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A GENERALIZED CHERN-SIMONS FORMULA

Shi-kun Wang

In the short note we will generalize the famous Chern-
Simons formulae.

Let M be a C∞ manifold, π : E → M a complex vector bundle of rank
n, and Ωp(E) the space of all C∞-sections of the bundle ΛpT ∗(M) ⊗ E.
A connection D on E is defined to be a linear operator D : Ω0(E) →
Ω1(E) satisfying Leibnitz’ rule. If {Uα, φα} is a trivialization of E and
eα = {eα,1, . . . , eα,n} is a local frame over Uα for E then the action of D
on the frame can locally be represented as

Deα = eα Aα

where the matrix Aα of 1-form is called the connection matrix ofD associated
with the frame {eα} over Uα. Let eβ = {eβ,1, . . . , eβ,n} be another frame over
the same Uα or another trivialization {Uβ, φβ} of E and Aβ be the connection
matrix associated with the frame {eβ}. Transformation property of the two
connection matrices should be

Aβ = G−1AαG+G−1 dG(1)

where G is transformation matrix between the two frames {eα} and {eβ},
that is eβ = eα G, and G ∈ GL(n,C).

Now suppose D(1) and D(2) are two connection operators with the con-
nection matrices A(1)

α and A(2)
α over the frame {eα}. Consequently , the

operator η2,1 = D(2) − D(1) is given, which can be locally identifies with a
matrix η2,1

α = A(2)
α −A(1)

α over the frame {eα} and transforms by the rule

η2,1
β = G−1η2,1

α G, G ∈ GL(n,C).(2)

Let ξ ∈ Ωp(E) and can be represented by ξ = eα · ξα =
∑n
i=1 ξα,i eα,i in

terms of the local frame {eα}. We extend the action of the connection D to
the higher differential form ξ by setting

D(ξ) = eα dξα +Deα ∧ ξα.
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Then the curvature operator F can be defined by F = D2 : Ωp(E) →
Ωp+2(E). In terms of local frame {eα} of vector bundle E we have

F|Uα = dAα +Aα ∧Aα, Fα ≡ F|Uα ,(3)

where Fα is called the curvature matrix of the connection D associated with
the frame {eα} over Uα and it satisfies the following transformation rule:

Fβ = G−1FαG, G ∈ GL(n,C).(4)

For simplicity we will sometimes write F , A, η2,1 instead of Fα, Aα, η2,1
α ,

omitting the subscribe α.
Let Mn ≡ Cn2

denote the vector space of n × n matrices with complex
entries. A polynomial function P̃ : Mn → C, homogeneous of degree r in
the entries, is said to be invariant if P̃ (gαg−1) = P̃ (α), for all α ∈ Mn and
g ∈ GL(n,C). A r-linear form

P :
r︷ ︸︸ ︷

Mn × · · · ×Mn → C

is said to be invariant if the identity P (gα1g
−1, · · · , gαrg−1) = P (α1, · · · ,

αr) holds for all α1, · · · , αr ∈ Mn and g ∈ Gl(n,C). An invariant r-linear
form P clearly induces an invariant homogeneous polynomial P̃ of degree r
by setting P̃ (α) = P (α, · · · , α). In fact, the converse is also true by setting

P (α1, . . . , αr) =
(−1)r

r!

r∑
j=1

∑
i1<···<ij

(−1)jP̃ (αi1 + · · ·+ αij ).(5)

This means that any invariant polynomial P̃ of degree r can be realized
as the restriction of an invariant r-linear form on Mn × · · · ×Mn. And we
have

P (α1, . . . , αi, . . . , αj, . . . , αr)P (α1, . . . , αj, . . . , αi, . . . , αr).(6)

We also apply P (α1, . . . , αl, α
r−l) instead of P (α1, . . . , αl, αl+1, . . . , αr) if

αl+1 = αl+2= · · · = αr.
Now, we linearly extend the action of P to Md1

n × · · · ×Mdr
n , where Mdi

n

denote the vector space of n×n matrix with di-forms as entries and we make
use of the same symbol P to the extended one. For example, when wi are
di-forms (i = 1, 2, . . . , r) we define

P (ω1α1, . . . , ωrαr) = ω1 ∧ · · · ∧ ωrP (α1, . . . , αr),
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where αi are general matrices. Moreover, if Wi are matrices of di-forms
written as Wi =

∑
li
ωliαli , then set

P (W1, . . . ,Wr) =
∑
l1...lr

P (ωl1αl1 , . . . , , ωlrαlr)

=
∑
l1...lr

ωl1 ∧ ... ∧ ωlrP (αl1 , · · · , αlr).
(7)

And we have

P (W1, . . . ,Wi, . . . ,Wj, . . . ,Wr)
(8)

= (−1)(di+1+···+dj−1)(di+dj)+didj · P (W1, . . . ,Wj, . . . ,Wi, . . . ,Wr).

We take a small parameter t and let g = etT for a matrix T . We have

P (gW1g
−1, . . . , gWrg

−1) = P (W1, . . . ,Wr).(9)

Expanding the matrix with respect to the parameter t,

g = I + tT +
1
2!
t2T 2 + · · · ,

and substituting it into the equation (9) above we can get the following
lemma.

Lemma. Let P be an invariant r−linear form and T be a general matrix.
Then the identity

r∑
i

P (W1, . . . , TWi −WiT, . . . ,Wr) = 0

holds.

If φ is a 1-form and f is a function matrix then from the lemma it follows
that

r∑
i

(−1)d1+···+di−1P (W1, . . . , φ ∧ fWi, . . . ,Wr)

=
r∑
i

φ ∧ P (W1, · · · , fWi, . . . ,Wr)(10)

=
r∑
i

(−1)d1+···+diP (W1, . . . ,Wif ∧ φ, . . . ,Wr).
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For the case of Θ being any matrix of 1-form, we can write Θ =
∑
θifi,

where θi are 1-forms and fi function matrices. Using r linearity of P and
(10), we obtain

(11)
r∑
i=1

(−1)d1+···+di−1 [P (W1, . . . ,Θ ∧Wi, . . . ,Wr)

− (−1)diP (W1, . . . ,Wi ∧Θ, . . . ,Wr)] = 0.

Let D(i)(i = 0, . . . , k) be k + 1 connections given for the vector bundle
E and A(i)(i = 0, 1, . . . , k) are the connection matrices associated with the
frame {eα}. We define the interpolations among them as follows

Aj0,j1,··· ,jk = A(j0) + t1η
j1,j0 + · · ·+ tkη

jk,j0 ,

0 ≤ t1, . . . , tk ≤ 1, t1 + · · ·+ tk ≤ 1,
(12)

where ηjk,j0 = A(jk) −A(j0). The curvature Fj0,j1,··· ,jk is

Fj0,j1,··· ,jk = dAj0,j1,··· ,jk +Aj0,j1,··· ,jk ∧Aj0,j1,··· ,jk .
We have the Bianchi identity

dFj0,j1,··· ,jk = [Fj0,j1,··· ,jk , Aj0,j1,··· ,jk ].(13)

Moreover we have

∂/∂tiFj0,j1,··· ,jk = dηji,j0 + ηji,j0 ∧Aj0,j1,··· ,jk +Aj0,j1,··· ,jk ∧ ηji,j0 .(14)

We now consider k-simplex set ∆k consisting of ti ≥ 0(i = 1, . . . , k),∑k
i=1 ti ≤ 1 in Euclidean space Rk. The orientation of ∆k is fixed to be

[∂/∂t1, . . . , ∂/∂tk] and the volume element is dt1 ∧ · · · ∧ dtk. Projection of
∆k to the boundary ∂∆k with ti = 0 (i = 1, . . . , k) are denoted by ∆k−1(t̂i).
Its orientation should be (−1)i[∂/∂t1, . . . , ∂/̂∂ti, . . . , ∂/∂tk] and the volume
element dt1 ∧ · · · ∧ dt̂i ∧ · · · ∧ dtk.

Definition. Let P be an invariant r-linear polynomial. The Q− polyno-
mials of differential form associated with P are defined as

Q(k)
r (A(j0), . . . , A(jk); ∆k)

=
r!

(r − k)!

∫
∆k

P (ηj1,j0 , . . . , ηjk,j0 ,Fr−kj0,j1,··· ,jk)dt1 ∧ · · · ∧ dtk

Q(0)
r (A; ∆0) = P (Fr), k ≤ r.(15)
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From the definition one can easily show that the Q-polynomials are inde-
pendent of the trivialization {Uα, φα} of the vector bundle E and the frame
{eα} over {Uα} due to the transformation properties (2) and (4). This means
that the Q-polynomials are well-defined global differential forms on M . So
we can also rewrite the definition (15) as

Q(k)
r (D(j0), . . . ,D(jk); ∆k)

=
r!

(r − k)!

∫
∆k

P (ηj1,j0 , . . . , ηjk,j0 ,Fr−kj0,j1,··· ,jk)dt1 ∧ · · · ∧ dtk

Q(0)
r (D; ∆0) = P (Fr), k ≤ r.

Based upon properties of the invariant polynomial P , it can also be shown
that under permutation of the connections D(i), the Q-polynomials satisfy

Q(k)
r (D(0), . . . ,D(k); ∆k) = ε0···kj0···jkQ

(k)
r (D(j0), . . . ,D(jk); ∆k).(16)

The most important property of the Q-polynomials is described by the
following theorem:

Theorem 1. Assume that the Q-polynomials are defined as Eq. (15). Then
there exists a relation between k-th Q-polynomial and (k−1)-th Q-polynomials
as follows:

dQ(k)
r (D(0), . . . ,D(k); ∆k)(17)

=
k∑
i=0

(−1)iQ(k−1)
r (D(0), . . . , D̂(i), . . . ,D(k); ∆k−1(̂i)).

Proof. We first calculate

dP (η1,0, . . . , ηk,0,Fr−k0,1,... ,k)

=
k∑
i=1

(−1)i−1P (η1,0, . . . , dηi,0, . . . , ηk,0,Fr−k0,1,··· ,k)

(18)

+ (−1)k
r−k−1∑
j=0

P (η1,0, . . . , ηk,0,F j0,1,··· ,k, dF0,1,··· ,k,Fr−k−1−j
0,1,··· ,k ).

By means of Bianchi identity (13) and the identity (11), we get
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dP (η1,0, . . . , ηk,0,Fr−k0,1,··· ,k)

=
k∑
i=0

(−1)i−1P (η1,0, . . . , ∂/∂tiF0,1,··· ,k, . . . , η
k,0,Fr−k0,1,··· ,k),

(19)

=
1

r − k + 1

k∑
i=1

(−1)i−1∂/∂tiP (η1,0, . . . , η̂i,0, . . . , ηk,0,Fr−k+1
0,1,··· ,k).

Performing integration over 4k and multiplying by (r − k + 1) in (19), we
obtain

(r − k + 1)d
∫
4k
P (η1,0, . . . , ηk,0,Fr−k0,1,··· ,k)dt1 ∧ · · · ∧ dtk

(20)

=
k∑
i=1

(−1)i−1

∫
4k

∂

∂ti
P (η1,0, . . . , η̂i,0, . . . , ηk,0,Fr−k+1

0,1,··· ,k)dt1 ∧ · · · ∧ dtk

=
k∑
i=1

∫
4k
dt{P (η1,0, . . . , η̂i,0, . . . , ηk,0,Fr−k+1

0,1,··· ,k)dt1 ∧ · · · ∧ d̂ti ∧ · · · ∧ dtk},

where dt is the exterior differential operator with respect to the parameters
{ti}. Then by Stokes’ theorem, the right-hand side of the last identity above
is nothing but

k∑
i=1

∫
∂4k

P (η1,0, . . . , η̂i,0, . . . , ηk,0,Fr−k+1
0,1,··· ,k)dt1 ∧ · · · ∧ d̂ti ∧ · · · ∧ dtk

(21)

=
k∑
i=1

∫
4k−1(t̂i)

(−1)iP (η1,0, . . . , η̂i,0, . . . , ηk,0,Fr−k+1
0,1,··· ,k)dt1 ∧ · · · ∧ d̂ti ∧ · · · ∧ dtk

+
k∑
i=1

∫
4k∩{t1+···+tk=1}

P (η1,0, . . . , η̂i,0, . . . , ηk,0,Fr−k+1
0,1,··· ,k)dt1 ∧ · · · ∧ d̂ti ∧ · · · ∧ dtk

where orientation of the integral region 4k ∩ {t1 + · · ·+ tk = 1} induced by
4k should be [∂/∂t2 · · · ∂/∂tk]. Changing parameters {t} to {s} as follows:

(22) t1 = 1− s1 − s2 − · · · − sk−1, t2 = s1, . . . , ti−1 = si−2,

ti+1 = si, . . . , tk = sk−1, 0 ≤ s1, . . . , sk−1 ≤ 1.
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It is easy to prove that the curvature 2-forms F0,1,··· ,k will become F1,2··· ,k−1

under the change. The volume element dt1∧· · ·∧ d̂ti∧· · ·∧dtk is transformed
into (−1)i−1ds1∧ · · · ∧dsk−1, and the integral region 4k ∩{t1 + · · ·+ tk = 1}
is transformed into 4k−1(s) consisting of {s} with s1 ≥ 0, . . . , sk−1 ≥ 0 and
s1 + · · · + sk−1 ≤ 1. Moreover, the parameter transformation (22) reserves
the orientations 4k ∩ {t1 + · · · + tk = 1} and 4k−1(s), i.e., the orientation
[∂/∂t2, . . . , ∂/∂tk] is transformed into [∂/∂s1, . . . , ∂/∂sk−1], which is just
the proper orientation of 4k−1(s) as is mentioned above. Therefore, the last
summation on the right-hand side of Eq. (21) is equal to

k∑
i=1

(−1)i−1

∫
4k−1(s)

P (η1,0, . . . , η̂i,0, . . . , ηk,0,Fr−k+1
1,2,... ,k−1)ds1 ∧ · · · ∧ dsk−1.

(23)

On the other hand, from the properties of invariant polynomial P it follows
that

k∑
i=1

(−1)i−1P (η1,0, . . . , η̂i,0, . . . , ηk,0,Fr−k+1
1,··· ,k−1)(24)

= P (η2,1, . . . , ηk,1,Fr−k+1
1,2,... ,k−1).

Thus, by means of these formulas, we obtain

(r − k + 1)d
∫
4k
P (η1,0, . . . , ηk,0,Fr−k0,1,··· ,k)dt1 ∧ · · · ∧ dtk

(25)

=
k∑
i=1

(−1)i
∫
4k−1(t̂i)

P (η1,0, . . . , η̂i,0, . . . , ηk,0,Fr−k+1
0,1,··· ,k)dt1 ∧ · · · ∧ d̂ti ∧ · · · ∧ dtk

+
∫
4k−1(s)

P (η2,1, . . . , ηk,1,Fr−k+1
1,··· ,k−1)ds1 ∧ · · · ∧ dsk−1.

Multiplying both side by the factor r!/(r−k+1)! and recalling the definition
of Q-polynomials, we get the relation (17). This completes the proof of the
theorem.

Let us now illustrate the meaning of the Theorem 1 by considering some
simple cases. We start with the case of k=1. The interpolation (12) and the
definition (15) tell us

A0,1 = A(0) + t1η
1,0, η1,0 = A(1) −A(0),
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and
Q(0)
r (D(0); ∆0) = P (Fr0,1), Q(0)

r (D(1); ∆0) = P (Fr1 ),

Q(1)
r (D(0);D(1),∆1) = r

∫ 1

0

P (A(1) −A(0),Fr−1
0 )

 .
Then the Theorem 1 gives

P (Ωr
1)− P (Ωr

0) = dQ(2)
r (D(0),D(1); ∆1),

which is just the famous Chern-Simons formulae [1].
In the case of k=2, the interpolation connection in (12) becomes

A0,1,2 = A(0) + t1η
1,0 + t2η

2,0,

and the Theorem 1 reads

dQ(2)
r (D(0),D(1),D(2); ∆2)

= Q(1)
r (D(1),D(2); ∆1)−Q(1)

r (D(0),D(2); ∆1) +Q(1)
r (D(0),D(1); ∆1)

where Q(1)
r are defined as above and

Q(2)
r (D(0),D(1),D(2); ∆2) = r(r − 1)

∫ 1

0

dt1

∫ 1−t1

0

P (η1,0, η2,0,Fr−2
0,1,2)dt2.

Consider the integral of the Q−polynomials Q(k−1)
r (D(0),D(1), . . . ,

D(k−1); ∆k−1) over M 2r−k+1, which is a (2r−k+1) dimensional sub-manifold
of C∞ manifold M . That is

Q̃(k−1)
r (D(0),D(1), . . . ,D(k−1); ∆k−1)

=
∫
M2r−k+1

Q(k−1)
r (D(0),D(1), . . . ,D(k−1); ∆k−1).

The integral give a mapping Q̃(k−1)
r from (D(0), . . . ,D(k−1)) to C, which

can be regarded as a (k−1)-th co-chain on the affine space of all connections
on the vector bundle E. If we introduce a operator δ, which is defined by
the following formulae

(δQ̃(k−1)
r )(D(0), . . . ,D(k); ∆k)

=
k∑
i=0

(−1)iQ(k−1)
r (D(0), . . . , D̂(i), . . . ,D(k); ∆k−1(t̂i)),

then it is easy to prove that the operator is a boundary one, δ2 = 0. So the
Theorem 1 can be rewritten as:
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Theorem 2.∫
M2r−k+1

dQ(k)
r (D(0), . . . ,D(k); ∆k) = (δQ̃(k−1)

r )(D(0), . . . ,D(k); ∆k).

We note that the Theorems (1) and (2) are given for the complex vector
bundle. This is due to simplicity. In fact, the theorems are also true for real
vector bundle, or more general principal bundles [2].

For the case of principal bundles, if the submanifold M2r−k+1 is without
boundary, ∂M 2r−k+1 = 0, it follows that

δQ̃(k−1)
r = 0.

This implies that the result given in the note should be concerned with the
cohomology groups of the moduli spaces A/G, where A is affine space of
all connections subjected to some conditions on principal bundles and G is
gauge groups. In a coming paper we will discuss the problem.
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