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WIENER TAUBERIAN THEOREM
FOR RANK ONE SYMMETRIC SPACES

Rudra P. Sarkar

In this article we prove a Wiener Tauberian (W-T) theorem
for Lp(G/K), p ∈ [1, 2), where G is one of the semisimple Lie
groups of real rank one, SU(n, 1), SO(n, 1), Sp(n, 1) or the
connected Lie group of real type F4,and K is its maximal
compact subgroup. W-T theorem for noncompact symmetric
space has been proved so far for L1(SL2(R)/SO2(R)) where
the generator is necessarily K-finite ([S]). We generalize that
result to the case of Lp functions of real rank one groups,
without any K-finiteness restriction on the generator. We also
obtain a reformulation of the W-T theorems using Hardy’s
theorem for semisimple Lie groups.

1. Introduction.

The purpose of this article is to prove a Wiener Tauberian (W-T) theorem for
the Riemannian symmetric space G/K of non compact type, where G is one
of the following semisimple Lie groups of real rank one, namely SU(n, 1),
SO(n, 1), SP (n, 1) and the connected Lie group of real type F4, and K
is a maximal compact subgroup of G. Most of the notation used in the
introduction is standard. The rest will be explained in the next section.

W-T theorems for symmetric space have been proved so far only for
the case SL2(R)/SO2(R) by Sitaram [S] and Sarkar [Sa]; Sitaram [S] ex-
tends the W-T Theorem for biinvariant functions in L1(SL2(R)) (proved
in Ehrenpreis-Mautner [E-M]) to a W-T theorem for L1(SL2(R)/SO2(R))
where the generator is necessarily a K-finite function. A paricular case
(n = 0) of Theorem 1.1 of [Sa] removes this restriction of K-finiteness con-
dition on the generator and extends it for p ∈ [1, 2). In this article we
provide an exact analogue of the latter result for G/K as above. We show
that if the Fourier transforms of a set of functions in Lp(G/K) do not van-
ish simultaneously on any Lp−ε-tempered representations (for some ε > 0),
relevant for functions of G/K, and if one of these functions has a Fourier
transform which is ‘not-too-rapidly-decreasing at ∞’ in a certain sense, then
this set of functions generate Lp(G/K) as a left L1(G) module.

In switching over from SL2(R) to other groups of real rank 1, one encoun-
ters a number of difficulties which prevent a straight forward extension of
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W-T theorem from SL2(R)/SO2(R) to other rank 1 symmetric space. To
reduce the problem to the biinvariant case (of SL2(R)) [S] and [Sa] have
a common way: To find a function g such that the left convolute g ∗ f of
the generator f is biinvariant and this convolute has nonvanishing Fourier
transform wherever f has the same.

But unlike those of SL2(R), non zero K-types are not in general one
dimensional and hence can accommodate more than one M -type. Note that
for a function on G/K with a nontrivial K−type in the left, the Fourier
transform is a matrix valued function. Hence it is posible that two functions
f and g of matching K types (i.e., the right type of f is the same as left
type of g) have non zero Fourier transforms at a certain representation; yet
f ∗ g has zero Fourier transform at the representation.

As mentioned in Trombi [T], there are linear dependecies among matrix
coefficients of the principal series representations and their derivatives w.r.
to λ ∈ a∗C at those λ at which the asymptotic expansions of those matrix
coefficients have singularity. The maximum order of the derivatives involved
is one less than the order of sigularity. For SL2(R) the corresponding order
of singularity is at most one and hence derivatives do not come into the
picture. Therefore various matrix coefficients of the Fourier transform of
a K-finite function at such a representation are not quite independent of
each other. And contrary to what we have experienced in SL2(R), those
relations are not “reformulation of embedding of discrete series in principal
series” (see [T]).

Singularities of the asymptotic expansions of the matrix coefficients of the
principal series representations are the points of trouble. Suppose at a generic
point λ0 in the strip Sγ , a function f on G/K has only one component say
fm of left K-type m with nonzero Fourier transform f̂m. The proof requires
a function g of type 0,m, so that ĝ(λ0) 6= 0. But if λ0 is one of those points
of trouble, then it is possible that though there is m so that Φm,0

λ0
6= 0 it may

happen that Φ0,m
λ0

(x) ≡ 0 for all such m. This removes all hope of getting a
g as required.

All these pose difficulty in tailoring a g which will reduce the generator to
a biinvariant function as in the case of SL2(R). We have saved the situation
to a large extent by using results of Johnson and Wallach [J-W] and Johnson
[J]. We may remark here that a stronger version of this is true for SL2(R)
and is implicitly instrumental in the success of W-T theorem for the whole
of SL2(R) in [Sa] (see Remark in Section 3).

Also we propose a change in the basic step: instead of making a single
left convolute of the generator to shoulder the responsibility of having non-
vanishing Fourier transform at all points λ, we get, for each point λ of the
strip, separate left convolute gλ ∗ f of the generator f such that Fourier
transform of gλ ∗ f is non zero (perhaps only) at the point λ. This sharing
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of responsibilities over the gλ’s eases the process of finding them and helps
us to overcome some of the obstacles encountered. Besides it avoids the
lengthy arguments and constructions used in [Sa].

A disadvantage of using the Corona theorem in this context (used in
[S] for similar extension of W-T theorem from biinvariant functions to
L1(SL2(R)/SO2(R))) is that it can handle only finitely many functions and
therefore can not be adapted in the above scheme of using separate gλ for
every λ. Here, on the other hand, we have used the full force (overlooked
also in [Sa]) of the W-T theorem for biinvariant functions in [B-W] where
the generator set is infinite.

The subject matter of the last sections is a reformulation of W-T theorem
using ‘mathematical uncertainty principle’ (see [H-J]) in which we make
an application of Hardy’s Theorem for semisimple Lie groups in the W-T
theorems. This transfers the not-too-rapidly-decreasing condition on the
Fourier transform of the generator to a decay condition on the generator.

The author is extremely grateful to S.C. Bagchi for countless discussions
with him and his many valuable suggestions.

2. Notation and Preliminaries.

Unless mentioned otherwise, G will denote one of those connected semisim-
ple Lie groups of real rank 1, listed in the introduction. Let K be a fixed
maximal compact subgroup of G and θ be the corresponding Cartan invo-
lution. Let g, k be the Lie algebras of G and K respectively and k + p = g
be the Cartan decomposition w.r.to θ. Let a be a fixed maximal abelian
subspace of p and let A = exp(a). Then dim(a) = 1. Consider the root
space decomposition of g w.r.to a. Due to the one dimensionality of a∗ all
roots will give rise to the same reflection. In fact, the only possible roots in
this case are ±1

2λ, ±λ, ±2λ (see [G-V, p. 62]) of which only one, say α is
simple and the Weyl group W(A) ∼= Z2. Let G = KAN be the correspond-
ing Iwasawa decomposition. We denote by M (resp. M̃) the centralizer
(resp. normalizer) of A in K. Then W(A) ∼= M̃/M . P(A) stands for the
set of parabolic subgroups of G with split part A. Conjugation by elements
of M̃ on N induces a transitive group action on P(A). Now since M nor-
malizes N , the Weyl group W(A) acts (transitively) on P(A): Let ω be
the only non-trivial element of W(A), which takes the positive roots to the
negative roots and let xw ∈ M̃ be such that and π(xw) ≡ ω ∈ W(A), π

being the quotient map: π : M̃ −→ M̃/M . Then for P = MAN ∈ P(A),
Pω = PANω = PAN̄ = P̄ where N̄ = θ(N) = xωNx−1

ω . Thus P(A)
consists of two minimal parabolic subgroups P and P̄ . Also recall that the
only nonminimal parabolic subgroup in our case is G itself.

The representations π(P, σ, λ) and π(P̄ , σ, λ) are the principal series rep-
resentations induced from P and P̄ respectively where σ ∈ M̂ and λ ∈ a∗C.
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The Fourier transform of any right K-invariant function f ∈ Lp(G) w.r.to
the nonspherical principal series is zero. Therefore only the spherical princi-
pal series representations π(P, σ0, λ) (σ0 being the trivial representation of
M̂) are relevant here. We will denote the spherical representation π(P, σ0, λ)
simply by πλ. They are Lp tempered when λ ∈ Sγ = {λ ∈ C| |<λ| ≤ γρ},
where γ = 2

p − 1 and ρ is the half sum of positive roots (see [T, Sec. 4,
Definition 1]). The strip Sγ augmented by ε will be denoted by Sγ

ε = Sγ+ε.
The spherical principal series representations πλ for each λ ∈ a∗C are

realised on the same subspace, say Hσ0 of the Hilbert space L2(K) (compact
picture). Let us fix an o.n.b. {eα} of Hσ0 of K-finite vectors among which
e0 is the K-fixed vector. By matrix coefficients of the representation πλ

we will always mean matrix coefficients w.r. to this {eα}. The (er, es)-th
matrix coefficient of πλ will be denoted by Φr,s

λ . For f ∈ Lp(G/K) and for
λ in the interior of the corresponding strip Sγ , the matrix coefficients of
the Fourier transforms, (f̂(πλ))ei,ej =

∫
〈πλ(x−1)ei, ej〉f(x)dx exist (it is a

consequence of an inequality of Harish-Chandra [T, Section 4, Proposition
3] and of [T, Section 6, (ii), (v)] that 〈πλ(x−1)ei, ej〉 is an Lq-function for

λ ∈
◦
Sγ and 1

p + 1
q = 1) and constitute the formal matrix Fourier transform

f̂(πλ). If either f̂(πλ) or ĝ(πλ) has finitely many nonzero entries and f ∗ g is
defined, then (f̂ ∗ g)(πλ) is given by the matrix multiplication (f̂ ∗ g)(πλ) =
f̂(πλ)ĝ(πλ). For the definition of Schwartz spaces Cp(G)’s, p ∈ [1, 2) and
the characterization of their image under Fourier transform we refer to [T,
Sec. 6 and Sec. 8].

For δ ∈ K̂ let α(δ) = d(δ)χδ where d(δ) = degree of δ and χδ = character
of δ. Let dk be the normalized Haar measure of K. Define α(δ) ∗ f by
(α(δ) ∗ f)(x) =

∫
K α(δ)(k)f(kx)dk for all x ∈ G. f is said to be of left type

δ when α(δ) ∗ f ≡ f . A function is of type (δ, 0) when it is right invariant
and its left type is δ. We have extended the notation used in [Ba] and [Sa]
to the context of real rank 1 groups where the meaning is unambiguous.

Let us now add some more notation, essentially from [T]. We will denote
by Up the set of points of trouble U in the p-strip Sγ . A detailed description
of U is available in [T, pp. 103-108]. In brief: Let U be the set of points
in a∗C = C, at which there are singularities of the asymptotic expansion of
the matrix coefficients. Let F = {δ, 0} , a set of two K-types of which ‘0’
is the trivial one. Let e1, e2, e3, . . . , el are vectors in Hσ0 which transforms
according to δ, where σ0 is the trivial element of M̂ and e0 as ususal is the
K-fixed vector. Fix a minimal parabolic P . Consider the principal series
representation π(P, σ0, λ) for λ ∈ C. Let E be the set of matrix coefficients
of these principal series representations w.r.to vectors (ei, e0), i = 1, 2, . . . , l
and their derivatives w.r.to. λ at the points wλ where w ∈ W and λ ∈ U . As
mentioned earlier, there are linear relations among the elements of E . One
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can choose a basis of E , so that any element of E is a linear combination of
the basis elements.

3. W-T Theorem for rank one Symmetric spaces.

Let us first consider the W-T theorem for biinvariant functions:

Theorem 3.1. Let {fα|α ∈ Λ} be a family of functions in Lp(K\G/K), Λ
being an index set, such that the Fourier transforms f̂α extend holomor-

phically to the strip
◦
Sγ

ε for some ε > 0 and all the matrix coefficients
of f̂α, α ∈ Λ vanish at infinity, that is, lim|λ|−→∞ |(f̂α(λ))m,n| = 0 on
Sγ

ε . Suppose that the collection {f̂α|α ∈ Λ} does not vanish simultane-
ously on any point of the Sγ

ε . Moreover let there be an α0 ∈ Λ such
that f̂α0 further satisfies the not-too-rapidly-decreasing condition at infinity:
lim sup|t|−→∞ | (f̂α0)(it)| |eKe|t| | > 0 for all K > 0. Then the L1(K\G/K)
module generated by {fα|α ∈ Λ} is dense in Lp(K\G/K).

We omit the proof of this theorem as it runs entirely along the lines of the
corresponding proof for L1(SL2(R))0,0 in [B-W]. The crux of the matter is
that the space of Fourier transforms of the Schwartz spaces Cp(Ĝ)0,0 as a
function space is indistinguishable from the corresponding space for SL2(R).
And the only difference between C1(Ĝ) and Cp(Ĝ) is the width of the strip
Sγ , which is the domain of the Fourier transforms.

On our way to the main theorem we need the following:

Observation. For every λ ∈ C, the K-fixed vector e0 is cyclic in at least
one of the spherical principal series among {πwλ |w ∈ W}. (See Johnson
and Wallach [J-W], Theorem 5.1 (2),(3),(4) and Johnson [J], Theorem 5.2.)

For a fixed p let us fix a p′ < p. Then it is known that C∞
C ⊂ Cp′ ⊂ Cp.

When p > 1 we will take p′ = 1. Then we have:

Lemma 3.2. Let λ ∈ Sγ
ε and let πwλ be the spherical principal series rep-

resentation in which e0 is a cyclic vector. Suppose for some f ∈ Lp(G/K),
f̂(πwλ) 6= 0. Then there is a g ∈ C1(G) ∩ Cp′

(G) such that g ∗ f is a
biinvariant Lp-function and ĝ ∗ f(πwλ) 6= 0.

Proof. For any K-type δ, let δf be the projection of f in the left K-type
δ. Then δf is a (δ, 0) type function. Its Fourier transform will be a column
vector. f̂(πwλ) 6= 0 implies that there is a K type δ so that δf̂ is nonzero at
πwλ. This means that there is a vector er in πwλ which transforms according
to δ, and (er, e0)-th matrix coefficient of the Fourier transform of f at πwλ is
nonzero. Now as the K-fixed vector e0 is cyclic in πwλ, the matrix coefficient
〈πwλ(x)e0, er〉 can not be indentically zero, since otherwise the closed linear
span of {πwλ(x)e0 |x ∈ G} will be a subrepresentation orthogonal to er,
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contradicting the fact that e0 is cyclic in πwλ. If λ ∈ Sγ − {w.Up|w ∈ W}
then it is clear from the description of C1(Ĝ) and its isomorphism with
C1(G) ([T, Sec. 8, Definition 1] and [T, Sec. 11, Theorem 1]), that there
exists g ∈ C1(G) of the type (0, δ) such that only the (eo, er)-th matrix
coefficients of its Fourier transform is nonzero at πwλ. It readily follows that
g ∗ f is a biinvariant function with ĝ ∗ f(πwλ) 6= 0.

Now when λ ∈ Sγ ∩ {w.Up|w ∈ W}, it is not clear how to find a g as
above which will have only one chosen matrix coefficient nonzero as this
time the matrix coefficients have dependencies among themselves [T, Sec.
8, Definition 1(4)]. We need a more careful argument here to show that such
a g is available. Since e0 is cyclic for πwλ, its (e0, er)-th matrix coefficient,
Φ0,r

wλ can not be identically zero. Hence this particular matrix coefficient
can be in the basis mentioned in Section 2. Also for the same reason, for
linearly independent vectors er1 , er2 . . . , erk

∈ Hσ0 it can not happen that
Σk

i=1ai〈πwλ(x)e0, eri〉 = 〈πwλ(x)e0,Σk
i=1aieri〉 = 0 for all x ∈ G, unless a1 =

a2 = . . . = ak = 0. Thus the matrix coefficients Φ0,r
wλ are linearly independent

functions for r = 1, . . . , k, where e1, . . . , ek and e0 form a basis of the
space of vectors transforming according to δ in the representation space
πwλ. However they may depend on some of the derivatives of the others.
Now as Φ0,r

wλ are linearly independent elements of (C1(G)0,δ)∗, the dual space
of the Frechét space C1(G)0,δ, an application of Hahn-Banach thorem now
gives us a g ∈ C1(G)0,δ such that only its (e0, er)-th matrix coefficient of the
Fourier transform is not zero. One can also appeal directly to isomorphism
of C1(G) with C1(Ĝ) [T, Sec. 11, Theorem 1] to get such a g. This proves
the lemma for p > 1 as in this case p′ can be taken to be 1.

When p = 1 we proceed through the same steps. Only instead of appealing
to the isomorphism theorem of schwartz spaces Cp′

, we use Paley-Wiener
Theorem (see Kawazoe [Ka, Theorem 5.2]) for getting a g as above. As
C∞

C ⊂ Cp′ ⊂ C1 for any p′ < 1, the lemma follows. �

Note that in the above proof the choice of the function g depends on λ.
It serves only for λ.

Theorem 3.3. Let {fα|α ∈ Λ} be a subset of Lp(G/K), Λ being an index
set, such that the Fourier transform f̂α of each fa has a holomorphic ex-

tension on
◦
Sγ

ε for some ε > 0 and all the matrix coefficients of f̂α for all
α vanish at infinity, i.e., lim|λ|−→∞ |(f̂α(λ))m,n| = 0 on Sγ

ε . Suppose that
the collection {f̂α|α ∈ Λ} do not have common zero on any representation
(containing the K-fixed vector) parametrized by Sγ

ε . Let there be an α0 ∈ Λ
such that f̂α0 further satisfies the condition:

lim sup
|t|−→∞

|| δ(f̂α0)(it)|| |eKe|t| | > 0 for all K > 0,(1)
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for some δ ∈ K̂. Then the left L1(G) module generated by {fα|α ∈ Λ} is
dense in Lp(G/K).

Proof. We look at the collection of K-biinvariant functions:

F = {g ∗ fα| g ∈ C1(G) ∩ Cp′
, and g is left invariant, α ∈ Λ},

where p′ is as in Lemma 3.2. Without loss of generality we assume that the
strip Sγ

ε = Sγ+ε corresponds to p′, i.e. 2
p′ − 1 = γ + ε; otherwise γ + ε can

be replaced by min{γ + ε, 2
p′ − 1}. Let λ ∈ Sγ

ε . Then there exists w0 ∈ W
such that the K-fixed vector e0 is cyclic in πw0λ. By the hypothesis there
is α ∈ Λ such that f̂α(w0λ) 6= 0. Therefore by the lemma above there
is a member g ∗ fα in F for which ĝ ∗ fα(w0λ) 6= 0. But g ∗ fα being a
K-biinvariant function ĝ ∗ fα(λ) = ĝ ∗ fα(w0λ) and hence ĝ ∗ fα(λ) 6= 0.
Thus the collection F satisfies the nonvanishing condition of Theorem 3.1.

The not-too-rapidly-decreasing condition in the hypothesis implies,

lim sup
|t|−→∞

|| δ(f̂α0)(it)n,0|| |eKe|t| | > 0

for all K > 0, where δ(f̂α0)(it)n,0 is the matrix coefficient w.r.to. the vectors
(en, e0) for some vector en in Hσ0 which transforms according to δ. We find
a function g ∈ C1(G)0,δ which is left invariant and the only nonzero compo-
nent of its Fourier transform is ĝ0,n and further |ĝ0,n(it)| is of order e−t2 for
t ∈ R. Such a choice is possible because except for t = 0, all other represen-
tations parametrized by λ = it, t ∈ R are irreducible representations (see
Knapp [K], Theorem 14.15). Therefore the matrix coefficients are linearly
independent since any linear relation between two matrix coefficients say,
〈π(x)e0, u〉 and 〈π(x)e0, v〉 for two linearly independent vectors u, v in the
irreducible representation π would mean 〈π(x)e0, u− kv〉 ≡ 0. This implies
that the closed linear span of π(x)e0 for x ∈ G is a subrepresentation or-
thogonal to u − kv, contradicting the irreducibility of π. Then g ∗ fα0 is
K-biinvariant and ĝ ∗ fα0 satisfies the decay condition of Theorem 3.1. As
g ∈ Cp′

, for p′ < p all other conditions of Theorem 3.1 are clearly satis-
fied. Therefore by that theorem the L1(G)-module generated by F is dense
in Lp(G)0,0. Now as the smallest closed left L1(G)-invariant subspace of
Lp(G/K) containing Lp(G)0,0 is Lp(G/K) itself, the theorem follows. �

Remarks.
1. The results of [J-W] and [J] mentioned above plays an important role
for the success of this theorem. A more general and stronger result is true
for SL2(R): Fix a K type n, which determines a single M type σ. Then for
every λ, {πwλ |w ∈ W} has at least one element which has an irreducible
subrepresentation containing a vector which transforms according to n. It



356 RUDRA P. SARKAR

is a key fact behind the sucess of the W-T theorem for whole of Lp(SL2(R))
in [Sa].
2. The slightly bigger strip is a technical necessity inherited from the corre-
sponding results for the K-biinvariant functions ([E-M] and [B-W]). The
process of extension (from the K-biinvariant case) employed in this article,
however, do not use the requirement of the bigger strip. This is yet an-
other advantage over [S], where the Corona theorem is made use of in the
extension and their use of the Corona theorem needs an extended domain
essentially. Even when one starts from an exact strip version of the W-T
theorem for the K-biinvariant functions, the use of the Corona theorem adds
the restriction of bigger strip, while going towards W-T theorem for symmet-
ric space from that of K-biinvariant functions in the way demonstrated in
[S]. Recently Ben Natan et al. has provided in [B-B-H-W 2] (announced
in [B-B-H-W]) an exact strip version of W-T theorem for biinvariant L1

functions of SL2(R). For the fact in 1 above, arguments analogus to Theo-
rem 3.3 will lead to an extension of the result [B-B-H-W] to an exact-strip
version of the W-T thorem for PSL2(R) = SL2(R)/{±I}:
Theorem 3.4. Let F ⊂ L1(PSL2(R)). Suppose that the Fourier trans-
forms of the functions in F never vanish simultaneously on any relevant
L1-tempered irreducible representations (i.e., on the representations para-
metrized by the points on the strip S1 and on the discrete series parametrized
by odd integers) and that δ∞(F) = 0 where δ∞(F) = inf{δ∞(f)} and
δ∞(f) = − limt−→∞ sup e−πt log |f̂(it)|. Then the ideal generated by F is
dense in L1(PSL2(R)).

4. Hardy’s theorem and not-too-rapidly-decreasing conditions.

Here we obtain a reformulation of the W-T theorems by using Hardy’s the-
orem for semisimple Lie groups, proved by Sitaram and Sundari [S-S]. Let
us first quote the Hardy’s theorems, for noncompact symmetric spaces from
[S-S]. Here σ(x) is the norm given by the Killing form.

Theorem 4.1 (Sitaram-Sundari). Let G be a connected, noncompact semi-
simple Lie group G with finite center. Suppose f is a measurable right
K-invariant function on G satisfying the following estimates for some pos-
itive constants C, α and β: |f(x)| ≤ Ce−ασ(x)2 , x ∈ G and ||f̂(λ)|| ≤
Ce−β||λ||2 , λ ∈ ia∗. If αβ > 1

4 , then f = 0 a.e.

From this we get for G as in the previous sections:

Theorem 4.2. Let F = {f r|r ∈ Λ} be a subset of Lp(G/K), Λ being an
index set, such that the Fourier transforms f̂ r of each f r has a holomorphic

extension on
◦
Sγ

ε for some ε > 0 and all the matrix coefficients of f̂ r for all
r vanish at infinity, that is, lim|λ|−→∞ |(f̂ r(λ))m,n| = 0 on Sγ

ε . And let for
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some f ∈ F and positive constants C and α, |f(x)| ≤ Ce−ασ(x)2 , x ∈ G.

Also assume that the collection {f̂ r|r ∈ Λ} does not have common zeros
on Sγ

ε . Then the left L1(G) module generated by {f r|r ∈ Λ} is dense in
Lp(G/K).

Proof. Take β = 1
3α . Then by Theorem 4.1 above lim sup

|λ|−→∞
||f̂(λ)||.eβ|λ|2 = ∞

for λ ∈ iR = ia∗. Therefore lim sup|λ|−→∞ ||f̂(λ)|| .eKe|λ|
= ∞ for all K > 0.

Now it is clear that F satisfies all the conditions of Theorem 3.3. Hence the
theorem follows. �

Remarks.
1. Any function f in C∞

c trivially has the decay and so the not-so-rapidly-
decreasing condition can be replaced by assuming that the generator set
contains a function from C∞

c .
2. There is a distinguished space of functions, known as Zero-Schwartz
space, on G which contains C∞

c (G) and sits inside Cp(G) for every p ∈ (0, 2]
(see [Ba] and Wallach [W]). Infact the Zero-Schwartz space, C0(G) =
∩{Cp(G)| p ∈ (0, 2]}. For f ∈ C0(G), |f(x)| ≤ e−Kσ(x), for all K > 1 (see
[Ba, p. 99]). One wonders if a function from C0(G) in the generator set can
substitute for the not-too-rapidly-decreasing condition.
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