} is a

2More precisely, the mirror image of the closure of αα̂ represents γ(L), if we use the
same projection for the link diagram as for the planar layout [5].
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Figure 2: After doubling the line braid of a configuration L, we obtain a
diagram for the associated link γ(L).

pair of oriented skew lines in 3-space, by their linking number we mean
link (γ(A)∗, γ(B)∗).

We define the Alexander polynomial of an ordered, non-singular config-
uration L of n oriented lines in RP3 to be the multi-variable Alexander
polynomial of the link γ(L), where the latter inherits its labels and orien-
tations from L. So, it is a Laurent polynomial in n variables with integer
coefficients, only defined up to multiplication by units in Z[t±1

1 , . . . , t±1
n ] (see

[8]), and it will be denoted by ∆L(t1, . . . , tn). In the Appendix we give a
list of all rigid isotopy types of line configurations for n ≤ 6, up to taking
mirror images. This list follows from Viro’s and Mazurovskii’s classification
efforts. For each configuration in the Appendix, we computed the Alexander
polynomial for one particular choice of orientations and labels. For other or-
derings one should perform the associated permutation on the variables of
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∆L(t1, . . . , tn), while a change of orientation corresponds to substituting the
involved variables ti by t−1

i (cf. [14]). Furthermore, if Lm denotes the mirror
of L, obtained by changing in the planar layout of L all under crossings into
over crossings (and vice versa) and keeping the same labels and orientations,
it is well known that

∆L
.= ∆Lm .3

We obtained the Alexander polynomials of the Appendix by first choosing
a line braid α = α(L) for L, which determines some particular ordering
and orientation for its lines, and by using the multi-variable Burau matrices
of Section 2 to compute the Gassner matrix for αα̂. Finally, from the lat-
ter we get an Alexander matrix. We preferred to represent the Alexander
polynomial with positive powers for its variables, thus being an ordinary
polynomial, requiring moreover minimal degree. This determines ∆L up to
sign. Observe that some configurations appear to have a very simple Alexan-
der polynomial, while those of other configurations tend to be of considerable
length. The geometric reason for this phenomenon will be explained in Sec-
tion 6.

The ∆L of two ordered configurations can be compared by regarding the
canonical (semi-)orientations for which the last line has all positive linking
numbers w.r.t. the other lines. It should be remarked that the multi-variable
Alexander polynomial does not classify ordered configurations, even not up
to mirror images. We found the first failure of ∆L for the fifth 6-lines-
configuration in the Appendix (configuration [6-12-8-2] in [5]), where the
transposition (2 3) on the ordering yields a different isotopy type (distin-
guished by chirality) but leaves ∆L invariant.

On the other hand, in [12] an example is given of a pair of ordered config-
urations of seven lines, both of the same chirality class and having the same
Kauffman polynomial , but distinguished by ∆L.

4. The path model.

In this section we give a topological construction for the entries of µ(β),
the multi-variable Burau matrix of the braid β. In particular, it provides
a topological model for the Gassner representation. In the next section we
see the use of this model in understanding the appearance of some factors
in ∆L.

Let β ∈ Bn be a braid, geometrically represented by a diagram in the
plane, as in Figure 3. Let h1, . . . , hn be the (oriented) braid strands in this
diagram. A (proper) path of β is a continuous path on h1 ∪ . . .∪ hn starting
at the initial point of some hi, never violating the braid strand orientations

3Everywhere in this article, “
.
=” means “equal up to a multiplicative unit”.
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(monotone), only allowed to make a “turn” (change underlying strands)
from an over crossing strand to an under crossing strand, arriving at the end
point of some hj. In this case, we say that the path “goes from i to j”. See
Figure 3 for an illustration of a path that goes from 4 to 4. Notice that each
braid strand hi must be regarded as a proper path, without turning points,
and will be sometimes referred to as a straight path.

A path π on a braid diagram can be combinatorially encoded as follows.
Let w = s±1

ij . . . be a labeled word associated with (the diagram representing)
β ∈ Bn. Considering w as an ordered sequence, the turning points of a path
π of β occur as an ordered subsequence T (π) of w with the property that
if s±1

pq and s±1
rs are two successive symbols of T (π) then q = r. If s±1

ab is the
first symbol of T (π) and s±1

cd the last one, then π goes from a to d. There is
a one-to-one correspondence between proper non-straight paths on a braid
diagram and non-empty ordered subsets T of the associated labeled word w
that have the above properties; this correspondence is given by π → T (π).
Notice that for straight paths T (hi) = ∅. The set of all paths of w going
from a to b is denoted by Pab (or Pab(w) when there is danger for confusion).

The complement of a sequence of turning points T (π) in w, w\T (π), is an
ordered subsequence of w, which is partitioned by T (π) in a natural fashion:

w \ T (π) = (I1, . . . , Ik),(11)

where the symbols of each Ii occur successively in w, but where the last
symbol of Ii is separated from the first symbol of Ii+1 in w by at least one
turning point of π. These partition classes are called intervals of π. If I is
such an interval of a non-straight path π, and if s±1

pq and s±1
qr are two adjacent

turning points of π such that (s±1
pq , I, s

±1
qr ) occurs successively in w, then s±1

pq

(resp., s±1
qr ) is called the q-entry (resp., q-exit) of I. Notice that the initial

(resp., final) interval of π, I1 (resp., Ik), may cease to have an entry (resp.,
exit), but that in any case they have at least one of both. This enables us
to say that I is a q-interval of π if it has a q-entry or a q-exit. Notice that
a path π may have different q-intervals for the same q. A straight path hi
has only one interval, namely the whole w, which is called the i-interval of
hi by convention. If a symbol s±1

iq (resp., s±1
qi ) of w belongs to a q-interval

of some path π (so it is surely no turning point of π) then we say that it is
an under crossing (resp., over crossing) of π. In particular, every s±1

ij (resp.,
s±1
ji ) of w is an over crossing (resp., under crossing) of the straight path hi.

To illustrate these definitions, let us consider one of those typical braids we
encounter in the study of line configurations (Section 3), namely, the “double
of a line braid” (Fig. 3). The given diagram representation corresponds to
the labeled word

s12s45s35s15s
−1
52 s34s14s

−1
31 s
−1
42 s
−1
32 s21s54s53s51s

−1
25 s43s41s

−1
13 s
−1
24 s
−1
23 .
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Figure 3: The topological meaning of a “path”.

In Figure 3 we selected the path π in P44 whose turning points are given by

T (π) = (s45, s
−1
52 , s

−1
24 ),

its under crossings by
(s35, s15, s

−1
42 , s

−1
32 ),

and its over crossings by
(s21, s

−1
25 ).

Observe that π has two 4-intervals (initial and final), a 5-interval and a
2-interval. For example, the 2-interval has entry s−1

52 and exit s−1
24 .

Let us now take the turning points and over/under crossings of a path
π all together in one ordered subsequence of w, denoted by V (π), called
the vertices of π. To distinguish the turning points in V (π) we will denote
them by symbols u±1

ij rather than s±1
ij . For example, the vertices of the path

π ∈ P44 in Figure 3 are given by

V (π) = (u45, s35, s15, u
−1
52 , s

−1
42 , s

−1
32 , s21, s

−1
25 , u

−1
24 ).

Each subsequence of w, with some of s±1
ij replaced by u−1

ij , which occurs as
V (π) for some path π is called a combinatorial path. We will often confuse
between a path π and its combinatorial description V (π).

Next, we define for each vertex v of π a weight W (v, π) (or W (v) if
there is no confusion about the considered path), an element of the ring
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Z[t±1
1 , . . . , t±1

n ], as follows:

v is an under crossing of π : W (v) = 1

v is an over crossing of π : v = sij : W (v) = tj

v = s−1
ij : W (v) = t−1

j

v is a turning point of π : v = uij : W (v) = 1− ti
v = u−1

ij : W (v) = t−1
j (ti − 1).

Now we can define the weight of a path

[π] =
∏

v∈V (π)

W (v),(12)

and further, for each word w we define the polynomials

[ij]w = [ij] =
∑
π∈Pij

[π].(13)

If V (π) is empty, which may happen when π = hi, then we define [π] = 1.
If Pij = ∅ then we define [ij] = 0. In [12] we proved the following theorem,
which will be referred to as the path model for multi-variable Burau matrices.

Theorem 2. Let β ∈ Bn be a braid with labeled word w. The entries of
its multi-variable Burau matrix are given by

µ(β)ij = [ij]w.

5. Grasp extensions.

For a braid β ∈ Bn−1 we can consider its grasp extension, which is a braid
βg ∈ Bn that is defined by

βg = βσn−1σn−2 · · ·σ2
1σ2 · · ·σn−1.(14)

We refer to Figure 4 for a diagram representation of a grasp extension.
In [12] it has been observed that each line configuration is rigidly isotopic

to a configuration L where the n-th line crosses under the remaining n − 1
lines (w.r.t. the given projection). If now we choose orientations, L∗ =
{L∗1, . . . , L∗n}, with the property that

link (L∗i , L
∗
n) = +1, 1 ≤ i ≤ n− 1,
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1 2 n-1 n

grasped braid

Figure 4: The grasp extension of a braid. The n-th string hn of βg grasps
the strings of β.

this determines line braids αn = α(L∗) and αn−1 = α(L∗ \ {L∗n}), such
that the double braid βn = αnα̂n is the grasp extension of the double braid
βn−1 = αn−1α̂n−1:

βn = βgn−1.

Recall from Section 3 that the associated Klein link γ(L∗) can be obtained as
the closure of βn4 , and that the Alexander polynomial ∆L∗ can be computed
by means of the multi-variable Burau matrix µ(βn).

In this section we try to relate µ(β) to µ(βg), a goal which is motivated
by the previous remarks.

Theorem 3. Let β ∈ Bn−1. If [ij] and [ij]g denote the (i, j)-entries of
µ(β) and µ(βg), respectively, and if we use the shorthands

Si =
n−1∑
k=1

(1− tk)[ik],

4Following Morton’s terminology, γ(L∗) may be equally well regarded as the complete
closure of βn−1 ([11]).
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then (1 ≤ i, j ≤ n− 1):

[ij]g = tn[ij] + Sit1 · · · tj−1(1− tn)

[in]g = Sit1 · · · tn−1

[nj]g = t1 · · · tj−1(1− tn)

[nn]g = t1 · · · tn−1.

Proof. Choose labeled words w and wg for β and βg, respectively, compatible
with the diagram in Figure 4 or Equation 14:

wg = ws(n−1)n · · · s1nsn1 · · · sn(n−1).

Further, let Pij and P g
ij denote the corresponding path sets.

Because P g
nn = {hn}, we get

[nn]g = [hn] = t1 · · · tn−1.

Further, for each 1 ≤ j ≤ n− 1, P g
nj = {π} with T (π) = {snj}, whence

[nj]g = [π] = t1 · · · tj−1(1− tn) if j > 1

[n1]g = 1− tn.
Next, let 1 ≤ i ≤ n−1, then for each 1 ≤ k < n and each π ∈ Pik, we obtain
a path πg ∈ P g

ij by the following concatenation rule:

πg = π(skn, . . . , s1n, sn1, . . . , snj).(15)

Notice that T (πg) = T (π)∪{skn, snj}. Conversely, each path in P g
ij is either

of this type, or of the form

πc = π(sjn, snj),

the straight continuation of some π ∈ Pij (Figure 4). This leads to the
expression

[ij]g = [ij]tn +
n−1∑
k=1

[ik](1− tk)t1 · · · tj−1(1− tn).

Finally, each path in P g
in can be obtained as in Equation 15, where we now

continue tracing hn till the end (that is, sn(n−1)) instead of making a turn
at snj. This means that T (πg) = T (π) ∪ {skn}, and so,

[in]g =
n−1∑
k=1

[ik](1− tk)t1 · · · tn−1.
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As a corollary we can state (recall that the component specializer c is
defined by c(ti) = tq if the i-th string of β contributes to the q-th component
of the closure β):

Theorem 4. If βg ∈ Bn is the grasp extension of β ∈ Bn−1, and if its
closure represents the (oriented) link L, an Alexander matrix A(L) for L
can be obtained by deleting an arbitrary row of the matrix tnµ(β)− In−1

S1

...
Sn−1

[n1]g . . . [n(n− 1)]g t1 · · · tn−1 − 1

 ,(16)

and applying the component specializer c entry-wise.

Proof. As explained in Section 2, an Alexander matrix for L can be computed
by deleting any row from µ(βg)c − In, or from a matrix obtained from this
by elementary row operations. Since applying c commutes with subtracting
by In, row deletion, and elementary row operations, we can first consider
M = µ(βg) − In. If Ri denotes the i-th row of M , we can do the following
row operations on M :

Ri → Ri − Si ·Rn, 1 ≤ i ≤ n− 1.

As before, we have put

Si =
n−1∑
k=1

(1− tk)[ik].

From Theorem 3 it follows that the resulting matrix is given by (16).

Remarks.
• If we delete the last row in (16), and if we compute the Alexander

polynomial ∆L by means of the minor complementary to the last col-
umn, then we rediscover a classical theorem of Morton on “complete
closures” ([10], and also [12]):

∆L · (tn − 1) .= det(µ(β)c − t−1
k In−1),

where we assumed that c(tn) = tk, and used that

c(det(µ(β)− t−1
n In−1)) = ±det(µ(β)c − t−1

k In−1).
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• On the other hand, if we delete another row in (16) (not the last row),
and if we now compute ∆L by taking the minor complementary to
any column (not the last one), then we find a classical theorem of
Torres, stated here in the case of complete closures only, [14] (assume
c(tn) = tk):

∆L(t1, . . . , tk−1, 1) .= (c(t1 · · · tn−1)− 1) ·∆β(t1, . . . , tk−1).

Indeed, substituting tn = 1 in (16) gives:µ(β)− In−1

∗
...
∗

0 . . . 0 t1 · · · tn−1 − 1

 .

6. The Alexander polynomial of a configuration with adjacent
lines.

Following O.Ya. Viro ([16, 17]), two lines A and B of a non-singular line
configuration L in RP3 are called adjacent if there exists a rigid isotopy
of L which brings A and B close enough to each other such that they are
separated from the other lines by a hyperboloid. Notice that once A and B
are in the latter position they can be brought arbitrarily close to each other
by a rigid isotopy of the entire configuration such that they coincide “in the
limit” (see [5] for a formal treatment of limit-isotopy). Obviously, if A and B
are adjacent in L, the configurations L\{A} and L\{B} are rigidly isotopic;
their isotopy class can be considered to be the limit-configuration where A
and B coincide, denoted by L/(A = B).

In this section we deduce the Alexander polynomial of L from the Alexan-
der polynomial of L/(A = B). If we consider the associated links, γ(L) is
obtained from γ(L/(A = B)) by what topologists are used to call a cabling
process. More precisely, we can orient a pair of adjacent lines such that they
become homologous as oriented cycles, γ(A)∗ and γ(B)∗, in the complement
of γ(L \ {A,B}), whence γ(B)∗ is a (1, 1)-cable or (1,−1)-cable of γ(A)∗,
if link (A∗, B∗) = 1 or −1 respectively. In fact, Theorem 5 appears to be
a special case of the result of D.W. Sumners and J.M. Woods in 1977 for
general (p, q)-cables ([13]). In their terminology, L is an iteration of type 2
of L/(A = B). However, their proof is certainly not straightforward, moti-
vating V.G. Turaev to give his proof in 1986, which appeals to the concept
of Reidemeister torsion ([15]). As another example of the elegance of the
path model, we will analyze the effect of the “cabling-process” on the multi-
variable Burau matrix, thus yielding a combinatorial (third!) proof of this
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classical result. Everything will be stated for line configurations, since this
is our case of interest, although a more general result should be obtained by
a slight extension of our proof (e.g., in the case of (1, q)-cables).

Since the Alexander polynomial is an isotopy invariant, we may assume
that the adjacent lines A and B are sufficiently close to each other such
that in the planar layout of L, A and B are consecutively met by a circle
containing all crossings. This means that we can choose a corresponding
labeling for L such that lines A and B occur with labels n − 1 and n,
respectively. Furthermore, we may assume for each C ∈ L \ {A,B} that
C crosses over A and C crosses over B (in the planar layout). This is a
consequence of the previously cited theorem in [12], and of the fact that A
and B may be separated from the remaining n − 2 lines by a hyperboloid.
For the associated (semi-)orientation of L we see that for each C∗ ∈ L∗ \
{A∗, B∗}:5

link (A∗, C∗) = link (B∗, C∗) = +1.(17)

We will consider the Alexander polynomial of L subject to the previously
chosen labeling and semi-orientation, while for L/(A = B) we omit the n-th
line, keeping the remaining labels and orientations. Our computations will
go by way of the Gassner matrices of the double braids βn = β(L∗) and
βn−1 = β((L/A = B)∗), where the latter equals the former with the n-th
string deleted. Observe that β(L∗) is only determined up to total reversal by
the previous choices, but that this does not affect the Alexander polynomial.
Finally, let βn−2 denote the double braid associated with L∗ \{A∗, B∗}, that
is, βn−1 with the (n− 1)-th string deleted (Figure 5).

After these conventions we now introduce some terminology in order to
state the main theorem. First, let us define the iterator F as the ring
homomorphism from Z[t1, t−1

1 , . . . , tn−1, t
−1
n−1] to Z[t1, t−1

1 , . . . , tn, t
−1
n ] which

is determined by

F (ti) = ti, 1 ≤ i < n− 1,

F (tn−1) = tn−1tn.

Next, if 1 ≤ i < n − 1 is the label for C ∈ L \ {A,B}, then, for the given
orientation L∗, we put

li = link (A∗, C∗) = link (B∗, C∗),(18)

l = link (A∗, B∗).(19)

5The first equality is exactly equivalent to the fact that γ(A)∗ and γ(B)∗ are homologous
as oriented cycles in the complement of γ(L) \ {γ(A), γ(B)}.
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1 2 n-2 n-1 n

grasped braid

Figure 5: The double braid βn of a configuration with adjacent lines can be
regarded as the grasp extension of βn−2 by a (1,±1)-cable.

Theorem 5. Let L be a non-singular configuration of n ≥ 3 lines in
RP3, with adjacent lines A and B. Then,

∆L∗
.=

(
tln−1t

l
n

n−2∏
i=1

tlii − 1

)
· F [(∆(L/A=B)∗)

]
.(20)

Proof. Since for both sides of the stated identity (20), reversing of the ori-
entation of the i-th line corresponds to the substitution

ti → t−1
i

(up to multiplicative units), we are justified to prove the theorem for one
appropriately chosen orientation. More precisely, we will adopt the con-
ventions as discussed before the theorem, that is, we will represent L∗ and
(L/A = B)∗ by means of βn and βn−1, respectively. In this case, li = 1 for
all 1 ≤ i ≤ n − 2 (Equation 17). The (i, j)-entries of the Gassner matrices
µ(βn−2), µ(βn−1) and µ(βn) will be referred to as [ij]n−2, [ij]n−1 and [ij]n,
respectively. If we choose the labeled words wn−2, wn−1 and wn with respect
to Figure 5, we have thus determined the path sets P (n−2)

ij , P (n−1)
ij and P (n)

ij .
From now on, let 1 ≤ i, j ≤ n− 2.
• We can partition P

(n)
ij as

P
(n)
ij = Qn−2 ∪Qn−1 ∪Qn,
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where (see Figure 5)

Qn−2 = {π(sjn, sj(n−1), s(n−1)j, snj)| π ∈ P (n−2)
ij }

Qn−1 = {π(skn, sk(n−1), . . . , s1(n−1), s(n−1)1, . . . , s(n−1)j, snj)|
1 ≤ k ≤ n− 2, π ∈ P (n−2)

ik }
Qn = {π(skn, . . . , s1n, sn1, . . . , snj)| 1 ≤ k ≤ n− 2, π ∈ P (n−2)

ik }.
Therefore,

[ij]n = [ij]n−2tn−1tn +
n−2∑
k=1

[ik]n−2tn(1− tk)t1 · · · tj−1(1− tn−1)

+
n−2∑
k=1

[ik]n−2(1− tk)t1 · · · tj−1(1− tn)

= [ij]n−2tn−1tn +
n−2∑
k=1

[ik]n−2(1− tk)t1 · · · tj−1(1− tn−1tn).

On the other hand, because βn−1 = βgn−2, we can apply Theorem 3:

[ij]n−1 = [ij]n−2tn−1 +
n−2∑
k=1

[ik]n−2(1− tk)t1 · · · tj−1(1− tn−1),

or, [ij]n = F ([ij]n−1).
• Since P (n)

nj consists of only one path π, which is determined by T (π) =
{snj}, we find that

[nj]n = t1 · · · tj−1(1− tn).

• In order to compute P (n)
in , we have to distinguish between the values

l = −1 and l = 1 for link (A∗, B∗). However, the corresponding entry
in µ(βn) is the same for both cases. We assume l = 1, and leave the
case l = −1 to the reader. Because

P
(n)
in = {π(skn, . . . , s1n, sn1, . . . , sn(n−1))| 1 ≤ k ≤ n− 2, π ∈ P (n−2)

ik },
we see that

[in]n =
n−2∑
k=1

(1− tk)t1 · · · tn−1.

• Again, we find the same value for [i(n − 1)]n in both cases for l, and
again we only show the computations for l = 1. A path in P

(n)
i(n−1) is

either one of both types:

π1 = π(skn, . . . , s1n, sn1, . . . , sn(n−1))

π2 = π(skn, sk(n−1), . . . , s1(n−1), s(n−1)1, . . . , sn(n−1))
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where k runs from 1 to n − 2, and where π is an arbitrary path in
P

(n−2)
ik . Notice that

T (π1) = T (π) ∪ {skn, sn(n−1)}
T (π2) = T (π) ∪ {sk(n−1)}

which yields

[i(n− 1)]n =
n−2∑
k=1

[ik]n−2(1− tk)t1 · · · tn−2(1− tn)

+
n−2∑
k=1

[ik]n−2tn(1− tk)t1 · · · tn−2

=
n−2∑
k=1

[ik]n−2(1− tk)t1 · · · tn−2.

In combination with Theorem 3 this means that

[i(n− 1)]n = [i(n− 1)]n−1 = F ([i(n− 1)]n−1),

the last equality following from the observation that tn−1 does not
occur [i(n− 1)]n−1.

• Similarly, as well for l = −1 as for l = 1, we find that

[(n− 1)j]n = t1 − tj−1(1− tn−1).

For example, if l = 1, P (n)
(n−1)j is a pair {π1, π2}, with T (π1) = {s(n−1)j}

and T (π2) = {s(n−1)n, snj}.
• Using straightforward “path computations”, we obtain in the case l =

1:

[(n− 1)(n− 1)]n = t1 · · · tn−2(1− tn−1 + tn−1tn)

[(n− 1)n]n = t1 · · · tn−1(1− tn−1)

[n(n− 1)]n = t1 · · · tn−2(1− tn)

[nn]n = t1 · · · tn−1.

• On the other hand, in the case l = −1 we get:

[(n− 1)(n− 1)]n = t1 · · · tn−2t
−1
n

[(n− 1)n]n = t1 · · · tn−2t
−1
n (tn−1 − 1)

[n(n− 1)]n = t1 · · · tn−2t
−1
n−1(1− t−1

n )

[nn]n = t1 · · · tn−2(1− t−1
n + t−1

n−1t
−1
n ).
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An Alexander matrix for L∗ is obtained by deleting the last row of A(βn)−
In, where A(βn) = τ(βn) = µ(βn), resulting into

M =

(
A B

E C − 1D

)

with A an (n − 2) by (n − 1) matrix, B a column of length n − 2, E a
row of length n− 2, and C − 1 and D single entries. From above it follows
that A can be obtained from F (µ(βn−1) − In−1) by deleting the last row.
Consequently, if P ′ denotes the minor of A that is complementary to the
(n− 2)-th column,

(tn−2 − 1) · P ′ .= F
(
∆(L/A=B)∗

)
.

On the other hand, if P is the minor of M complementary to the (n− 2)-th
column,

(tn−2 − 1) · P .= ∆L∗ .

If K denotes the last column of A, the previous computations of the entries of
µ(βn) imply that B = tn−1 ·K. This enables us to compute P by subtracting
tn−1 times the (n− 1)-th column from the n-th column. In other words,

P = ±(D − tn−1(C − 1)) · P ′.

So, let us distinguish two cases:
• If l = −1:

D − tn−1(C − 1)
= t1 · · · tn−1t

−1
n − t1 · · · tn−2t

−1
n − tn−1(t1 · · · tn−2t

−1
n − 1)

= tn−1(1− t1 · · · tn−2t
−1
n−1t

−1
n )

• If l = 1:
D − tn−1(C − 1)
= t1 · · · tn−1 − t1 · · · tn−2t

2
n−1 − tn−1(t1 · · · tn−2(1− tn−1 + tn−1tn)− 1)

= tn−1(1− t1 · · · tn).

We see that in both cases,
D − tn−1(C − 1) .= (1− t1 · · · tn−2t

l
n−1t

l
n).

We conclude:
∆L∗

.= (tn−2 − 1)P

.= (tn−2 − 1)(1− t1 · · · tn−2t
l
n−1t

l
n)P ′

.= (1− t1 · · · tn−2t
l
n−1t

l
n)F

(
∆(L/A=B)∗

)
.
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In [16] the concept of “derived configuration” has been introduced as
well. The relation “...is adjacent with...” is clearly an equivalence relation
on a non-singular, ordered configuration L of n lines in RP3, invariant under
rigid isotopies. The involved equivalence classes are called adjacency classes.
The derived configuration L′ is in a sense the “quotient” of L under this
equivalence relation; it is the subconfiguration obtained by taking exactly
one line in each adjacency class. Notice that this is well defined up to
rigid isotopy. Of course, Theorem 5 can be used to express the Alexander
polynomial of a line configuration in terms of the Alexander polynomial of
its derived configuration. In order to state this in a precise form, we need a
few more conventions.

Suppose we can partition L into p adjacency classes:

{L1, . . . , Lk1}, . . . , {Lkp−1+1, . . . , Lkp},
with kp = n, then we can always choose parallel orientations for the lines in
the same class, that is, they match as oriented lines in the limit configuration.
This choice implies that they have identical linking numbers w.r.t. the lines
in another class. Furthermore, if an adjacency class is not a singleton, there
is a fixed sign ε ∈ {−1, 1} such that for each pair {L∗i , L∗j} in this class
link (L∗i , L

∗
j ) = ε. We call ε the sign of a class, which is well defined,

since the requirement of parallelism determines the orientations of a class
up to global reversal. In the sequel we will also assume that the derived
configuration L′ inherits its orientation from the previous choices:

(L′)∗ = {L∗k1
, L∗k2

, . . . , L∗kp} = {K∗1 , . . . ,K∗p}.
Once again, we introduce an “iterator”:

F : Z[t±1
1 , . . . , t±1

p ]→ Z[t±1
1 , . . . , t±1

n ]

t1 → t1 · · · tk1

t2 → tk1+1 · · · tk2

...

tp → tkp−1+1 · · · tkp .
Finally, for each i = 1, . . . p (that is, for each adjacency class) we let ϕi
denote the corresponding factor:
• If the i-th class is a singleton then just ϕi = 1.
• Otherwise, if εi is the sign of the i-th class then

ϕi = F

tεii ∏
link (K∗

i
,K∗
j

)=1

tj −
∏

link (K∗
i
,K∗
j

)=−1

tj

 .
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Corollary 6. With the previous conventions and notations, if a line con-
figuration L has p ≥ 2 adjacency classes,

∆L∗
.=

p∏
i=1

ϕ
(ki−ki−1−1)
i · F (∆(L′)∗

)
.

In the case p = 1 (trivial configuration),

∆L∗
.= (1− t1 · · · tn)n−2.

Example. In Figure 6 the ordered configuration L of six oriented lines is
given, as well as its derived configuration L′ = {K1,K2,K3}.

Figure 6: A configuration with three pairs of adjacent lines, resulting in a
derived configuration with three lines.

The orientations are chosen according to the previous convention. The ad-
jacency classes are {L1, L2}, {L3, L4} and {L5, L6} (k1 = 2, k2 = 4, and
k3 = 6). Further, we see that the signs of these adjacency classes are all pos-
itive: ε1 = ε2 = ε3 = +1. The linking numbers in the derived configuration
are:

link (K∗1 ,K
∗
2 ) = link (K∗2 ,K

∗
3 ) = +1

link (K∗1 ,K
∗
3 ) = −1.
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Now, we can compute:

F (∆L′)
.= F (t2 − t1t3) = t3t4 − t1t2t5t6

ϕ1 = F (t1t2 − t3) = t1t2t3t4 − t5t6
ϕ2 = F (t1t2t3 − 1) = t1t2t3t4t5t6 − 1

ϕ3 = F (t2t3 − t1) = t3t4t5t6 − t1t2.

We conclude

∆L = (t3t4 − t1t2t5t6)(t1t2t3t4 − t5t6)(t1t2t3t4t5t6 − 1)(t3t4t5t6 − t1t2).

7. Appendix: Alexander polynomials for configurations up to six
lines.

Below, we present all rigid isotopy types of non-singular configurations with
n lines, 3 ≤ n ≤ 6, up to taking mirror images. Their multi-variable Alexan-
der polynomial was computed by means of Mathematica for the indicated
labels and orientations. Observe how adjacency of lines implies the appear-
ance of simple factors in ∆L.

1

2 3

∆ = t1t2t3 − 1
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1

2 3

4

∆ = (t1 − t2t3t4)2

1

2 3

4

∆ = (t2 − t1t3t4)(t1 − t2t3t4)

1

2 3 4
5

(t1t2 − t3t4t5)3
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1

2 3 4
5

(t3 − t1t2t4t5)(t3t4t5 − t1t2)2

1

2 3 4
5

(t4t5 − t1t2t3)(t1t2t4t5 − t3)(1− t1t2t3t4t5)
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1

2 3 4
5

−t1t22t23t4 + t21t2t3t5 + 2t1t2t3t4t5 − 2t21t2t3t4t5 − 2t1t22t3t4t5 + 2t21t
2
2t3t4t5 −

2t1t2t23t4t5 + 2t21t2t
2
3t4t5 + 2t1t22t

2
3t4t5 − 2t21t

2
2t

2
3t4t5 + t2t3t

2
4t5 − 2t1t2t3t24t5 +

t21t2t3t
2
4t5 + 2t1t22t3t

2
4t5 − 2t21t

2
2t3t

2
4t5 + t21t

3
2t3t

2
4t5 + 2t1t2t23t

2
4t5 − 2t21t2t

2
3t

2
4t5 −

2t1t22t
2
3t

2
4t5 + 2t21t

2
2t

2
3t

2
4t5 + t21t2t

3
3t

2
4t5 − t1t

2
2t4t

2
5 − 2t1t2t3t4t25 + 2t21t2t3t4t

2
5 +

2t1t22t3t4t
2
5 − 2t21t

2
2t3t4t

2
5 − t1t

2
3t4t

2
5 + 2t1t2t23t4t

2
5 − 2t21t2t

2
3t4t

2
5 − t1t

2
2t

2
3t4t

2
5 +

2t21t
2
2t

2
3t4t

2
5 − t31t22t23t4t25 + 2t1t2t3t24t

2
5 − 2t21t2t3t

2
4t

2
5 − 2t1t22t3t

2
4t

2
5 + 2t21t

2
2t3t

2
4t

2
5 −

2t1t2t23t
2
4t

2
5 + 2t21t2t

2
3t

2
4t

2
5 + 2t1t22t

2
3t

2
4t

2
5 − 2t21t

2
2t

2
3t

2
4t

2
5 − t1t22t23t34t25 + t21t2t3t

2
4t

3
5

1

2 3 4

5
6

(t1t2t3t4t5 − t6)4
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1

2 3 4

5
6

(t1t2t3t4t5 − t6)3(t3t4t5 − t1t2t6)

1

2 3 4

5
6

(t1t2t3t4t5 − t6)2(t2t3t4t5 − t1t6)(t4t5 − t1t2t3t6)

1

2 3 4

5
6

(t1t2t3t4t5 − t6)2(t3t4t5 − t1t2t6)(t1t2t5 − t3t4t6)
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1

2 3 4

5
6

(t1t2t3t4t5−t6)(t21t2t3t
2
4t

3
5−t1t22t4t25t6−2t1t2t3t4t25t6+2t21t2t3t4t

2
5t6+2t1t22t3t4t

2
5t6−

2t21t
2
2t3t4t

2
5t6−t1t23t4t25t6+2t1t2t23t4t

2
5t6−2t21t2t

2
3t4t

2
5t6−t1t22t23t4t25t6+2t21t

2
2t

2
3t4t

2
5t6−

t31t
2
2t

2
3t4t

2
5t6+2t1t2t3t24t

2
5t6−2t21t2t3t

2
4t

2
5t6−2t1t22t3t

2
4t

2
5t6+2t21t

2
2t3t

2
4t

2
5t6−2t1t2t23t

2
4t

2
5t6+

2t21t2t
2
3t

2
4t

2
5t6+2t1t22t

2
3t

2
4t

2
5t6−2t21t

2
2t

2
3t

2
4t

2
5t6−t1t22t23t34t25t6+t21t2t3t5t

2
6+2t1t2t3t4t5t26−

2t21t2t3t4t5t
2
6−2t1t22t3t4t5t

2
6+2t21t

2
2t3t4t5t

2
6−2t1t2t23t4t5t

2
6+2t21t2t

2
3t4t5t

2
6+2t1t22t

2
3t4t5t

2
6−

2t21t
2
2t

2
3t4t5t

2
6+t2t3t24t5t

2
6−2t1t2t3t24t5t

2
6+t21t2t3t

2
4t5t

2
6+2t1t22t3t

2
4t5t

2
6−2t21t

2
2t3t

2
4t5t

2
6+

t21t
3
2t3t

2
4t5t

2
6+2t1t2t23t

2
4t5t

2
6−2t21t2t

2
3t

2
4t5t

2
6−2t1t22t

2
3t

2
4t5t

2
6+2t21t

2
2t

2
3t

2
4t5t

2
6+t21t2t

3
3t

2
4t5t

2
6−

t1t
2
2t

2
3t4t

3
6)

1

2 3 4

5
6

(t1t2t3t4t5 − t6)(t3t4t5 − t1t2t6)(t1t2t5 − t3t4t6)(t5 − t1t2t3t4t6)
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1
2

3 4

5

6

−t21t42t23t24t25 + t1t2t3t4t5t6 − . . .+ t31t
3
2t

3
3t

3
4t

3
5t

3
6 − t21t23t24t25t46

(667 terms in total)

1

2 3 4

5
6

t21t
2
2t

2
3t

2
4t

2
5 − t31t2t33t4t5t6 − . . .− t1t32t3t34t35t36 + t21t

2
2t

2
3t

2
4t

2
5t

4
6

(317 terms in total)
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1

2 3 4

5
6

(t1t2t3t4t5 − t6)2(t4t5 − t1t2t3t6)2

1

2 3 4

5
6

(t1t2t3t4t5 − t6)(t1t6 − t2t3t4t5)(t4t5 − t1t2t3t6)(t1t2t3 − t4t5t6)
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1

2 3 4

5
6

t31t
2
2t

2
3t

3
4t

2
5−t21t32t3t24t5t6−2t21t

2
2t

2
3t

2
4t5t6+2t31t

2
2t

2
3t

2
4t5t6+2t21t

3
2t

2
3t

2
4t5t6−2t31t

3
2t

2
3t

2
4t5t6−

t21t2t
3
3t

2
4t5t6+2t21t

2
2t

3
3t

2
4t5t6−2t31t

2
2t

3
3t

2
4t5t6−t21t32t33t24t5t6+2t31t

3
2t

3
3t

2
4t5t6−t41t32t33t24t5t6−

2t21t
2
2t3t

2
4t

2
5t6+2t21t

3
2t3t

2
4t

2
5t6+4t21t

2
2t

2
3t

2
4t

2
5t6−2t31t

2
2t

2
3t

2
4t

2
5t6−4t21t

3
2t

2
3t

2
4t

2
5t6+2t31t

3
2t

2
3t

2
4t

2
5t6−

2t21t
2
2t

3
3t

2
4t

2
5t6+2t31t

2
2t

3
3t

2
4t

2
5t6+2t21t

3
2t

3
3t

2
4t

2
5t6−2t31t

3
2t

3
3t

2
4t

2
5t6+2t21t

2
2t3t

3
4t

2
5t6−2t21t

3
2t3t

3
4t

2
5t6−

2t21t
2
2t

2
3t

3
4t

2
5t6+2t21t

3
2t

2
3t

3
4t

2
5t6−t21t2t3t24t35t6+2t21t

2
2t3t

2
4t

3
5t6−t21t32t3t24t35t6−2t21t

2
2t

2
3t

2
4t

3
5t6+

2t21t
3
2t

2
3t

2
4t

3
5t6−t21t32t33t24t35t6−2t21t

2
2t3t

3
4t

3
5t6+2t21t

3
2t3t

3
4t

3
5t6+2t21t

2
2t

2
3t

3
4t

3
5t6−2t21t

3
2t

2
3t

3
4t

3
5t6−

t21t
3
2t3t

4
4t

3
5t6+t31t

2
2t

2
3t4t

2
6+2t21t2t

2
3t4t5t

2
6−2t21t

2
2t

2
3t4t5t

2
6−2t21t2t

3
3t4t5t

2
6+2t21t

2
2t

3
3t4t5t

2
6−

2t21t2t
2
3t

2
4t5t

2
6+4t21t

2
2t

2
3t

2
4t5t

2
6−2t31t

2
2t

2
3t

2
4t5t

2
6−2t21t

3
2t

2
3t

2
4t5t

2
6+2t31t

3
2t

2
3t

2
4t5t

2
6+2t21t2t

3
3t

2
4t5t

2
6−

4t21t
2
2t

3
3t

2
4t5t

2
6+2t31t

2
2t

3
3t

2
4t5t

2
6+2t21t

3
2t

3
3t

2
4t5t

2
6−2t31t

3
2t

3
3t

2
4t5t

2
6+t1t23t4t

2
5t

2
6−2t21t2t

2
3t4t

2
5t

2
6+

2t21t
2
2t

2
3t4t

2
5t

2
6+2t21t2t

3
3t4t

2
5t

2
6−2t21t

2
2t

3
3t4t

2
5t

2
6+t31t

2
2t

4
3t4t

2
5t

2
6+2t1t2t3t24t

2
5t

2
6−2t21t2t3t

2
4t

2
5t

2
6−

2t1t22t3t
2
4t

2
5t

2
6+4t21t

2
2t3t

2
4t

2
5t

2
6−2t21t

3
2t3t

2
4t

2
5t

2
6−2t1t2t23t

2
4t

2
5t

2
6+4t21t2t

2
3t

2
4t

2
5t

2
6+2t1t22t

2
3t

2
4t

2
5t

2
6−

8t21t
2
2t

2
3t

2
4t

2
5t

2
6+2t31t

2
2t

2
3t

2
4t

2
5t

2
6+4t21t

3
2t

2
3t

2
4t

2
5t

2
6−2t31t

3
2t

2
3t

2
4t

2
5t

2
6−2t21t2t

3
3t

2
4t

2
5t

2
6+4t21t

2
2t

3
3t

2
4t

2
5t

2
6−

2t31t
2
2t

3
3t

2
4t

2
5t

2
6−2t21t

3
2t

3
3t

2
4t

2
5t

2
6+2t31t

3
2t

3
3t

2
4t

2
5t

2
6+t1t22t

3
4t

2
5t

2
6−2t21t

2
2t3t

3
4t

2
5t

2
6+2t21t

3
2t3t

3
4t

2
5t

2
6+

2t21t
2
2t

2
3t

3
4t

2
5t

2
6−2t21t

3
2t

2
3t

3
4t

2
5t

2
6+t31t

4
2t

2
3t

3
4t

2
5t

2
6−2t1t2t3t24t

3
5t

2
6+2t21t2t3t

2
4t

3
5t

2
6+2t1t22t3t

2
4t

3
5t

2
6−

4t21t
2
2t3t

2
4t

3
5t

2
6+2t21t

3
2t3t

2
4t

3
5t

2
6+2t1t2t23t

2
4t

3
5t

2
6−2t21t2t

2
3t

2
4t

3
5t

2
6−2t1t22t

2
3t

2
4t

3
5t

2
6+4t21t

2
2t

2
3t

2
4t

3
5t

2
6−

2t21t
3
2t

2
3t

2
4t

3
5t

2
6+2t21t

2
2t3t

3
4t

3
5t

2
6−2t21t

3
2t3t

3
4t

3
5t

2
6−2t21t

2
2t

2
3t

3
4t

3
5t

2
6+2t21t

3
2t

2
3t

3
4t

3
5t

2
6+t1t22t

2
3t

3
4t

4
5t

2
6−

t21t2t
3
3t5t

3
6−2t21t2t

2
3t4t5t

3
6+2t21t

2
2t

2
3t4t5t

3
6+2t21t2t

3
3t4t5t

3
6−2t21t

2
2t

3
3t4t5t

3
6−t21t2t3t24t5t36+

2t21t2t
2
3t

2
4t5t

3
6−2t21t

2
2t

2
3t

2
4t5t

3
6−t21t2t33t24t5t36+2t21t

2
2t

3
3t

2
4t5t

3
6−t21t32t33t24t5t36+2t21t2t

2
3t4t

2
5t

3
6−

2t21t
2
2t

2
3t4t

2
5t

3
6−2t21t2t

3
3t4t

2
5t

3
6+2t21t

2
2t

3
3t4t

2
5t

3
6−2t1t2t3t24t

2
5t

3
6+2t21t2t3t

2
4t

2
5t

3
6+2t1t22t3t

2
4t

2
5t

3
6−

2t21t
2
2t3t

2
4t

2
5t

3
6+2t1t2t23t

2
4t

2
5t

3
6−4t21t2t

2
3t

2
4t

2
5t

3
6−2t1t22t

2
3t

2
4t

2
5t

3
6+4t21t

2
2t

2
3t

2
4t

2
5t

3
6+2t21t2t

3
3t

2
4t

2
5t

3
6−

2t21t
2
2t

3
3t

2
4t

2
5t

3
6−t2t3t24t35t36+2t1t2t3t24t

3
5t

3
6−t21t2t3t24t35t36−2t1t22t3t

2
4t

3
5t

3
6+2t21t

2
2t3t

2
4t

3
5t

3
6−

t21t
3
2t3t

2
4t

3
5t

3
6−2t1t2t23t

2
4t

3
5t

3
6+2t21t2t

2
3t

2
4t

3
5t

3
6+2t1t22t

2
3t

2
4t

3
5t

3
6−2t21t

2
2t

2
3t

2
4t

3
5t

3
6−t21t2t33t24t35t36+

t1t
2
2t

2
3t4t

2
5t

4
6
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