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ON THE (NON)-COINCIDENCE
OF MILNOR–THURSTON HOMOLOGY THEORY

WITH SINGULAR HOMOLOGY THEORY

Andreas Zastrow

The paper investigates a homology theory based on the
ideas of Milnor and Thurston that by considering measures on
the set of all singular simplices one should get alternate possi-
bilities for describing the cycles of classical homology theory.
It suggests slight changes to Milnor’s and Thurston’s original
definitions (giving differences for wild topological spaces only)
which ensure that their homology theory is well-defined on all
topological spaces. It further proves that Milnor-Thurston ho-
mology theory gives the same homology groups as the singu-
lar homology theory with real coefficients for all triangulable
spaces. An example showing that the coincidence between
these both homology theories does not hold for all topological
spaces is also included.

The idea of the Milnor-Thurston homology is, roughly speaking, that the
usual homology groups with real coefficients can be defined by considering
measures on the set of all singular simplices when using appropriate def-
initions, and hence that infinite chains can be defined, which is of some
use in certain proofs because of the additional possibilities that this homol-
ogy theory provides in representing the cycles. Since those measures which
are concentrated on a finite number of singular simplices give the same be-
havior as the corresponding formal sum of these singular simplices in the
singular homology theory, the definition of chains by measures as explained
in the first sentence can be regarded as a generalisation of the usual chains.
The possibility that such a homology theory can by used in the proofs of
the Mostow and Gromov Theorems for hyperbolic manifolds was stated in
Thurston’s famous preprint [Th] (pp. 6.6-6.7). Thurston there referred this
idea to a joint work with Milnor and to a forthcoming paper of [MTh],
which, however never appeared ([MR], 1977-1994). The use of this homol-
ogy theory can be avoided in the proof of the Mostow Theorem, but its
use is essential in a proof of the fact the three-dimensional closed oriented
hyperbolic manifolds with the same volume are isometric, if they can be
mapped onto each other by a degree-one mapping. This is the theorem
we are calling “Gromov Theorem”, since Thurston referred this statement
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to him ([Th], (Thm. 6.4)/[HM], (Thm.1)). Gromov in [Gr], §2 (last line)
however circumvents the use of Milnor-Thurston homology theory and takes
a dual point of view instead. Other traces of this homology theory can be
found in the book of Benedetti and Petronio [BP], (page xii) (who explain
in their introduction they will avoid using this theory) and in Munkholm’s
workout ([Mnkh], (§4)) of the corresponding paragraphs of [Th]. Neither
Thurston nor Munkholm, however, do give much information on how to
prove that this homology theory is well-defined and gives the usual homol-
ogy groups (more can be found in Ratcliffe’s book [Rcl], (Thm. 11.5.1), but
cf. Remark 0.1 below). The purpose of this paper now is to give elaborated
versions of these proofs while adapting the definitions as originally suggested
by Milnor and Thurston so that they can be applied to a much larger class
of spaces as the original ones. More precisely, the content of this paper can
be characterized as workouts of the proofs of the following facts:

(i) We suggest for all topological spaces and all pairs of topological spaces
the definition of some homology theory which has infinite chains de-
fined by considering measures on the set of all singular simplices (cf.
1.8, 1.12, 1.13 and 2.9-2.10(ii)).

(ii) This theory gives for all (possibly infinite) simplicial complexes (in
the relative case: Pairs of simplicial complexes) the same homology
groups as the classical singular theory with real coefficients; a natural
isomorphism is constructed (cf. Sect. 5).

(iii) For differentiable manifolds our definitions do not give other homology
groups as Milnor’s and Thurston’s original definitions (cf. 3.4).

(iv) The coincidence in the sense of (ii) does not hold for all topological
spaces. An example showing this fact is included in Section 6.

The outline of the coincidence proof is due to Eilenberg and Steenrod ([ES])
and can be interpreted as applying a standardized final conclusion after
showing that the Milnor-Thurston homology theory satisfies several prop-
erties (“Eilenberg-Steenrod-Axioms”). So the main difficulties arise when
trying to verify these axioms, since not all proof techniques of singular ho-
mology theory can be used in Milnor-Thurston theory also, and some can
only be applied after having taken additional care. The crucial point can be
seen as follows: In singular homology theory the set of singular simplices is a
free basis and hence almost every construction which can be performed with
singular simplices extends to homomorphisms between the singular chain
groups. But in Milnor-Thurston homology theory the set of singular sim-
plices can only be regarded as points of some space where only continuous
mappings extend to homomorphisms of the Milnor-Thurston chain groups
(cf. 2.1(i)). This continuity is not given in every case (e.g. 4.8-4.9/4.12),
and even where it is given in singular homology one does not usually pay
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attention to it. Because of those phenomena this paper proves the excision
theorem only under additional conditions for non-normal spaces (cf. 4.1).

0.1. Remark. It turns out that in the highest dimension of a closed oriented
hyperbolic manifold the isomorphism between the two homology theories of
consideration (cf. (ii) above) is an isometry with respect to the Gromov norm
“‖ ·‖”. Note that this property is essential for the desired application of this
homology theory in the proofs of the Mostow and the Gromov Theorems.
The original draft of this paper contained an additional seventh section
proving also that this isometry exists. The proof was based on showing that

(1) Vol(M)/‖[M ]‖ is the same constant given by the volume
of the ideal regular n-simplex,

regardless whether we define the Gromov Norm using Milnor-Thurston or
classical homology theory, (cf. [Th], (Def. 6.1.8), [Th], (Def. 6.1.2), respec-
tively). We took this section out, since meanwhile there is a shorter proof
available in standard literature. The proof of (1) for singular homology the-
ory can be found in [BP], (Thm. C.4.2) while [Rcl], (Thm. 11.5.4) gives the
key lemma for transforming the proof to Milnor-Thurston homology theory.
However, in his exposition Ratcliffe follows the original definitions of Milnor
and Thurston and makes full use of the advantages of differential geometry.

Acknowlegdement. I thank Prof. Boileau for helpful discussions.

1. Definition of the Milnor-Thurston homology groups.

1.1. General Remarks. The Milnor-Thurston homology groups are ob-
tained according to the usual definition scheme from a special chain com-
plex, hence the construction of the chain complex is the first topic of this
paper. We will use the script letters C, Z, B and H to denote the chain-,
cycle, boundary-, and homology-groups of the Milnor-Thurston homology,
respectively, whereas the same letters in the ordinary typeface denote the
corresponding groups of the singular homology theory. Since in this pa-
per the singular homology theory with real coefficients is compared with
the Milnor-Thurston homology theory, we define Hk(X) := Hk(X; R), i.e.
we agree that for the singular homology theory the domain of coefficients
shall be the real numbers in this paper, if not explicitly denoted. Even if
most of the chain and homology groups to be considered in this paper are
vector-spaces by definition, we will usually call them “groups”.

1.2. Some Remarks on Measures. The measures to be considered in this
context are usually signed measures, i.e. measures which can take negative
values as well. Hence a “measure on a set X” is in our context defined to
be a function that assigns to each set of a sigma-algebra A of subsets of X a
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real number or ±∞ such that this function is additive and sigma-additive.
This paper restricts to considering measures defined on topological spaces
where A is in every case the Borel-sigma-algebra B, i.e. the smallest family
of sets containing all open sets which is closed with respect to complements
and finite or countable union of sets. These Borel-sets are identified with
the measurable sets in this paper. The (sigma-)additivity of the measures
requires that the measure of a finite or countable union of pairwise disjoint
measurable sets can be calculated by taking the sum of the measures of the
sets. It also implies that no measure can be allowed to take on both of the
values +∞ and −∞. Hence the sum of two measures which have +∞ and
−∞ as values respectively cannot be defined to be a measure. On the other
hand sums and real multiples of measures taking on finite values only are
always well-defined. Hence the set of these measures has the structure of a
real vector space. This structure is used when defining the Milnor-Thurston
homology groups.

1.3. Some Notation for Measures. Recall that the basic separation the-
orem ([Hal], VI.§29 (Thm. A&B) or [Hen], 5.1 (Satz 4), cf. also [Bau2],
II.§18) for signed measures tells us that each signed measure µ can be
uniquely decomposed as the difference µ = µ+−µ− of two positive measures
(i.e. measures taking on no negative values). This decomposition is unique,
given the additional requirement that there exists a (non-unique) decompo-
sition X = X+ ∪ X− of the basic space X into two measurable sets such
that each of the two decomposing measures µ+, µ− takes the value zero
on all subsets of the decomposition spaces indexed by the opposite sign.
µ+ and µ− are called the “positve/negative part of µ” or the “upper/lower
variation”. Do not confuse the “absolute value” of a measure (which is the
measure |µ| := µ++µ− and is also called “total variation”) with the “norm”
of a measure, which is the non-negative real number (or “∞”) defined by
‖µ‖ := maxA∈B(X) µ(A) − minB∈B(X) µ(B) = |µ|(X). Note that this norm
satisfies the usual triangle inequality, as one can first prove straightforwardly
for positive measures and then extend to signed measures. The extension
step is also straightforward if one has observed that a sum-relation for three
signed measures (“µ1 + µ2 = ν”) can only be turned into corresponding
relations for the positive or negative part by adding a correction summand
ν1 or ν2 for each sign according to “µ±1 + µ±2 = ν± + ν1/2”, but that these
correction summands turn out to be the same positive measure.

1.4. Two special types of measures.
(i) If the letter µ is indexed by a point lying in some space X, this gives

our standard notation for the “atomic measure” defined on X:

µP (A) :=

{
1 if P ∈ A,

0 if P /∈ A.
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(ii) Measures which are concentrated on a finite number of points are re-
garded as “counting measures”. Such measures are usually described
as linear combinations of atomic measures.

(iii) Remark. Let ν =
∑n

i=1 αi ·µPi be a finite counting measure such that
P1, . . . , Pn are mutually disjoint. Then ‖µ‖ =

∑n
i=1 |αi| is straightfor-

ward from the definitions.

1.5. Further notation for measures.

(i) Let f : X → Y be a continuous mapping and let µ be a measure on
X. Then f(µ) denotes the measure defined on Y by (f(µ))(A) :=
µ(f−1(A)) for any measurable A ⊂ Y . The continuity of f and our
restriction to measures defined on the Borel-sigma-algebra guarantee
that this construction of an “image measure” is well-defined.

(ii) Finally we define supp(µ) (the “support” of µ) as the subset of X ob-
tained as the set of all points of X which have no open neighbourhood
that is a zero-set of µ. Note that the zero-sets of signed measures have
to be more carefully characterized than for positive measures: The
conditions “µ(B) = 0 for any subset B of A” and “|µ|(A) = 0” are
sufficient, but “µ(A) = 0” does not imply that “A is a zero-set of µ”.

Since in general spaces the complement of the support of a measure need
not be a zero-set (cf. 3.1), we need the following:

1.6. Definition.

(i) A “determination set” of µ (where µ is a measure on X) is any (not
necessarily measurable) subset of X which satisfies that any (measur-
able) subset of its complement is a zero-set with respect to µ.

(ii) If the support of a measure is a determination set, we call the support
“proper”.

1.7. Definition.
Let µ be a measure on a set of singular simplices and use σ as the standard

notation for one of those simplices. If such a measure has a proper support,
we will call

⋃
σ∈supp(µ) Im(σ) the “image of the measure µ” and denote it

by “Im(µ)”; if the support is not proper we fix a determination set D of
µ and will regard the non-uniquely defined set

⋃
σ∈D Im(σ) similarly as the

image of µ. Do not confuse this term with the “image measure” as defined
in 1.5(i)!

Now we are ready for the:



374 ANDREAS ZASTROW

1.8. Definition of the absolute Milnor-Thurston chain-groups.

Ck(X) := {µ |µ is a quasicompactly determined measure

on C0(∆k, X), with ‖µ‖ < ∞}.

In other words: The kth chain-group of the Milnor-Thurston homology the-
ory of the topological space X consists of all measures defined on the space of
all k-dimensional singular simplices topologized by the compact-open topol-
ogy, such that for each of those measures the norm is finite and there exists a
determination set which is quasi-compact, i.e. which need not be Hausdorff
but satisfies the Heine-Borel covering property.

Lemma 1.9. By the natural addition and scalar multiplication of measures
the Milnor-Thurston chain groups acquire the structure of a real vector-
space.

Proof. Note that the condition “‖µ‖ < ∞” is equivalent to the property
that µ takes neither of the values ±∞ (cf. 1.3/1.2). Hence all measures can
be added (cf. 1.2). Thus it remains to be proved that the sum of quasicom-
pactly determined measures is again quasicompactly determined. But this
follows from the observation that the union of the determination sets of two
measures is a determination set for the sum of those measures. �

In order to introduce the relative Milnor-Thurston homology groups we
need the following lemmata on the extension of measures and the Borel-
sigma-algebra of subspaces.

Proposition 1.10. Let W be an arbitrary subspace of a topological space
X topologized by the relative topology. Then B(W ), the Borel-sigma-algebra
of W generated by its subspace topology, consists precisely of all intersections
of the Borel-sets of X with W , or, in formulae:

B(W ) = W ∩ B(X) := {W ∩A | A ∈ B(X)}.

Remark. In principle this compatibility between the subspace topology
and trace-constructions in measure theory (cf. [Hen], 1.5 (Satz 8), [Bau2],
I.§1 (1.4), [Bau1], I.1 (1.4)) is a known fact. However, since its proof is not
straightforward and cannot be found in all standard literature, we are going
to outline it in the following:

One of the two inclusions to be proven is straightforward: Since the rel-
ative topology of W consists by definition of the intersections between the
open sets of X on the one hand and W on the other hand, W ∩ B(X) is
a sigma-algebra containing all open sets of W , and B(W ) is by definition
the minimal one. Hence B(W ) ⊂ (W ∩ B(X)). For seeing the opposite in-
clusion regard B(X) as “extension” of W ∩ B(X) from W to X and regard
B(W ) ∪ ((X −W ) ∩ B(X)) as “extension” of B(W ), where the union (“∪”)
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when used between families of sets is to be understood as A∪B := {A∪B |
A ∈ A, B ∈ B}. Both “extensions” of our sigma-algebras turn out to be
sigma-algebras on X containing all open sets of X, and hence we get, using
the minimality-property of B(X), that B(X) ⊂ B(W ) ∪ ((X −W ) ∩ B(X)).
Now applying to both sides of this inclusion the operation “W ∩ . . . ” yields
the desired result.

Lemma 1.11. Let W be a subset of X and µ a measure defined on W .
Then by

(1) ν(A) := µ(A ∩W ) for all A ∈ B(X)

a measure ν is defined which can be regarded as the natural extension of µ
from W to X by zero. Each determination set of µ is also one of ν and the
norms of µ and ν coincide.

Proof. ν is well-defined by its definition (1), even if W is not measurable as
a subset of X, since by 1.10 we have B(W ) = W ∩ B(X). Note that in this
case, i.e. if W /∈ B(X), we have to distinguish between the measurability
of sets as subsets of X and as subsets of W . Nevertheless we get that all
determination sets of µ are determination sets of ν, too, since by 1.6(i)
determination sets need not be measurable and by (1) it is obvious that ν
can take only the value 0 on the complement of any determination set of
µ. Now ‖µ‖ = ‖ν‖ follows from 1.3 because ν takes by definition the same
values as µ. �

1.12. Definition of the relative Milnor-Thurston chain groups.
Let W ⊂ X. Then

Ck(X, W ) := Ck(X)/Ck(W ).

Here the inclusion W↪→X induces an inclusion C0(∆k,W ) ↪→ C0(∆k, X)
such that each measure ∈ Ck(W ) can also be regarded as an element of Ck(X)
by Lemma 1.11. Since the zero-measure is the only measure permitted on the
empty set, for W = ∅ we get that C0(∆k,W ) = ∅ and hence Ck(W ) = {0}
so that Ck(X, W ) = Ck(X). Thus absolute Milnor-Thurston chain groups
are just a special case of the relative ones.

1.13. Remark. Having defined Milnor-Thurston chain groups we continue
this paper by explaining how operators and proof-techniques can be ex-
tended from sigular homology theory to Milnor-Thurston theory. Based on
these techniques we will in the second half of the following section be briefly
able to define the boundary operator and the homology groups in Milnor-
Thurston theory and to deduce the category theoretical properties of this
theory.
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2. The Basic Extension Theorem of the Milnor-Thurston
Homology Theory.

Theorem 2.1. Let fi,j be operators, which map singular simplices to other
singular simplices such that they can be interpreted as continuous functions
between the spaces C0(∆?, ?) of singular simplices. Then

(i) Each of these operators fi,j : C0(∆ki−1
, Xi−1) → C0(∆ki

, Xi) has a
canonical extension to a homomorphism fi,j : Cki−1

(Xi−1) → Cki
(Xi)

between Milnor-Thurston chain groups.
(ii) Let αi,j ∈ R. If

(1)

(
n1∑

i1=1

α1,i1 · f1,i1

)
◦

(
n2∑

i2=1

α2,i2 · f2,i2

)
◦ . . . ◦

 nk∑
ik=1

αk,ik · fk,ik

 = 0

in singular homology theory, then the analogous product of the corre-
sponding operators in Milnor-Thurston theory vanishes also.

The Proof is spread over 2.2-2.6.

Lemma 2.2. If ν is an image measure which is constructed with respect to
a continuous mapping as the image of a quasicompactly determined measure
having a finite norm, then ν also satisfies these properties.

Proof. As an immediate consequence of the definition we get that the image
of a determination set of a measure is a determination set for the image
measure. In this context we need not worry about the measurability of the
image, since we did not require (cf. 1.6(i)) that determination sets are mea-
surable. Since the image of a quasicompact set with respect to a continuous
mapping is always quasicompact (cf. [vQ], (Satz 8.11) or [Will],1 Chap. 6
(Thm 17.7)) the compatibility of the image measure construction with re-
spect to the property of being quasicompactly determined follows. Observe
that, since ν takes on by definition only values that are also taken on by its
preimage µ, we get by 1.3 that

(1) ‖ν‖ ≤ ‖µ‖.

Note that the case “<” can occur, if f maps a non-trivial domain of X+ to
the same set as some other domain of X−. �

2.3. Remark. The situation considered in Lemma 1.11 is just a special
case of the situation considered now in Lemma 2.2: The extension of a
measure is nothing but the image measure with respect to the inclusion
map. The general case f : X → Y of Lemma 2.2 is in some sense easier,

1Note that Willard’s use of the term “compact” corresponds to our and Von Queren-
burg’s “quasicompact”.
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because one need not distinguish between two concepts of measurability
defined on the same space.

Lemma 2.4. Any continuous mapping f : C0(∆k, X) → C0(∆m, Y ) ex-
tends to a homomorphism f• : Ck(X) → Cm(Y ).

Proof. For each µ ∈ Ck(X) we define f• by

(1) f•(µ) = f(µ),

where f on the right hand side of this equation is to be considered as im-
age measure construction in the sense of 1.5(i). Hence we will usually not
distinguish between f• and f in this paper, i.e. we will usually drop the
“()•”. Observe that the Milnor-Thurston chain groups do not contain all
measures, but Lemma 2.2 guarentees that the image measure construction
is compatible with the properties that characterize those measures that are
elements of Milnor-Thurston chain groups. f• is a homomorphism (i.e. a
linear mapping), since

(2) f(a · µ + b · ν) = a · f(µ) + b · f(ν)

is immediate from the definition 1.5(i) of image measures for all measures
µ, ν and a, b ∈ R. �

Lemma 2.4 gives the proof of Theorem 2.1(i). The next lemma is the first
step of the proof of 2.1(ii), that permits restricting oneself to considering
linear combinations instead of compositions of linear combinations as in
2.1(1).

Lemma 2.5. Let fi,j and αi,j as in 2.1. Then we have(
n1∑

i1=1

α1,i1 · f1,i1

)
◦

(
n2∑

i2=1

α2,i2 · f2,i2

)
◦ . . . ◦

 nk∑
ik=1

αk,ik · fk,ik


=

∑
(i1,... ,ik)∈{1,... ,n1}×...×{1,... ,nk}

α1,i1 · α2,i2 · . . . · αk,ik · (f1,i1 ◦ . . . ◦ fk,ik)

in Milnor-Thurston theory and singular homology theory.

Proof. This equation follows immediately by using an arbitrary chain as
argument and applying the linearity of the extension of the fi,j to singular
or Milnor-Thurston chain groups successively. Cf. 2.4(2).

2.6. Completion of the Proof of Theorem 2.1.
By 2.5 it remains to be proved that if a simpler equation as 2.1(1), namely

(1)
k∑

i=1

αi · fi = 0 with fi : C0(∆m, X) → C0(∆n, Y ) ∀i,

is satisfied in singular homology theory, we get the same equation in Milnor-
Thurston theory. This can be seen as follows:
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Define the equivalence relations on the index set by

(2) i ∼ j ⇐⇒ fi(σ) = fj(σ).

Since this definition might depend on the singular simplex σ, we might get
more than one equivalence relation so that there might be no minimal one.
However, since the index set is finite, there are only finitely many possible
equivalence relations; consider all of them and assign to each of these the set
of singular simplices σ ∈ C0(∆m, X) to which this equivalence relation be-
longs. This defines a partition of C0(∆m, X). The partition sets P1, . . . , PN

might be not measurable, but, since there are only a finite number of them, it
is by [Hal], III. §16(Ex. (2)-(3)) possible to enlarge the Borel-sigma-algebra
B(C0(∆m, X)) with the partition sets to A(C0(∆m, X)) and to extend all
measures from B(C0(∆m, X)) to A(C0(∆m, X)), so that in the remainder
of this proof the partition sets can be treated as measurable sets. Then we
argue as follows: Let σ ∈ Pν (ν ∈ {1, . . . , N}) and consider the correspond-
ing equivalence relation ∼ν defining a partition of the index set {1, . . . , k}
into equivalence classes Qν,1, . . . , Qν,jν . Now, use that by assumption ac-
cording to (1) we have

∑k
i=1 αi · fi(σ) = 0 for all singular simplices σ in

singular homology theory which implies that for all ν ∈ {1, . . . , N} and all
ι ∈ {1, . . . , jν} we have

∑
i∈Qν,ι

αi = 0 and fi|Pν = fj |Pν for i, j ∈ Qν,ι.
Now this implies that for each Pν the image measure of the restriction to Pν

of an arbitrary measure µ with respect to
∑k

i=1 αi · fi vanishes; and hence,
since

⋃N
ν=1 Pν covers C0(∆m, X), we have

∑k
i=1 αi · fi = 0 for all measures

defined on C0(∆m, X) which is the desired result. �

2.7. Remark. For the sake of having a smoothly applicable theorem, we
had been discussing the most general situation in the proof of 2.6, even
if none of the cases where we want to apply this theorem is as general as
the one discussed: In the standard situation from considering unsymmetric
singular simplices one gets an equivalence relation that is minimal in the
sense that it only relates two elements to each other if any other equivalence
relation as constructed by 2.6 does the same. Then by using that relation,
in the proof of 2.6 the split-up into possibly non-measurable partition sets
could have been skipped.

For the applications of the above Theorem 2.1 the following three facts
are useful:

Lemma 2.8.
(i) Let f : X → Y be continuous. Then C0(∆k, X) −→ C0(∆k, Y ), σ 7−→

f ◦ σ is continuous.
(ii) Fix τ ∈ C0(∆m,∆k). Then C0(∆k, X) → C0(∆m, X), σ 7→ σ ◦ τ is

continuous.
(iii) C0(∆k, X) −→ C0(∆k × I,X × I), σ 7−→ σ × idI is continuous.
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Proof. By using the fact that the topology established on the spaces C0(·, ·)
is the compact-open one the three above statements all follow from set topo-
logical conclusions. �

Corollary 2.9. The extension of the boundary operator ∂ of singular ho-
mology theory to Milnor-Thurston theory in the sense of 2.1(i)/2.4 gives the
boundary operator ∂ in Milnor-Thurston theory. This extension also satis-
fies ∂2 = 0. Recall that in singular theory the boundary operator is defined
as ∂ :=

∑k
i=0(−1)kδi with σ 7→

∑k
i=0(−1)k(σ ◦ δi), where

(1) δi : ∆k−1 = [P0, P1, . . . , Pk−1] → [P0, P1, . . . , Pk] = ∆k

is the affine mapping obtained by extending the definition Pj 7→ Pj for i < j
and Pj 7→ Pj+1 for j ≥ i. Hence by 2.8(ii) and 2.1(i) ∂ can be extended to
Milnor-Thurston theory and the extension satisfies ∂2 = 0 by 2.1(ii).

We now merely need to quote the above extension facilities and standard
arguments of homology theory to obtain the basic concepts and properties
of a homology theory in the Milnor-Thurston-case, thus:

2.10. Lemma-Definition.

(i) Let X be a topological space and let W be an arbitrary subset (cf.
1.12). Since by the naturality of their definitions the boundary oper-
ators (cf. 2.9) of C∗(X) and C∗(W ) are compatible with the inclusion
C∗(W ) ↪→ C∗(X), a boundary operator ∂ satisfying ∂2 = 0 is induced
on the relative Milnor-Thurston chain groups, too.

(ii) Relative and absolute (W = ∅, cf. 1.12) Milnor-Thurston cycle, bound-
ary, and homology groups can now be defined following the standard
scheme: Zk(X, W ) := ker

(
Ck(X, W ) ∂−→ Ck−1(X, W )

)
Bk(X, W ) :=

Im
(
Ck+1(X, W ) ∂−→ Ck(X, W )

)
, Hk(X, W ) := Zk(X, W )/Bk(X, W ).

(iii) Any continuous map between pairs of topological spaces f : (X, W ) →
(Y, V ) naturally induces a chain mapping between Milnor-Thurston
complexes C∗(X, W ) → C∗(Y, V ), similarly in the absolute case.

(iv) Given the same assumptions as in 2.10(iii), on the level of homology
induced homomorphisms f∗n : Hn(X, W ) → Hn(Y, V ) are defined.

(v) These homomorphisms satisfy: (f ◦ g)∗n = f∗n ◦ g∗n, and id∗n = id
for all n ∈ N0, whenever f and g are continuous composible mappings
between pairs of topological spaces.

(vi) Let f ' g : (X, W ) → (Y, V ). Then f∗n = g∗n for all n ∈ N0 (for a
proof see 5.3).

As can be seen from the standard argument of applying 2.10(vi) and
2.10(v) to the composition of f and its homotopy inverse, we have that
(vii) if f is a homotopy equivalence, f∗n is an isomorphism.

Finally, 2.10(ii)-2.10(vii) can be summed up as follows:
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(viii) The construction of the nth Milnor-Thurston homology groups can be
regarded as a covariant homotopy functor which has the category of
topological spaces or pairs of topological spaces as its domain and the
category of real vector spaces as its codomain.

Proof — Ad 2.10(iii). In the absolute case f induces a continuous mapping
C0(∆k, X) → C0(∆k, Y ), σ 7→ f◦σ which by 2.1(i) yields induced homomor-
phisms f•n for Milnor-Thurton chain groups. Since the operations σ 7→ f ◦σ
and σ 7→ σ ◦ δi (cf. 2.9) naturally commute, we get f•n−1 ◦ ∂ = ∂ ◦ f•n, i.e.
that f• is a chain map. In the relative case one must in addition observe
that the above processes commute with the natural inclusions W ↪→ X and
V ↪→ Y .

Ad 2.10(iv). Use 2.10(iii) to obtain induced mappings on the chain level,
and then standard conclusions of homological algebra (e.g. [StZ], III.8.3.4-
[StZ], III.8.3.5/[Sp], 4.1.1) to get induced homomorphisms on the level of
homology groups as well.

Ad 2.10(v). These relations are, step by step, deduced on the various levels,
using on the one hand standard conclusions of homological algebra, and on
the other hand Theorem 2.1(ii) for passing from singular chain groups to
Milnor-Thurston chain groups. �

3. On the basic ideas of the definitions of this homology theory,
as originally stated and as used in this paper.

3.1. On some of the reasons for our changing of the original defi-
nitions.

As mentioned before, in order to get a well-defined homology theory on
arbitrary topological spaces, the definitions as originally suggested by Mil-
nor and Thurston in [Th], (pp. 6.6-6.7) had to be changed a bit, the most
obvious need for a change being imposed by their use of differential geome-
try. Milnor and Thurston consider differentiable singular simplices only, and
metricize the corresponding space by the C1-topology. This enabled them
to use the powerful tools of differential geometry (e.g. differential forms and
duality) in their arguments; but, of course, this restricts the application
of this theory to spaces which have an underlying differentiable structure.
Since we do not assume a differentiable or even a metric structure, we have
little other choice than to consider all singular simplices and to use in 1.8
the compact-open topology on C0(∆?, ?)-spaces. Further adaptation of def-
inition was necessary, since the concept of considering compactly supported
measures does not work for arbitrary topological spaces. For, the concept
of compactness requires the Hausdorff property, and so this can cause un-
wanted obstructions for the existence of compact supports in non-Hausdorff
spaces. Hence in 1.8 we have to work with the concept of quasicompactness
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instead. Further note that since the classical defining condition for a support
only requires that each point in the complement has a neighbourhood with
measure zero, for spaces which do not have a countable topological basis
we cannot rule out that there exist non-zero sets in the complement of the
support of some measure. This in particular could result in the support of
the image measure for a projection-like map being bigger than the image of
the support of a measure. For measures with infinite norm such examples
can explicitly be constructed. As a third point note that, when we have
“<” in 2.2(1) and supp(f(µ))⊂6=f(supp(µ)), for sufficiently wild topologies
we cannot rule out phenomena as described in the previous sentence for
f(supp(µ))− supp(f(µ)), even if the support of f is proper. This makes it
desirable to work with non-uniquely defined determination sets. However,
for non-pathological sets one need not worry about some of the difficulties
described above, because one has:

Lemma 3.2. Let Y be a metric separable space and let µ be a measure on
C0(∆k, Y ). Then µ has a quasicompact determination set, if and only if its
support is compact and proper. In such a case the support is the smallest
determination set.

Proof. Since by the Definitions 1.5(ii)/1.6 each compact proper support gives
a quasicompact determination set also, “⇐=” is trivial; hence in the follow-
ing we may restrict our considerations to showing “=⇒”:

Let µ be a measure and let D be a quasicompact determination set for
µ. Define S := supp(µ), so that we are left with showing that S is compact,
proper and contained in D. Now the complement of S satisfies by its Defini-
tion 1.5(ii) that each point has at least one neighbourhood which is a zero-
set. Since Y is by assumption metric and separable, it has a countable topo-
logical basis (cf. [Dug], IX.5.6). The property of being metric and separable
is passed on from Y to C0(∆k, Y ), since by [Dug], XII.8.2(3)/[Dug], XII.1.1
the supremum metric induces the compact-open topology of C0(∆k, Y ), and
then [Dug], XII.5.2 gives a countable topological basis for C0(∆k, Y ), also.
Hence the complement of S can be described as a countable union of open
zero-sets, which gives that it is a zero-set itself. Thus S is proper. Now as-
sume there exists a point P with P ∈ S, but P /∈ D. Recall that the topology
of Y or C0(∆k, Y ) is metric and hence Hausdorff, so that the concepts of
compactness and quasicompactness coincide. Hence D is compact and thus
closed, so that P has an open neighbourhood U(P ) with U(P ) ∩ D = ∅.
Since P ∈ S, this U(P ) cannot be a zero-set which contradicts to D being
a determination set. Hence there is no such P which implies that S ⊂ D.
Thus S which by definition is closed occurs as a subset of the compact set
D, and hence it is compact, also. This completes the proof. �

As a consequence of 3.2 we get:
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Corollary 3.3. All elements of the Milnor-Thurston chain groups Ck(X)
have a unique image, if X is metric and separable (cf. 1.7/1.8).

Theorem 3.4. For any differentiable manifold the Milnor-Thurston ho-
mology groups as defined in this paper coincide via natural isomorphisms
with the ones defined by the original scheme of Milnor and Thurston that
will be denoted by “Hdiff

k ” (cf. 3.1).

Proof. There might exist proofs of this theorem that are based on using the
powerful techniques of differentiable manifolds; however, since [Rcl], §11.5
does not contain such a proof (in fact, [Rcl], (Thm. 11.5.1) only gives that
the concatenation of the desired natural map with some other map induces
isomorphisms in homology), in our situation the shortest way for obtaining
this theorem appears to be to prove each of the three subsequent isomor-
phy relations independently for any differentiable manifold M by using the
methods as developed in this paper:

(∗) Hk(M)
(1)∼= Hk(M)

(2)∼= Hdiff
k (M)

(3)∼= Hdiff
k (M).

Here the affix “()diff” indicates, that the corresponding homology groups
are to be computed by considering only differentiable mappings as singular
simplices. The groups “Hdiff

k ” are often considered in differential geometry,
and (2) is standard knowledge of that theory. The relation (1) is our coinci-
dence Theorem 5.0, and (3) is what remains to be proved and what can be
regarded as a differentiable version of 5.0 (“5.0diff”).

In order to obtain the corresponding statement we can use an argument
obtained by substituting the objects of consideration in the series of def-
initions and lemmata in this paper correspondingly. In most cases these
substitutions only cause natural adaptations in the arguments in the corre-
sponding proof. In the following we give a guide for the substitutions that
are necessary to turn the definitions, statements and proofs of this paper
into a line of arguments that give “5.0diff”:

The basic objects of consideration have to be differentiable manifolds
M,N, . . . instead of topological spaces X, Y, . . . . Where in Section 5 our
consideration will be restricted to simplicial complexes, for obtaining 5.0diff

we will have to require that these manifolds are equipped with a triangula-
tion, the existence of which is guaranteed by [Mnkr], (Thm. 10.6). In the
adapted version we need not consider arbitrary subspaces any longer, but
we may restrict our consideration to submanifolds that fit into the trian-
gulation of a given manifold. When adapting our proof, all spaces of type
C0(∆?, X) have to be replaced by spaces C1(∆?,M) and the corresponding
compact-open topology has to be replaced by a C1-topology, i.e. by a topol-
ogy induced by a metric that results from adding to the standard supremum
metric of our function the suprema of all first partial derivatives. Corre-
spondingly all singular simplices that need to be considered in the adapted



MILNOR-THURSTON HOMOLOGY 383

version are differentiable. We also need to require such differentiability for
all mappings and homotopies between the manifolds M,N, . . . of consider-
ation, even if for the ordinary version of 5.0 plain continuity is sufficient.
This differentiability usually causes just standard adaptations in the proofs,
since for most of the lemmata the additional requirement of differentiability
affects the assumptions and the conclusions of the lemmata simultaneously.
There are some minor exceptions (i.e. 4.4 and 5.3), where it takes additional
straightforward verifications that some singular simplices that are explicitly
constructed in the course of the proof turn out to be differentiable.

On the other hand, where continuous maps between spaces of type
C0(∆?, X) have to be considered, even the adapted version also requires
continuity for the corresponding maps between the C1(∆?,M)-spaces, only.
Due to these adaptations instead of results for the groups C?(X),Z?(X) and
H?(X) we then get results for the groups Cdiff

? (X), Zdiff
? (X) and Hdiff

? (X);
wherever those groups occur they have to be substituted correspondingly.
However, even if the substitutions as described so far are in general all fairly
straightforward, our attention should now be drawn to those places where in
proofs the compact-open topology of the spaces C0(∆?, X) was explicitly re-
ferred to, since the topology of the spaces C1(∆k,M) to be considered in the
adapted version is to be defined in a different way. However, a sufficiently
careful analysis gives that there are some places where only such standard
properties of the C0-topology are used, that also hold for the C1-topology
(as in 2.8 or 4.5(1)), and some other places where it is sufficient to know
that the C1-topology is a refinement of the C0-topology (as in 4.6) and apart
from that there is only one exception where the following observation is of
help:

If we replace a differentiable function f : ∆k → Rn by a (k · n + 1)-
tuple that comprises f and all its partial derivatives (“(f, ∂f

∂x1
, . . . , ∂fn

∂xk
)”),

we can bijectively associate {f | f : ∆k
diff.−→ Rn} with a certain set of tuples

of functions, or equivalently, with certain functions ∆k → Rn2·k+n. Now
the C0-topology of that set precisely coincides with the C1-topology on the
set {f | f : ∆k

diff.−→ Rn}. From this observation and the fact that each
manifold M can be embedded into Rm for sufficiently big m, we get that a
reference to [Dug], XII.5.2 can be used the same way in a proof of 5.0diff

as an argument to obtain that C1(∆k,M) satisfies the second countability
axiom, as a similar quoting of [Dug], XII.5.2 in the course of the proof
of the ordinary coincidence Theorem 5.0 gave the analogous property for
C0(∆k, X) in 3.2.

That gives us 5.0diff and by (∗) completes the proof of this theorem. Of
course a paper directly aiming for 5.0diff could have abbreviated the proof in
various places; in particular observe that our exceptional situation 3.2/3.3
is always given when considering differentiable manifolds. �
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4. The Excision Theorem.

As mentioned in the introduction, we will prove the excision theorem of
the Milnor-Thurston homology theory only under weaker assumptions than
hold in the usual theory (see, for instance, [StZ], III.9.4.5 or [Sp], 4.6.5),
namely:

Theorem 4.1. Let U ⊂ W ⊂ X and assume there exists V with

U ⊂
◦
V⊂ V ⊂

◦
W.

Then Hk(X, W ) = Hk(X − U,W − U) for all k ∈ N.

Remark. The proof of this theorem is split up into several lemmata pre-
sented below and is completed in 4.11. It follows the basic ideas of the proof
in the singular homology theory, i.e. the use of barycentric subdivision in
order to split up each cycle of Zk(X) into two summands lying in Zk(X−U)
and in Zk(W ) so that the latter summand is trivial relative to W (cf. [StZ],
III.9.4.1-III.9.4.4 or [Sp], 4.4.10-4.4.14 and [Sp], 4.6.3-4.6.5). Hence the first
few of the following lemmata are used to establish barycentric subdivision
in the Milnor-Thurston theory:

4.2. Definition of the barycentric operator bn : Cn(X) → Cn(X).
In principal this definition is obtained by extending the definition of this

operator in singular homology theory using Theorem 2.1. Hence we start
by recalling the standard construction of the barycentric operator: Let us
first establish our notation for the standard unit simplex ∆n. We will use
P0, . . . , Pn to denote the vertices, P as the name of its barycentre, and
P̃i0,... ,ik as notation for the barycentres of the lower-dimensional sides of ∆n.
More precisely: P̃i0,... ,ik is the barycentre of the (n−k−1)-dimensional side
which is spanned by the vertices P? whose indices are not contained in the
list i0, . . . , ik. Now, for each permutation π ∈ Sn+1 (i.e. π bijects {0, . . . , n}
onto itself) define βn,π : ∆n → ∆n as the affine mapping obtained by ex-
tending P0 7→ P, Pi 7→ P̃π(0),... ,π(i−1), and let the chain cβ,n ∈ Cn(∆n) be∑

π∈Sn+1
sign(π) · βπ,n, where “β”, when used as an index, is to be regarded

as a symbol. Then the nth barycentric operator of singular homology theory
can be defined as the homomorphism bn : Cn(X) → Cn(X), σ 7→ σ•(cβ,n),
where σ ∈ Cn(X) is regarded as a mapping ∆n → X inducing a homo-
morphism σ• : Cn(∆n) → Cn(X). By Theorem 2.1(i) this homomorphism
bn extends to Milnor-Thurston chain groups, because the main assumption
of Theorem 2.1, the continuity of the operation σ 7→ σ ◦ τ (where τ de-
notes one of the singular simplices the chain cβ,n consists of), is given by
Lemma 2.8(ii).

Corollary 4.3. Note that the barycentric operators as defined above form
a chain map (i.e. we have bn−1 ◦ ∂n = ∂n ◦ bn for all n).
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This follows as an immediate application of Theorem 2.1(ii), since by 4.2
and 2.9 these operations are extensions in the sense of 2.1(i).

Lemma 4.4. The chain map b as defined above induces the identity on all
Milnor-Thurston homology groups Hk(X).

Proof. The established technical frame of showing this is to construct a
chain homotopy Dn : Cn(X) → Cn+1(X) satisfying ∂n+1 ◦Dn +Dn−1 ◦∂n =
bn − id. Theorem 2.1 can be used to extend the standard construction
from singular homology theory to Milnor Thurston theory. For the sake of
self-containedness we give the key-formulas for the definitions of Dn in the
following: For each proper subset M ⊂

6={0, 1, 2, . . . , n} and each permutation
π ∈ S#M we first let

sign(M,π) := −sign(π) · (−1)
#M·(#M+1)

2 · (−1)
P

m∈M
m

.

Then we construct the affine mapping γn,M,π : ∆n+1 → ∆n by extending
the definitions

Pj 7−→



P for j = 0,

P̃χM (π(0)),χM (π(1)),... ,χM (π(j−1)) for 1 ≤ j ≤ #M,

Pk where k is the (j −#M)th

number of the totally ordered
set {0, . . . n} −M for #M < j ≤ n + 1

where χM is the strictly monotonously increasing mapping {0, 1, 2, ...,#M−
1} → M . Finally we define the chain cγ,n ∈ Cn+1(∆n) as

∑
M,π sign(M,π) ·

γn,M,π and let Dn : Cn(X) → Cn+1(X), σ 7→ σ•(cγ,n). Analogously as
in 4.2/4.3, both parts of Theorem 2.1 can be applied to such a construc-
tion, which gives the result that the chain-homotopy also exists in Milnor-
Thurston theory.

Lemma 4.5. Let U ⊂ W ⊂ X satisfy U ⊂
◦

W . Then for any measure
µ ∈ Ck(X) there exists r ∈ N such that br(µ) = ν1 + ν2, where ν1 and ν2 are
measures defined on C0(∆k, X − U) and C0(∆k,W ), respectively.

Proof. Note that the sequence of diameters obtained by iterating the barycen-
tric subdivision of an affine simplex tends to zero. Nevertheless an additional
construction is required to get from this basic observation to a valid proof
of the lemma: To wit, here singular simplices of a possibly non-metrizable
space and especially the simultaneous barycentric subdivision of infinitely
many singular simplices must be considered, namely of all simplices belong-
ing to the quasicompact determination set of the measure.

Let µ be a measure ∈ Ck(X) and let D be a quasicompact determination
set of µ. Consider

(1) F : D ×∆k → X, (σ, x) 7→ σ(x),
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which gives a continuous mapping. Hence F−1(U) and F−1(X−
◦

W ) are
disjoint closed subsets of the set D × ∆k which is quasicompact by [vQ],
(Satz 8.13), [Will],2 Chap. 6 (Thm 17.8). Let ρ be the usual Euclidean
metric which is defined on each fibre {σ} ×∆k and consider the function

d : D → R,

σ 7→ ρ
(
F−1(U) ∩ ({σ} ×∆k) , F−1(X−

◦
W ) ∩ ({σ} ×∆k)

)
.(2)

d need not be continuous, but is “semicontinuous” in the sense that, given
ε > 0, d(σ′) > d(σ) − ε for all σ′ that are contained in an appropriate
neighbourhood of σ. This semicontinuity which is proved in the following
proposition will be sufficient to complete this proof in 4.7.

Proposition 4.6. d, as defined in 4.5(2), is semicontinuous.

Proof. Let

E :=
(
(D ×∆k)− (F−1(U) ∪ F−1(X−

◦
W ))

)
∩ ({σ} ×∆k),

which is an open part of the fibre {σ} ×∆k. Define open boundary strips
of E, construct E′ by removing these boundary strips from E and de-

fine (F−1(U))′ and (F−1(X−
◦

W ))′ by adding these boundary strips to

(F−1(U)) ∩ ({σ} ×∆k), (F−1(X−
◦

W )) ∩ ({σ} ×∆k) respectively. We ob-

tain ρ
(
(F−1(U))′, (F−1(X−

◦
W ))′

)
≥ d(σ) − ε. Now we want to con-

struct an open neighbourhood of E′ in product form that is still contained

in (D × ∆k) − (F−1(U) ∪ F−1(X−
◦

W )). Since the latter set is open,
each point of E′ can be surrounded by an open neighbourhood in prod-
uct form that is still contained in that set. Because E′ is a closed part of
the compact fibre {σ} × ∆k, finitely many of those small product neigh-
bourhoods give a covering of E′. If then we let U(σ) be the intersec-
tion of the D-component of those finitely many product neighbourhoods
and let U(E′) be the union of the corresponding ∆k-components, we get

E′ ⊂ U(σ)×U(E′) ⊂ (D×∆k)− (F−1(U)∪F−1(X−
◦

W )). Hence d(σ)− ε
is a lower bound for the values taken by d on U(σ). �

4.7. Completion of the proof of 4.5.
By combining this semicontinuity and the quasicompactness of D with

the fact, that d has no zeros by construction, we get that it takes on a
positive minimum. From this point of view the observation as mentioned in
the first sentence of 4.5 is sufficient to conclude that there exist r so that any
simplex σ obtained by r-fold barycentric subdivision of the simplices of D

2See footnote of 2.2
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satisfies either σ(∆k)∩U = ∅ or σ(∆k)∩ (X−
◦

W ) = ∅ or both of these. We
fix one of those r and let ι : C0(∆k, X) → {0, 1} be the indicator-function of
{σ ∈ C0(∆k, X) | σ(∆k)∩U 6= ∅}. Then ν1 := ι·br(µ) and ν2 := (1−ι)·br(µ)
have all the desired properties. �

4.8. Remark. Note that the preceding Lemma 4.5 does neither imply
that ν1 ∈ Ck(X − U) nor that ν2 ∈ Ck(W ), since for these measures we did
not construct quasicompact determination sets contained in C0(∆k , X −
U) and C0(∆k,W ), respectively. The following example shows that such
determination sets may not exist even after repeated arbitrary barycentric
subdivision. Hence this example implies that the usual statement of the
excision theorem could not be obtained in Milnor-Thurston theory from the
usual techniques based on barycentric subdivision alone.

4.9. Example. Let

X =
(
{(x, 1) | x ∈ [0, 1]} ∪ {(x, 0) | x ∈ [0, 1]}

)/
∼

where (x, 0) ∼ (x, 1) iff x < 1
2 ,

W = {(1, 1)} ∪ {(x, 0) | x ∈ [0, 1]} ⊂ X,

U = {(x, 0) | x ≥ 1
2} ⊂ W.

Consider the sets of line segments

{(x, 1) (1, 1) | x ≤ 1
2} = L1,

{(x, 0) (1, 0) | x ≤ 1
2} = L2

as singular one-simplices by a natural parametrization. Let λi (i ∈ {1, 2})
be the Lebesgue measure on Li, which is defined according to the natural
identification Li ↔ [0, 1

2 ] via the parameter x. Finally let µi be the extension
of λi by zero to C0(∆1, X) (cf. 1.11(1)). Then µ := µ1−µ2 is a relative cycle
in Z1(X, W ), since ∂(µ) = +1

2 ·(1, 1)− 1
2 ·(1, 0). Note that in this formula and

below we identify the points with singular zero-simplices. Note further that
when constructing ∂µ the points (x, 0) cancel against (x, 1) for x < 1

2 because
of “∼”, and, altough there is no cancellation of (1

2 , 1) against (1
2 , 0) we do

not obtain an additional summand in the formula of ∂µ, since the Lebesgue
measure of a single point is zero. If we want to split up µ = ν1+ν2 according
to 4.5 there is only one choice: ν1 := µ1, ν2 := −µ2. But ν1 is not a relative
cycle any more: We have ∂ν1 = 1

2 · (1, 1) − λ|[0, 1
2
], where λ denotes the

Lebesgue measure. Now a determination set of λ|[0, 1
2
] must not contain any

of the points (1
2 , 1) or (1

2 , 0), since (1
2 , 1) /∈ W and (1

2 , 0) ∈ U . On the other
hand, no (quasi)compact subset of [0, 1

2) has the full Lebesgue measure, and
thus it is not a determination set. Hence there is no decomposition of µ as
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required in 4.10 and by a finitely iterated barycentric subdivision, i.e. by
replacing µ by br(µ) we get no principal differences in our situation.

After having seen this technical obstruction for a more generalized state-
ment, we continue the proof of the excision theorem under our weaker as-
sumptions:

Lemma 4.10. If in addition to the assumptions of 4.5 there exists V as
required in 4.1, we get ν1 ∈ Ck(X − U) and ν2 ∈ Ck(W ) for appropriate r.

Proof. As immediate consequence of the compact-open topology we get that
{σ ∈ C0(∆k, X) | σ(∆k) ⊂ O} is an open subset of C0(∆k, X), if O

open
⊂ X.

As complements of such sets we have that {σ ∈ C0(∆k, X) | σ(∆k)∩V 6= ∅}
and {σ ∈ C0(∆k, X) | σ(∆k)∩(X−

◦
V ) 6= ∅} are closed. Since closed subsets

of quasicompact sets are always quasicompact ([vQ], (Satz 8.4)/[Will],3

Chap. 6 (Thm 17.5a)) the intersection of a quasicompact determination set
with any of these sets always gives a quasicompact set again. Now choose,
similar as in 4.7, r so big, that each singular simplex obtained from r-fold
barycentric subdivision of those singular simplices σ : ∆k → X contained in

the determination set D cannot take on values in both sets V and X−
◦

W ,

and cannot take on values in both sets U and X−
◦
V . We then have to adapt

the definitions of ν1 and ν2 as in 4.5/4.7 slightly by now letting ι to be the
indicator function of {σ ∈ C0(∆k, X) | σ(∆k) ∩ V 6= ∅} and by then using
the same equations ν1 = ι · br(µ), ν2 = (1− ι) · br(µ) as in 4.5. However, now

D1 = {σ ∈ D | σ(∆k) ∩ V 6= ∅} and D2 = {σ ∈ D | σ(∆k) ∩ (X−
◦
V ) 6= ∅}

give quasicompact determination sets for ν1 and ν2, respectively. �

4.11. Completion of the proof of the excision Theorem 4.1.
The proof now follows the standard stategy: The technical goal of the

proof is to show that the homomorphism Hk(X−U , W −U) → Hk(X, W ),
which is naturally induced by the inclusion (X − U , W − U) ⊂ (X, W ),
is bijective. The surjectivity follows, since ν1, as constructed in 4.5/4.10,
satisfies µ ∼ br(µ) = ν1 + ν2 and hence can be regarded as preimage of
µ according to this homomorphism induced by the natural inclusion. The
injectivity follows by applying a similar argument to a (k + 1)-dimensional
chain which is assumed to provide the homology for two k-dimensional chains
on the (X, W )-level, but not on the (X − U , W − U)-level. �

4.12. Remark. Roughly speaking, the main construction that gives the
proof of the excision theorem is to project a relative (X, W )-cycle on its
(X−U , W −U)-component after a finitely iterated barycentric subdivision.
Even if barycentric subdivision turns out to be a continuous process, the

3See footnote of 2.2
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projection is not a continuous map. This fact might be understood as the
key reason for the difficulties described in this section (cf. Introduction).
However, it will remain the only place of non-continuity that we will come
upon in the course of tracing the arguments of standard homology theory
within the scope of this paper.

5. The Coincidence Proof.

The whole section is devoted to this proof. We start by stating the corre-
sponding result precisely:

The coincidence theorem 5.0. Let X be a topological space that can
be triangulated as simplicial complex and let Y be a subspace which can
be realized as subcomplex according to some triangulation of X. Then η
as defined in 5.1(1) induces natural isomorphisms for the homology groups
Hk(X)

∼=→ Hk(X) and Hk(X, Y )
∼=→ Hk(X, Y ).

As already mentioned in the Introduction, the outline of this proof is
due to Eilenberg and Steenrod, who aimed to present such a coincidence
theory in a completely abstract way ([ES], III.10.1). However in the sequel
we rather follow the presentation of this matrial in Spanier’s book ([Sp],
4.8.10, but cf. also [ES], VII.§10). The following paragraphs correspond to
the steps of this proof.

5.1. Step one. Definition of a canonical chain map C∗(X) → C∗(X):
Take

(1) ηk :
∑

i

αi · σi 7−→
∑

i

αi · µσi ∀k ∈ N

where αi ∈ R, the σi are k-dimensional singular simplices and µσi denotes
atomic measures, cf. 1.4(i). In order to see that this construction gives a
chain map, recall that (cf. 2.9) the boundary operator in Milnor-Thurston
homology is defined by using essentially the same formula as in singular
homology. Hence the processes of replacing all simplices by their boundary
chains and of replacing simplices with the corresponding atomic measure
naturally commute, i.e. we have ηk−1 ◦ ∂k = ∂k ◦ ηk for all k. This means,
that all ηk together form a chain map inducing homomorphisms on the
homology groups. The purpose of the forthcoming steps is to show that
these induced homomorphims (η∗)k all are isomorphisms.

5.2. Step two. Verifying the Exactness Axiom:
Recall that relative Milnor-Thurston chain groups were obtained as quo-

tient groups. Thus, if C∗ is used to denote a chain complex, we have a short
exact sequence of chain complexes for each A ⊂ X:

0 −→ C∗(A) −→ C∗(X) −→ C∗(X, A) −→ 0.
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By standard arguments of homological algebra (e.g. see [StZ], III.8.3.8 and
[StZ], III.7.4.5 or [Sp], 4.5.4) such a sequence induces a long exact homology
sequence.
5.3. Step three. Verifying the Homotopy Invariance:
(1) Absolute Case. Originally, in order to obtain the statements 2.10(vi)/
2.10(vii) one has to construct a (k + 1)-dimensional measure ν ∈ Ck+1(Y )
such that ∂ν = f(µ) − g(µ), where f ' g : X → Y and a measure-cycle
µ ∈ Zk(X) are given. The established technical frame (cf. [StZ], III.9.3.1
and [StZ], III.9.3.7-III.9.3.8 or [Sp], 4.4.9) of doing so is to prove that f• and
g• are chain homotopic by proving the existence of some chain homotopy
(Dk)k∈N satisfying (Dk−1 ◦ ∂k)(σk) + (∂k+1 ◦ Dk)(σk) = f•(σk) − g•(σk).
Since in Milnor-Thurston homology we can stick to this frame, similarly
as in 4.4 we have merely to show that the definition of the Dk-morphisms
extends compatibly with the above properties to Milnor-Thurston theory.
In singular homology theory the standard definition of the Dk-mappings is
given by the following formula

(1) Ck(X) 3 σk
Dk7−→ (H• ◦ (σk × idI)•)(ck+1) ∈ Ck+1(Y )

where H denotes the homotopy between f and g and is regarded as a map-
ping X × I → Y , and ck+1 denotes a fixed chain of Ck+1(∆k × I). This
chain is to be chosen in such a way that ∂ck+1 contains (with opposite
signs) the singular simplexes ∆k → ∆k × {0} and ∆k → ∆k × {1} and that
the remaining summands of ∂ck+1 give some triangulation of (∂∆k) × I ,
i.e. give the same k-chain in (∂∆k) × I which also could be obtained by∑k

i=0(−1)i(δi × idI)•(ck) where δi : ∆k−1 → ∆k has been defined in 2.9(1).
Such a chain may either be constructed by an explicit triangulation of the

prisma ∆k × I or it can be obtained by an arbitrary choice in the course of
an induction over k using the acyclicity of ∆k×I. But even in the latter case
this arbitrary choice does not provide any obstruction to the continuity of
this definition, since in each dimension k only one chain in the space ∆k× I
is chosen and this fixed chain is used in the definition of Dk for each singular
simplex σk.

By replacing ck+1 by its representation as a linear combination
∑m

j=1 αj ·τj

of singular simplices τj ∈ Ck+1(∆k × I) one can use the homomorphism-
properties of the chain maps ()• to obtain the following alternative descrip-
tion of the Dk-mappings:

(2) Ck(X) 3 σk
Dk7−→

m∑
j=1

αj · (H• ◦ (σk × idI)•)(τj) ∈ Ck+1(Y ).

If one recalls the definition of the chain maps H• and (σk × idI)•, one gets
that the essential definition of the summands of Dk can be viewed as follows:

(3) σk 7−→ H ◦ (σk × idI) ◦ τj .
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This mapping is continuous, because it is a product of the mappings con-
sidered in 2.8(i)-2.8(iii). Now from 2.1 it follows that the definition of the
homomorphisms Dk can be extended to Milnor-Thurston theory such that
the extensions also satisfy the properties of a chain homotopy. Then one
gets f∗ = g∗ by standard conclusions of homological algebra (see [StZ],
III.8.3.12-III.8.3.13 or [Sp], 4.2.2 and cf. 2.10(vi)-(viii)).
(2) Relative Case. The treatment of the relative case is essentially the same
as in the absolute case. Note that the main difference between these two
statements is that in the relative case we have to consider relative cycles,
whilst the absolute case is a statement about absolute cycles, only. Further
note (e.g. cf. 4.8/4.9) that in some situations skipping to the relative case can
cause difficulties in Milnor-Thurston homology theory, since having a relative
cycle zk ∈ Zk(X, A) always implies that there has to exist a quasicompact
determination set for ∂zk in A which may not exist in any context. However,
in this situation here, where the assumptions of the relative case are that f
and g are homotopic maps X → Y satisfying that for some subspaces A ⊂ X
and B ⊂ Y we have f(A) ⊂ B, g(A) ⊂ B and that the homotopy H respects
the subspace structure, i.e. that H(A× I) ⊂ B, the existence of all the
determination sets does follow from standard image measure constructions.
Since the assumptions for f and g are not weaker, but stronger in the relative
case, in fact the same chain homotopy construction as in the absolute case
gives the desired result here.

5.4. Step four. Verifying the Initial Axiom.
There are no obstructions for an elementary calculation of the homol-

ogy groups of a space with a single point: Since such a space (“∗”) per-
mits the definition of one and only one singular simplex in each dimension
(namely the constant mapping), we get for each real number one measure
on C0(∆k, ∗). This situation is completely analogous to the case of singular
homology theory, giving the same results (cf. [StZ], III.9.1.10).

5.5. Step five. Verifying the Excision Axiom.
Section four was devoted to this step. Note that the additional assumption

of the existence of V in 4.1 does not matter in the present context, since it
is automatically fulfilled by simplicial complexes because they are normal
(cf. [Dug], VII.3.2(2)).

5.6. Step six is the standard conclusion due to Eilenberg and Steenrod
proving the coincidence of the homology groups based on the properties
5.1-5.5 for finite simplicial complexes. It is, roughly speaking, a kind of
induction proof showing that there exists no smallest simplicial complex
with non-coinciding homology groups by comparing a simplicial complex
with what is obtained by removing one highest dimensional simplex. More
technically speaking, we induct over all pairs (K, L) of simplicial complexes
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by considering the number k of simplices in the complex K. The case k = 1
has to be considered as zero-step of the induction. If a simplicial complex
consists of one simplex only, it has to be a zero-dimensional one, and hence
there are two pairs of simplicial complexes (namely (∗, ∅) and (∗, ∗)) which
only have to be considered in the initial step. In case (∗, ∗) in both theories
of consideration all relative chain groups are zero, and thus all homology
groups coincide in being zero also. The zero-step of our induction follows
since the case (∗, ∅) had been discussed in 5.4. The inductive step now
is based on comparing the homology groups of the simplicial complex with
those of the complex with one highest dimensional simplex removed by using
5.2, 5.3 and 5.5. For the sake of completeness, we include an outline of this
proof:

Consider the system of commutative diagrams obtained by taking the long
exact homology sequences of both homology theories under consideration
and what is induced by the natural chain mapping η:

(1)
· · · → Hq+1(K, L) → Hq(L) → Hq(K) →

↓ η∗ ↓ η∗ ↓ η∗

· · · → Hq+1(K, L) → Hq(L) → Hq(K) →

→ Hq(K, L) → Hq−1(L) → Hq−1(K) → · · ·
↓ η∗ ↓ η∗ ↓ η∗

→ Hq(K, L) → Hq−1(L) → Hq−1(K) → · · · .

Then the desired conclusion follows by applying the Five Lemma (cf. [StZ],
III.8.2.3 or [Sp], 4.5.11 or [ES], I.4.3) twice to this diagram. Assume that
the complex K has k + 1 simplexes, which is one simplex more as we may
assume by the induction hypothesis that η∗ must be an isomorphism; and
choose as subcomplex L for the first application L = ∆, where ∆ is one
highest dimensional simplex and P is used to denote its barycentre. Then
we have that all vertical arrows in (1) which correspond to the subcomplex
are isomorphisms due to the induction hypothesis, and the same for all
vertical arrows related to the relative groups, since by applying the excision
axiom and the homotopy invariance we get that

Hq(K, ∆)
5.5/4.1

= Hq(K − {P} , ∆− {P}) 5.3= Hq(K−
◦
∆ , ∂∆)

reducing the situation to a complex with one simplex less. Then the Five
Lemma gives that the vertical arrows corresponding to K are also isomor-
phisms, and hence we obtain coincidence for all absolute homology groups
of all complexes with at most k + 1 simplices. Then we consider again the
diagram (1) for an arbitrary complex K with k + 1 simplices, and at this
time for an arbitrary subcomplex L of K. Now we have that the vertical
arrows related to K and to L are isomorphisms, and hence the Five Lemma



MILNOR-THURSTON HOMOLOGY 393

gives the same for all relative groups, also. This completes the induction
argument.

5.7. Step seven. Showing the coincidence for infinite simplicial complexes
also.

Observe that the image of each measure (cf. 1.7) is only contained in
a finite number of simplexes in any case, because it can be regarded as a
quasicompact set F (D×∆k), cf. 4.5(1). Assume that η∗ : Hk(K) → Hk(K)
is not an isomorphism and construct the finite subcomplex L of K containing
the image of a “violating measure”. Such a violating measure is, in the case
when η∗ is not onto, a measure which has no preimage with respect to η∗,
and in the case when η∗ is not one-to-one, it is a (k+1)-dimensional measure
whose boundary is the image of a non-nullhomotopic cycle ∈ Zk(K). Then
from considering the commutative diagram

Hk(L) −→ Hk(K)
↓ ↓

Hk(L) −→ Hk(K)

the desired contradiction follows staightforwardly in both cases.

6. The Non-Coincidence Example.

The purpose of this section is to define a space L and a measure µ on it
such that µ is a non-nullhomotopic cycle in Z1(L) and such that it is not
contained in η∗(H1(L)) (cf. 5.1). The desired space L is obtained by choosing
P1, P2 ∈ R2 arbitrarily, and by connecting them on the one hand by a line
segment l0 and on the other hand by a system of countably many circle
segments (li)i∈N as pictured in Fig. a. Then L :=

⋃∞
i=0 li, i.e. L is defined as

the union of all those segments and topologized with the relative topology
obtained from its embedding into R2.

Note that each of the `i can be regarded as a singular 1-simplex. This sys-
tem of 1-simplices is compact, because it is a union of a convergent sequence
with its limit. Then

(1) µ := −µ`0 +
∞∑
i=1

1
2i
· µ`i

is an infinite counting measure (cf. 1.4(ii)) that is a well-defined cycle in
Z1(L). However, it is not nullhomologous as can be seen by considering its
image i•(µ) = i(µ) in L ∪ D2, where D2 is the subdisk of R2 bounded by
l0 and l2 and i is the canonical embedding L ↪→ L ∪ D2. The latter space
is free of accumulation phenomena, and hence, unlike L, it is a simplicial
complex. Thus the coincidence theorem 5.0 can be used to conclude that
i(µ) ∼ 1

2 · µ`1 − 1
2 · µ`0 6∼ 0, hence µ 6∼ 0 itself.
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Fig. a:
This figure shows a picture of the space L on which the measure µ giving
the desired counter-example to the validity of a coincidence theorem for all
topological spaces is defined.

By similarly applying Theorem 5.0 to the (infinitely) triangulable space
(L ∪D2) − {Q1}, we get that any measure µ′ ∈ Z1(L ∪D2) that does not
contain Q1 in its (unique, cf. 3.3) image can only represent nullhomotopic
cycles. Hence such a measure cannot be homologous to µ in H1(L). The
above result can easily be extended to any Qj by considering instead of
D2 some other disk that spans all the li apart from lj . For each j ≥ 1
such a disk can easily be constructed, at least when L is embedded into
R3, and hence we get that any µ′ which is homologous to µ has to contain
all the Qj in its image. The latter property cannot be satisfied by a finite
counting measure, since no singular one-simplex, i.e. no path in L defined
on a compact interval, may contain infinitely many of the points Qj without
violating continuity. Hence µ cannot be homologous to a finite counting
measure, and therefore the homology class that is represented by µ is not
contained in η∗(H1(L)). Thus η∗ is not onto, and hence H1(L) and H1(L)
are not canonically isomorphic.

Remark. With more effort we could have also proved that these groups
are not even isomorphic, since H1(L) is a countable-dimensional real vector
space, whereas H1(L) is of uncountable dimension.
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[Hen] E. Henze, Einführung in die Maßtheorie, B.I.-Hochschultaschenbücher Bd. 505,
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