Pacific Journal of Mathematics

WEAK PALEY–WIENER PROPERTY FOR COMPLETELY SOLVABLE LIE GROUPS

Gayatri Garimella

Volume 187 No. 1 January 1999

WEAK PALEY–WIENER PROPERTY FOR COMPLETELY SOLVABLE LIE GROUPS

Gayatri Garimella

We prove a weak Paley–Wiener property for completely solvable Lie groups, i.e. if the group Fourier transform of a measurable, bounded and compactly supported function vanishes on a set of positive Plancherel measure then the function itself vanishes almost everywhere on the group.

1. Introduction.

Let G be a connected, simply connected, and completely solvable Lie group, with the Lie algebra $\mathfrak g$. Let $\mathfrak g^*$ be the dual of $\mathfrak g$. The equivalence classes of irreducible unitary representations \widehat{G} of G is parametrized by the coadjoint orbits \mathfrak{g}^*/G via the Kirillov-Bernat bijective map $K : \widehat{G} \to \mathfrak{g}^*/G$. If $\rho \in \widehat{G}$ and $\ell \in K(\rho)$, then there exists an analytic subgroup H of G and a unitary character χ of H, such that $\ell|_{\mathfrak{h}} = Id_{\chi}$, where $\mathfrak h$ is the Lie algebra of H. The induced representation $\rho = \text{Ind}_{H}^{G} \chi$ is irreducible. Moreover, K is a bijection. The image on \mathfrak{g}^*/G of a measure equivalent to Lebesgue measure on \mathfrak{g}^* gives a Plancherel measure on \widehat{G} .

Let ϕ be a bounded, measurable and compactly supported function on \mathbb{R}^n . By the classical Paley–Wiener theorem, the Fourier transform $\hat{\phi}$ of ϕ extends to an entire function on \mathbb{C}^n . Using this we can conclude that if $\widehat{\phi}$ vanishes on a set of positive Plancherel measure which is nothing but the Lebesgue measure, then $\widehat{\phi}$ vanishes on the whole of \mathbb{R}^n . This in turn implies that $\varphi = 0$ on \mathbb{R}^n .

In the same spirit, for a completely solvable Lie group we will think of the following as a weak Paley–Wiener property:

Theorem. Let G be a connected, simply connected, and completely solvable Lie group, with the unitary dual \widehat{G} . Let ϕ be a measurable, bounded, and compactly supported function (i.e $\phi \in L_c^{\infty}(G)$). Assume that there exists a subset $E \subset \widehat{G}$ with positive Plancherel measure such that $\widehat{\phi}_{\rho} = 0$ for all $\rho \in E$ where $\widehat{\phi}_{\rho}$ is the group Fourier transform of ϕ . Then $\phi = 0$ almost everywhere on G.

In [GG1] we proved, the same theorem for nilpotent Lie groups, by induction on the dimension of G . To prove the above theorem, also by using

52 GAYATRI GARIMELLA

induction on the dimension of G, we need a description of the dual space \widehat{G} of G and an explicit Plancherel measure on \tilde{G} . Here, we use the results of B.N. Currey [C], which are generalizations of the results of L. Pukanszky [Pu] on nilpotent Lie groups concerning the Plancherel measure and the Plancherel formula.

2. Preliminaries.

Let G be a connected, simply connected, and completely solvable Lie group, with the Lie algebra g . Let g^* be the dual of g . We fix a basis $\mathfrak{B} =$ $\{X_1, \ldots, X_n\}$ of g, such that \mathfrak{g}_i is spanned by the vectors $\{X_1, X_2 \cdots, X_i\}$, $1 \leq j \leq n$ and $\mathfrak{g}_0 = (0)$. As G is completely solvable, there exists a chain of ideals

$$
0=\mathfrak{g}_0\subset\mathfrak{g}_1\subset\cdots\subset\mathfrak{g}_i\cdots\subset\mathfrak{g}_{n-1}\subset\mathfrak{g}_n=\mathfrak{g}
$$

of \mathfrak{g} , such that the dimension of \mathfrak{g}_i be i for all $1 \leq i \leq n$. Let $\mathfrak{B}^* =$ $\{X_1^*, \ldots, X_n^*\}$ be the dual basis of \mathfrak{g}^* . We fix a Lebesgue measure dX on \mathfrak{g} , and a right Haar measure dg on G such that $d(\exp X) = j_G(X)dX$, where

$$
j_G(X) = \left| \det \left(\frac{1 - e^{-adX}}{adX} \right) \right|.
$$

Let Δ be the modular function such that for all $g' \in G$, $d(gg') = \Delta(g')dg$. Let O be a coadjoint orbit in \mathfrak{g}^* and $\ell \in O$. The bilinear form $B_{\ell} : (X, Y) \to$ $\ell([X, Y])$ defines a skew-symmetric and nondegenerate bilinear form on $\mathfrak{g}/\mathfrak{g}^{\ell}$. As the map $X \to X.\ell$ induces an isomorphism between $\mathfrak{g}/\mathfrak{g}^{\ell}$ and the tangent space of O at ℓ , the bilinear form B_ℓ defines a nondegenerate 2-form ω_ℓ on this tangent space. If $2k$ is the dimension of O we note that

$$
\beta_O = (2\pi)^{-k} (k!)^{-1} \omega \wedge \cdots \wedge \omega \qquad (k \quad \text{times})
$$

the canonical measure on O. Lemma 3.2.2. in $[DR]$, says us that there exists a nonzero rational function ψ on \mathfrak{g}^* such that $\psi(g.\ell) = \Delta(g)^{-1}\psi(\ell)$, $g \in G$, and $\ell \in \mathfrak{g}^*$. We fix one such ψ . There exists a unique measure m_{ψ} on \mathfrak{g}^*/G such that

$$
\int_{\mathfrak{g}^*} \phi(\ell) |\psi(\ell)| d\ell = \int_{\mathfrak{g}^*/G} \left(\int_O \phi(\ell) d\beta_O(\ell) \right) dm_\psi(O)
$$

for all Borel functions ϕ on \mathfrak{g}^* .

B.N. Currey [C] gave an explicit description of the measure m_{ψ} with the help of the coadjoint orbits \mathfrak{g}^*/G . We recall the theorem proved by B.N. Currey in [C] which is the essential tool to prove our Paley–Wiener property:

Theorem 2.1. Let G be a connected, simply connected, and completely solvable Lie group. There exists a Zariski open subset U of \mathfrak{g}^* , a subset $J = \{j_1 < j_2 < \cdots < j_{2k}\}$ of $\{1, 2, \cdots, n\}$, a subset $M = \{j_{r_1} < j_{r_2} < \cdots < j_{2k}\}$ \cdots < j_{r_a} of J, for each j in M a real valued rational function q_j (non vanishing on U), and real analytic P_i , $1 \leq j \leq n$ functions in the variables $w_1, w_2, \ldots, w_{2k}, \ell_1, \ell_2, \cdots, \ell_n$ such that the following hold.

1) If a denotes the number of elements in M, for each $\epsilon \in \{1, -1\}^a$, the set

$$
U_{\epsilon} = \{ \ell \in U \mid sign \text{ of } q_{j_{r_m}}(\ell) = \epsilon_m, 1 \leq m \leq a \}
$$

is a non empty open subset in \mathfrak{g}^* .

2) Define $V \subset \mathbb{R}^{2k}$ by $V = \prod R_r$, where $R_r =]0, \infty[$ if $j_r \in M$ and $R_r = \mathbb{R}$ otherwise. Let $\epsilon \in \{1, -1\}^a$ and for $v \in V$, define $\epsilon v \in \mathbb{R}^{2k}$ by $(\epsilon v)_j = \epsilon_m v_j$ if $j = j_{r_m} \in M$ and $({\epsilon v})_j = v_j$ otherwise. Then for each $\ell \in U_{\epsilon}$, the mapping $v \to \sum_j P_j(\epsilon v, \ell) X_j^*$ is a diffeomorphism of V with the coadjoint orbit of ℓ .

3) Define W_D as the subspace spanned by the vectors $\{X_i^* \mid i \notin J\}$ and W_M the subspace spanned by $\{X_j^* \mid j \in M\}$. Then the set

$$
W = \{ \ell \in (W_D \oplus W_M) \cap U \mid |q_j(\ell)| = 1, j \in M \}
$$

is a cross-section for the coadjoint orbits U. For each $j \in M$ the rational function q_j is of the form $q_j (\ell) = \ell_j + p_j (\ell_1, \ell_2, \cdots, \ell_{j-1}),$ where p_j is a rational function.

4) For each $\ell \in U$, let $\epsilon(\ell) \in \{1, -1\}^a$ such that $\ell \in U_{\epsilon(\ell)}$. Then the mapping $P: V \times W \to U$, defined by $P(v, \ell) = \sum_j P_j(\epsilon(\ell)v, \ell)X_j^*$, is a diffeomorphism.

B.N. Currey [C] proved that m_{ψ} is a Plancherel measure on W.

The idea is to compute the measure $\psi(\ell)dl$ in termes of product measures on $V \times W$ and then, using Lemma 1.3 of [C], we can read off m_{ψ} as a measure on W . We have to determine coordinates for W .

If the subset M of J is empty, then $W = W_D \cap U$ and the coordinates for W are obtained by identifying W_D with \mathbb{R}^{n-2k} , which is the parametrization of \mathfrak{g}^* in the nilpotent case. On the other hand, suppose that M is non empty, and a denotes the number of elements in M. From $[\mathbf{C}]$, for each $\epsilon \in \{1, -1\}^a$, there exists a non empty Zariski open subset U_{ϵ} of U and U is the disjoint union of the sets U_{ϵ} . Let $\epsilon \in \{1, -1\}^a$ and set $W_{\epsilon} = W \cap U_{\epsilon}$. From [C], we have that

$$
W_{\epsilon} = \{ \ell \in (W_D \oplus W_M) \cap U \mid \text{for each} \quad j = j_{r_m} \in M, \ell_j = \epsilon_m - p_j(\ell_1, \ell_2, \cdots, \ell_{j-1}) \}
$$

where $j \in M$ and p_j is a rational nonsingular function on U.

Let $\epsilon \in \{1, -1\}^a$. Then from [C], there is a Zariski open subset Λ_{ϵ} of W_D and a rational function $p_{\epsilon} : \Lambda_{\epsilon} \to W_M$ such that $W_{\epsilon} = \text{graph}(p_{\epsilon}).$

From [C], the projection of U_{ϵ} into W_D parallel to W_J defines a diffeomorphism π_{ϵ} of W_{ϵ} with Λ_{ϵ} .

Remark 2.2. If G is nilpotent, then M is empty, $U_{\epsilon} = U$, $p_{\epsilon} = 0$, and $\Lambda_{\epsilon} = W = U \cap W_D$ is a open subset in W_D .

Let $O_{\lambda,\epsilon}$ be the coadjoint orbit via $\pi_{\epsilon}^{-1}(\lambda)$ for $\lambda \in \Lambda_{\epsilon}$ and let $\beta_{\lambda,\epsilon}$ be the canonical measure on $O_{\lambda,\epsilon}$. Identify W_D with \mathbb{R}^{n-2k} via the basis $\{X_i^* \mid i \notin \mathbb{R}^n\}$ J} and let $d\lambda$ be the Lebesgue measure on W_D . If $W_D = (0)$ the measure $d\lambda$ is a point mass measure. This is the case for the " $ax + b$ group" (see the example, paragraph 5).

Define $\Theta_{\epsilon}: V \times \Lambda_{\epsilon} \to U_{\epsilon}$ by $\Theta_{\epsilon}(v,\lambda) = P(v,\pi_{\epsilon}^{-1}(\lambda))$. Then Θ_{ϵ} is a diffeomorphism.

From 2.8 of [C], for any integrable function F on \mathfrak{g}^*/G , we have

$$
\int_{\mathfrak{g}^*/G} F(O) dm_{\psi}(O) = \sum_{\epsilon} \int_{\Lambda_{\epsilon}} F(O_{\lambda,\epsilon}) |\psi(\pi_{\epsilon}^{-1}(\lambda))| |Pf(\pi_{\epsilon}^{-1}(\lambda))| (2\pi)^{-2k} d\lambda
$$

where $Pf(\pi_{\epsilon}^{-1}(\lambda))$ denotes the Pffafian in $\pi_{\epsilon}^{-1}(\lambda)$.

Set $[\rho_{\lambda,\epsilon}] = K^{-1}(O_{\lambda,\epsilon})$ for $\epsilon \in \{1,-1\}^a$ and $\lambda \in \Lambda_{\epsilon}$. For each nonzero rational function ψ on \mathfrak{g}^* satisfying $\psi(g.\ell) = \Delta(g)^{-1}\psi(\ell)$ for $g \in G$ and $\ell \in \mathfrak{g}^*$, let $A_{\psi,\lambda,\epsilon}$, denote the semi-invariant operator of weight Δ for the irreducible representation $\rho_{\lambda,\epsilon}$ corresponding to the restriction of ψ to $O_{\lambda,\epsilon}$ (this operator is constructed in [DR]).

In summary: Let G be a connected, simply connected, and completely solvable Lie group. Let $\{X_1^*, X_2^*, \cdots, X_n^*\}$ be a Jordan-Hölder basis of \mathfrak{g}^* . Then, there is a finite collection of disjoint open subsets U_{ϵ} of \mathfrak{g}^* and there is a subspace W_D of \mathfrak{g}^* such that for each ϵ , U_{ϵ} is parametrized by a Zariski open subset Λ_{ϵ} of W_D , $\cup U_{\epsilon}$ is dense in \mathfrak{g}^* , and the complement of $\cup U_{\epsilon}$ has Plancherel measure zero. Let ψ be a non empty rational function on \mathfrak{g}^* such that $\psi(g.\ell) = \Delta(g)^{-1}\psi(\ell)$ for $g \in G$ and $\ell \in \mathfrak{g}^*$. For each ϵ , there is a rational function $r_{\psi,\epsilon}$ on W_D such that for any smooth compactly supported function ϕ on G, the function

$$
\lambda \to \text{Tr}(A_{\psi,\lambda,\epsilon}^{-1/2} \rho_{\lambda,\epsilon}(\phi) A_{\psi,\lambda,\epsilon}^{-1/2}) |r_{\psi,\epsilon}(\lambda)|
$$

on Λ_{ϵ} is Lebesgue integrable. For any such ϕ we have

$$
\phi(e) = \sum_{\epsilon} \int_{\Lambda_{\epsilon}} \text{Tr}(A_{\psi,\lambda,\epsilon}^{-1/2} \rho_{\lambda,\epsilon}(\phi) A_{\psi,\lambda,\epsilon}^{-1/2}) |r_{\psi,\epsilon}(\lambda)| d\lambda
$$

where $r_{\psi,\epsilon}(\lambda) = \psi(\pi_{\epsilon}^{-1}(\lambda)) P f(\pi_{\epsilon}^{-1}(\lambda)) (2\pi)^{-2k}$.

3. Group Fourier Transform.

We consider two cases:

First case: We suppose that $\mathfrak{g}^{\ell} \subset \mathfrak{g}_{n-1}$ for all $\ell \in W_{\epsilon}$ i.e. all the general position orbits are saturated with respect to \mathfrak{g}_{n-1} . We can choose a basis of $\mathfrak g$ in which the first $n-1$ vectors of the basis

$$
\{X_1(\ell), \ldots, X_r(\ell), \ldots, X_m(\ell), \ldots, X_{n-1}(\ell)\}\
$$

for $\ell \in W_{\epsilon}$ depends on ℓ , the $X_i(\ell)$ are in $\mathfrak{g}_i^{\ell_j}$ ι_j^j for certain j with $\ell_j = \ell |_{\mathfrak{g}_j},$ and $\mathfrak{g}^{\ell_j}_j = \{X \in \mathfrak{g}_j | ad^*X.\ell_j = 0\}$. As $\mathfrak{g}^{\ell} \subset \mathfrak{g}_{n-1}$, the last vector of the basis does not depend on ℓ . Let

$$
\mathfrak{B}_{W_{\epsilon}}(\ell) = \{X_1(\ell), \ldots, X_r(\ell), \ldots, X_m(\ell), \ldots, X_{n-1}(\ell), X_n\}
$$

be one such basis of g.

Remark that the index set J_1 for G_{n-1} is equal to $J\setminus\{n, j_1\}$ and that $M_1 = \{j_{r_2}, \dots, j_{r_{a_1}}\}$ is a subset of J_1 . For each $\epsilon_1 \in \{1, -1\}^{a_1}$, the set U_{ϵ_1} is a nonempty open subset of \mathfrak{g}_{n-1}^* . Denote W_{D_1} the subspace spanned by $\{X_i^* \mid i \notin J_1\}$ in \mathfrak{g}_{n-1}^* . Then, we have $W_{D_1} = W_D \oplus \mathbb{R} X_{j_1}^*$ and W_{M_1} is the subspace spanned by $\{X_j^* \mid j \in M_1\}.$

Set $W_{\epsilon_1} = W_1 \cap U_{\epsilon_1}$ where

$$
W_1 = \{ \ell_1 \in (W_{D_1} \oplus W_{M_1}) \cap U_1 \mid |q_j(\ell_1)| = 1, j \in M_1 \}.
$$

Now, by the corresponding theory for G_{n-1} we have a Zariski open subset Λ_{ϵ_1} of W_{D_1} and a rational function $p_{\epsilon_1} : \Lambda_{\epsilon_1} \to W_{M_1}$ such that $W_{\epsilon_1} = graph(p_{\epsilon_1})$.

Remark that $a_1 = a - 1$. In fact there is a case where $a_1 = a$. If we start with any chain of ideals $0 = \mathfrak{g}_0 \subset \mathfrak{g}_1 \subset \cdots \subset \mathfrak{g}_i \subset \cdots \subset \mathfrak{g}_{n-1} \subset \mathfrak{g}_n = \mathfrak{g},$ to avoid this case it suffices to choose a chain in such a manner that the chain passes through the nil-radical of $\mathfrak g$ when $\mathfrak g$ is non nilpotent. Also ϵ_1 is obtained by deleting an element from ϵ . Let $\Lambda'_{\epsilon_{+}}$ denote the projection of Λ_{ϵ_+} on \mathfrak{g}_{n-1}^* , and Λ'_{ϵ_-} denote the projection of Λ_{ϵ_-} on \mathfrak{g}_{n-1}^* .

The measure on W_{ϵ_1} is

$$
d\mu_1(\pi_{\epsilon_1}^{-1}(\lambda_1)) = \sum_{\epsilon_1 \in \{1, -1\}^{a_1}} (2\pi)^{-(2k-2)} \psi_1(\pi_{\epsilon_1}^{-1}(\lambda_1)) Pf(\pi_{\epsilon_1}^{-1}(\lambda_1)) d\lambda_1
$$

where $Pf(\pi_{\epsilon_1}^{-1}(\lambda_1))^2 = \det(\pi_{\epsilon_1}^{-1}(\lambda_1)([X_i,X_j])_{i,j\in J_1})$ with $\pi_{\epsilon_1}^{-1}(\lambda_1) =$ $\pi_{\epsilon}^{-1}(\lambda)|_{\mathfrak{g}_{n-1}^*}$ and ψ_1 is a non empty rational function on \mathfrak{g}_{n-1}^* such that we have $\psi_1(h.\ell_1) = \Delta(h)^{-1}\psi_1(\ell_1)$. Remark that, $\mathfrak{g}^{\ell_{n-1}} = \mathfrak{g}^\ell \oplus \mathbb{R}X_{j_1}$, $[X_i, X_j] \in \mathfrak{g}_{n-1}$ for i, j in J_1 , and $\ell([X_{j_1}, \mathfrak{g}_{n-1}]) = 0$.

Remark 3.1. For $\ell \in W_{\epsilon}$, let $A(\ell) = (\ell[X_i, X_j])_{i,j \in J}$ be the skew-symmetric matrix.

$$
A(\ell) = \begin{pmatrix} 0 & \cdots 0 & \cdots \ell([X_n, X_{j_1}]) \\ 0 & & * \\ \vdots & A_{n-1}(\ell) & \vdots \\ \ell([X_{j_1}, X_n]) & * & * \end{pmatrix}
$$

where $A_{n-1}(\ell) = \ell([X_i, X_j])_{i,j \in J_1}$.

Then: det $A(\ell)^{\frac{1}{2}} = |\ell([X_{j_1}, X_n])|(\det A_{n-1}(\ell)^{\frac{1}{2}}).$ That is, $Pf(\ell) = \ell([X_{j_1}, X_n])Pf(\ell_{n-1})$ where $\ell_{n-1} = \ell|_{\mathfrak{g}_{n-1}}$.

Lemma 3.2. We suppose that $\mathfrak{g}^{\ell} \subset \mathfrak{g}_{n-1}$ for all $\ell \in W_{\epsilon}$. Let ψ be a non empty rational function on \mathfrak{g}^* such that $\psi(x.\ell) = \Delta(x)^{-1}\psi(\ell)$ for all $\ell \in W_{\epsilon}$ and $x \in G$. Then:

i. $\psi(\ell) = \psi(\ell')$ for $\ell' \in \ell + \mathfrak{g}_{n-1}^{\perp}$.

ii. Let $\ell_1 \in \mathfrak{g}_{n-1}^*$ and $\tilde{\ell_1}$ be an extension of ℓ_1 to \mathfrak{g}^* . By taking $\psi_1(\ell_1)$ = $\psi(\tilde{\ell_1})$ we obtain a rational function ψ_1 on \mathfrak{g}_{n-1}^* verifying $\psi_1(h.\ell_1)$ = $\Delta_{G_{n-1}}(h)^{-1}\psi_1(\ell_1)$ for $h \in G_{n-1}$ and $\ell_1 \in W_{\epsilon_1}$.

Proof. We have $G^{\ell} \subset G^{\ell_{n-1}}$ for $\ell \in W_{\epsilon}$ hence the stabilizer of $\ell_{n-1} \in \mathfrak{g}_{n-1}^*$ in G is also equal to $G^{\ell_{n-1}}$.

Let $\ell' = \ell + \gamma$ where $\gamma \in \mathfrak{g}_{n-1}^{\perp}$. Then $\ell' = a.\ell$ with $a \in G^{\ell_{n-1}}$, hence we have that $\psi(\ell') = \psi(a.\ell) = \Delta(a)^{-1} \psi(\ell)$. We have to verify that $\Delta(a) = 1$ if $a \in G^{\ell_{n-1}}$. But, $\Delta(a) = \Delta_{G_{n-1}}(a)$ since G_{n-1} is normal in G. Moreover, $G_{n-1}/G_{n-1}^{\ell_{n-1}}$ has an invariant measure, so we have $\Delta_{G_{n-1}}(a) = \Delta_{G_{n-1}^{\ell_{n-1}}}(a)$.

It suffices to see that $G_{n-1}^{\ell_{n-1}}$ $\binom{n-1}{n-1}$ is abelian since, the orbit of ℓ_1 is of maximal dimension (see [**B2**], Chapter II). Hence $\psi(\ell') = \psi(\ell)$ which allows us to define ψ_1 .

For all $h \in G_{n-1}$ and $\ell_1 \in \mathfrak{g}_{n-1}^*$ we have

$$
\psi_1(h.\ell_1) = \psi(\widetilde{h.\ell_1}) = \psi(h.\widetilde{\ell_1}) = \Delta_G(h)^{-1}\psi(\widetilde{\ell_1}) = \Delta_{G_{n-1}}(h)^{-1}\psi_1(\ell_1).
$$

We express the measure $d\mu_1$ on W_{ϵ_1} in terms of local coordinates on \mathfrak{g}_{n-1}^* . From the above remark and the Lemma we have that

$$
d\mu_1 = \sum_{\epsilon_1 \in \{1, -1\}^{a_1}} (2\pi)^{2k-2} \frac{1}{\psi_1(\pi_{\epsilon_1}^{-1}(\lambda_1))} \frac{1}{Pf(\pi_{\epsilon_1}^{-1}(\lambda_1))} d\lambda_1
$$

=
$$
\left(\sum_{\epsilon'} (2\pi)^{2k-2} \frac{\pi_{\epsilon}^{-1}(\lambda)([X_{j_1}, X_n])}{Pf(\pi_{\epsilon}^{-1}(\lambda))} \frac{1}{\psi(\pi_{\epsilon}^{-1}(\lambda))} d\lambda \right) dX_{j_1}^*
$$

where ϵ' describes a part of $\{1, -1\}^a$.

This measure $W_{\epsilon_1} \subset \mathfrak{g}_{n-1}^*$ is a Plancherel measure on $\widehat{G_{n-1}}$, the unitary dual of G_{n-1} .

For $\ell \in W_{\epsilon}$, $\rho_{\ell} = \rho_{\lambda,\epsilon} = \text{Ind}_{G_{n-1}}^G \rho_{\ell_{n-1}}$ is an induced representation of G, where $\ell_{n-1} = \ell |_{\mathfrak{g}_{n-1}}$ and $\rho_{\ell_{n-1}} = \rho_{\lambda_1,\epsilon_1}$ is a representation of G_{n-1} . Let $C^{\infty}(G, \rho)$ be the set of $f \in C^{\infty}(G)$ with compact support modulo G_{n-1} such that $f(hg) = (\rho_{\ell_{n-1}}(h))f(g)$ for all $h \in G_{n-1}, g \in G$.

For all $\phi \in C_c^{\infty}(G)$ and $\rho_{\ell} \in \widehat{G}$ such that $\ell \in W_{\epsilon}$, the group Fourier transform is defined by

$$
\widehat{\phi}_{\rho_{\ell}} = \int_G \phi(g) \rho_{\ell}(g) dg.
$$

Set $\ell^t = Ad^*(\exp(-tX))\ell$. Remark that

$$
\rho_{\ell^t}(g) = \rho_{\ell}(\exp(tX).g.\exp(-tX)).
$$

Choose $X \in \mathfrak{g} \backslash \mathfrak{g}_{n-1}$. For all s, t in \mathbb{R} , the action of $\phi \in C_c^{\infty}(G)$ on $f \in \mathfrak{H}_{\rho_\ell}$ gives us

$$
(\widehat{\phi}_{\rho_{\ell}}f)(\exp(tX)) = \int_G \phi(g)\rho_{\ell}(g)f(\exp(tX))dg.
$$

As the induced representation acts by right translation on $f \in H_{\rho_{\ell}}$, we have

$$
\begin{aligned}\n(\hat{\phi}_{\rho_\ell} f)(\exp(tX)) &= \int_G \phi(g) f(\exp(tX).g) dg \\
&= \int_{\mathbb{R}} \int_{G_{n-1}} \phi(h.\exp(sX)) f(\exp(tX).h.\exp(sX)) dh ds \\
&= \int_{\mathbb{R}} \int_{G_{n-1}} \phi(h.\exp(sX)) f(\exp(tX).h.\exp(-tX).\exp(tX).\exp(sX)) dh ds \\
&= \int_{\mathbb{R}} \int_{G_{n-1}} \phi(h.\exp(sX)) f(\exp(tX).h.\exp(-tX).\exp(t+s)X) dh ds \\
&= \int_{\mathbb{R}} \int_{G_{n-1}} \phi(h.\exp(sX)) \rho_{(\ell^t)_{n-1}}(h) f(\exp(t+s)X) dh ds \\
&= \int_{\mathbb{R}} \int_{G_{n-1}} \phi^s(h) \rho_{(\ell^t)_{n-1}}(h) f(\exp(t+s)X) dh ds \\
&= \int_{\mathbb{R}} \left(\hat{\phi}^s_{\rho_{(\ell^t)_{n-1}}} \right) f(\exp(t+s)X) ds\n\end{aligned}
$$

where $\phi^s(h) = \phi(h \cdot \exp(sX)).$

For all $\alpha \in \mathbb{R}$ we set $f_{\alpha}(h.\exp(sX)) = e^{i\alpha s} f(h.\exp(sX)).$ We have $f_{\alpha} \in$ $H_{\rho_{\ell}}$, since f is in $H_{\rho_{\ell}}$.

Let ker ρ_{ℓ} denote the kernal of ρ_{ℓ} in $C^*(G)$, the C^* - algebra of the group G. If $\phi \in \ker \rho_\ell$, then, from the above calculations, for all $f \in \mathcal{H}_{\rho_\ell}$ we have

$$
0 = \int_{\mathbb{R}} \widehat{\phi}_{\rho_{(\ell^t)_{n-1}}}^s f_\alpha(\exp(s+t)X) ds
$$

=
$$
\int_{\mathbb{R}} e^{i\alpha(s+t)} \widehat{\phi}_{\rho_{(\ell^t)_{n-1}}}^s f(\exp(s+t)X) ds \qquad \forall \alpha \in \mathbb{R},
$$

which implies that $\hat{\phi}^s_{\rho_{(\ell^t)_n-1}} = 0$ for all $s \in \mathbb{R}$. Conversely, for all s and t in \mathbb{R} , if $\widehat{\phi}_{\rho_{(\ell^t)_{n-1}}}^s = 0$ we have $\widehat{\phi}_{\rho_\ell} = 0$ which implies that $\phi \in \ker \rho_\ell$. We have established an equivalence

$$
\phi \in \ker \rho_\ell \Longleftrightarrow \left(\widehat{\phi}^s_{\rho_{(\ell^t)_{n-1}}} = 0 \; \forall s,t \right).
$$

Second case: If all the general position orbits are not saturated with respect to \mathfrak{g}_{n-1} , we can choose a basis of $\mathfrak g$ in such a way that the last vector of the basis X_n does not depend on ℓ and $X_n(\ell) \in \mathfrak{g}^{\ell}$. Let

$$
\mathfrak{B}_{W_{\epsilon}}(\ell) = \{X_1(\ell), \ldots, X_r(\ell), \ldots, X_m(\ell), \ldots, X_{n-1}(\ell), X_n(\ell)\}\
$$

be one such basis of $\frak g$ in which the $X_i(\ell)$ are in $\frak g_j^{\ell_j}$ ι_j^i for certain j with $\ell_j = \ell | g_j$.

Lemma 3.3. Assume that $\mathfrak{g}^{\ell} \not\subset \mathfrak{g}_{n-1}$ for all $\ell \in W_{\epsilon}$. Let ψ be a non empty rational function on \mathfrak{g}^* such that $\psi(x.\ell) = \Delta(x)^{-1}\psi(\ell)$ for all $\ell \in$ W_{ϵ} and $x \in G$. Let $\ell_1 \in \mathfrak{g}_{n-1}^*$ and $\tilde{\ell_1}$ be an extension of ℓ_1 to \mathfrak{g}^* . By letting $\psi_1(\ell_1) = \psi(\tilde{\ell}_1)$ we obtain a rational function ψ_1 on \mathfrak{g}_{n-1}^* satisfying $\psi_1(h.\ell_1) = \Delta(h)^{-1} \psi_1(\ell_1)$ for all $h \in G_{n-1}$.

Proof. For all $\ell \in \mathfrak{g}^*$ and $\alpha \in \mathbb{R}$ we have $\ell_\alpha = \ell + \alpha X_n^*$ and $\mathfrak{g}^* = \mathfrak{g}_{n-1}^* \oplus \mathbb{R} X_n^*$. For all $h \in G_{n-1}$, we have $h.\ell_\alpha = h.\ell + \alpha X_n^*$ since $G.X_n^* = X_n^*$. By choosing $\alpha = 0$, we have $\ell_0 = \ell + 0X_n^*$ and $h.\ell_0 = h.\ell$. Hence, $\psi_1(\ell_1) = \psi(\tilde{\ell_1})$ and

$$
\psi_1(h.\ell_1) = \psi(h.\ell_1) = \Delta(h)^{-1}\psi(\ell_1) = \Delta_{G_{n-1}}(h)^{-1}\psi_1(\ell_1).
$$

 \Box

Remark that the set of indices J_1 for G_{n-1} is equal to J. In this case as $\mathfrak{g}^{\ell} = \mathfrak{g}^{\ell_{n-1}} + \mathbb{R}X_n$ we have $W_D = W_{D_1} + \mathbb{R}X_n$, where W_{D_1} is the subspace of \mathfrak{g}_{n-1}^* corresponding to W_D in \mathfrak{g}^* . Moreover, $\Lambda_{\epsilon} = \Lambda_{\epsilon_1} + \mathbb{R}X^*$. The Plancherel measure over \widehat{G} can be written as;

$$
d\mu(\ell) = \sum_{\epsilon} (2\pi)^{2k} \frac{1}{\psi(\pi_{\epsilon}^{-1}(\lambda))} \frac{1}{Pf(\pi_{\epsilon}^{-1}(\lambda))} dX_1^* \cdots dX_{n-2k-1}^* dX_n^*
$$

=
$$
\left(\sum_{\epsilon_1} (2\pi)^{2k} \frac{1}{\psi_1(\pi_{\epsilon_1}^{-1}(\lambda_1))} \frac{1}{Pf(\pi_{\epsilon_1}^{-1}(\lambda_1))} dX_1^* \cdots dX_{n-2k-1}^*\right) dX_n^*
$$

=
$$
d\mu_1 \times dX_n^*.
$$

For $\ell = \pi_{\epsilon}^{-1}(\lambda) \in W_{\epsilon}$, and $\alpha \in \mathbb{R}$ we let $\ell_{\alpha} = \ell + \alpha X^*$. Hence, $\ell_{\alpha}(X) =$ $\ell(X) + \alpha$ and $\rho_{\ell_{\alpha}} = \rho_{\ell} \otimes \chi_{\alpha}$ with $\chi_{\alpha}(h \cdot \exp(sX)) = e^{i\alpha s}$ for all $h \in G_{n-1}$.

The restriction of $\rho_{\ell_{\alpha}}$ to G_{n-1} is irreducible and equivalent to $\rho_{\ell_{n-1}}$ for all $\alpha \in \mathbb{R}$. For all $\xi, \eta \in H_{\rho_{\ell}} = H_{\rho_{\ell_{\alpha}}}$ we have

$$
\langle \hat{\phi}_{\rho_{\ell_{\alpha}}} \xi, \eta \rangle = \int_{G} \langle \rho_{\ell_{\alpha}}(g) \xi, \eta \rangle \phi(g) dg
$$

\n
$$
= \int_{G} \langle \rho_{\ell} \otimes \chi_{\alpha}(g) \xi, \eta \rangle \phi(g) dg
$$

\n
$$
= \int_{\mathbb{R}} \int_{G_{n-1}} \langle \rho_{\ell} \otimes \chi_{\alpha}(\exp(sX).h) \xi, \eta \rangle \phi(\exp(sX).h) dh ds
$$

\n
$$
= \int_{\mathbb{R}} \int_{G_{n-1}} \langle e^{i\alpha s} \rho_{\ell}(\exp(sX)) \rho_{\ell_{n-1}}(h) \xi, \eta \rangle \phi(\exp(sX).h) dh ds
$$

\n
$$
= \int_{\mathbb{R}} e^{i\alpha s} \langle \rho_{\ell}(\exp(sX)) \hat{\phi}_{\rho_{\ell_{n-1}}}^s \xi, \eta \rangle ds
$$

where $\phi^s(h) = \phi(\exp(sX).h)$. Hence we have expressed $\widehat{\phi}_{\rho_{\ell_{\alpha}}}$ with the help of $\widehat{\phi}_{\rho_{\ell_{n-1}}}^s$.

4. Weak Paley–Wiener Property.

Theorem 4.1. Let G be a connected, simply connected, and completely solvable Lie group with the unitairy dual \widehat{G} , and let ϕ be a bounded, measurable and compactly supported function (i.e. $\phi \in L^{\infty}_c(G)$). Assume that there is a subset $E \subset \widehat{G}$ with positive Plancherel measure such that $\widehat{\phi}_{\rho} = 0$ for all $\rho \in E$, where $\widehat{\phi}_\rho$ is the group Fourier transform of ϕ . Then $\phi = 0$ almost every where on G.

Proof. We proceed by induction on the dimension n of G . The result is true if the dimension of G is one, since $G \cong \mathbb{R}$. Assume that the result is true for all groups of dimension $n-1$. We can assume that E is contained in W_{ϵ} (it suffices to take E as the finite union of $E \cap W_{\epsilon}$).

First case: $\mathfrak{g}^{\ell} \subset \mathfrak{g}_{n-1}$ for all $\ell \in W_{\epsilon}$. Let $\phi \in C_c^{\infty}(G)$. By hypothesis, for all ρ_{ℓ} , such that $\ell \in E$ we have $0 = \phi_{\rho_{\ell}}$; we will show that $\phi = 0$ almost every where on G .

Notice that for all $\epsilon_1 \in \{-1,1\}^{a_1}$, the associated set Λ_{ϵ_1} corresponds to two sets Λ_{ϵ_+} and Λ_{ϵ_-} , $\epsilon_{\pm} \in \{-1, 1\}^a$ in W_D . If Λ'_{ϵ_+} and Λ'_{ϵ_-} are the projections of Λ_{ϵ_+} and Λ_{ϵ_-} on \mathfrak{g}_{n-1}^* such that $\Lambda_{\epsilon_1}' = (\exp \mathbb{R}X) . \Lambda_{\epsilon_+}' \cup (\exp \mathbb{R}X) . \Lambda_{\epsilon_-}'$ and $T_\ell = \{\exp tX.\ell_{n-1} \mid t \in \mathbb{R}\}\$ are contained in the projection of Λ_{ϵ_+} or in Λ_{ϵ_-} , Λ_{ϵ_1}' is a Zariski open set in Λ_{ϵ_1} .

From paragraph 3 we have that

$$
\phi \in \ker \rho_\ell \Longleftrightarrow \left(\widehat{\phi}_{\rho_{(\ell^t)_{n-1}}}^s = 0 \,\,\forall s,t\right).
$$

By hypothesis, $\widehat{\phi_{\rho_\ell}} = 0$ for all $\ell \in E$ and from the above equivalence we have

$$
\widehat{\phi}^s_{\rho_{(\ell^t)_{n-1}}}=0
$$

for all s, t in R. This relation tells us that a set A contained in $\Lambda_{\epsilon_+} \cup \Lambda_{\epsilon_-}$ has positive Plancherel measure if and only if the set $\bigcup_{\rho_{\ell} \in A} T_{\ell}$ has positive Plancherel measure in Λ_{ϵ_1} .

In applying this remark to the set E , we obtain

$$
\widehat{\phi}^s_{\rho_{(\ell^t)_{n-1}}}=0
$$

for all $\rho_{\ell_{n-1}}$ in $E' \subset \widehat{G}_{n-1}$ with positive Plancherel measure.

By the induction hypothesis $\phi^s = 0$ almost everywhere on G_{n-1} , which implies that $\phi = 0$ almost everywhere on G by using Fubini's theorem.

Second case: $\mathfrak{g}^{\ell} \not\subset \mathfrak{g}_{n-1}$ for all $\ell \in W_{\epsilon}$. Let $\phi \in C_c^{\infty}(G)$. By hypothesis, for all ρ_{ℓ} , such that $\ell \in E$ we have $\phi_{\rho_{\ell}} = 0$; let us show that $\phi_{\rho_{\ell}} = 0$ for all $\ell \in W_{\epsilon}.$

Let $\ell \in E$. For all $\alpha \in \mathbb{R}$ we have

$$
\langle \widehat{\phi}_{\rho_{\ell_{\alpha}}}\xi, \eta \rangle = \int_{\mathbb{R}} e^{i\alpha s} \langle \rho_{\ell}(\exp(sX))\widehat{\phi}_{\rho_{\ell_{n-1}}}^{s}\xi, \eta \rangle ds;
$$

hence

$$
\widehat{\phi}_{\rho_{\ell_{\alpha}}} = \int_{\mathbb{R}} e^{i\alpha s} \rho_{\ell}(\exp(sX)) \widehat{\phi}_{\rho_{\ell_{n-1}}}^{s} ds.
$$

Set

$$
\Psi(s) = \rho_{\ell}(\exp(sX))\widehat{\phi}_{\rho_{\ell_{n-1}}}^s.
$$

Hence

$$
\widehat{\phi}_{\rho_{\ell_{\alpha}}} = \int_{\mathbb{R}} \Psi(s) e^{i\alpha s} ds
$$

$$
= \widehat{\Psi}(\alpha).
$$

By hypothesis, for all $\ell \in E$ we have $\widehat{\phi}_{\rho_{\ell}} = 0$. The above calculation tells us that there exists a set $E' \subset E$ with positive Plancherel measure such that $\Psi(\alpha) = 0$ for α belonging to a set of reals with positive Lebesgue measure and $\ell \in E'$. Hence $\Psi = 0$ almost everywhere; consequently we have $\Psi(s) = 0$ for almost every $s \in \mathbb{R}$. Hence

$$
0 = \widehat{\phi}_{\rho_{\ell_{\alpha}}} = \int_{\mathbb{R}} e^{i\alpha s} \rho_{\ell}(\exp(sX)) \widehat{\phi}_{\rho_{\ell_{n-1}}}^{s} ds
$$

for all α in \mathbb{R} , which implies that $\widehat{\phi}_{\rho_{\ell_{n-1}}}^s = 0$ for all ℓ_{n-1} in E_1 (path of E on \mathfrak{g}_{n-1}^*) with positive Plancherel measure on $\widehat{G_{n-1}}$. By using the induction hypothesis $\widehat{\phi}_{\rho_{\ell_{n-1}}} = 0$ for almost all $\ell_{n-1} \in W'$ (path of W_{ϵ} on \mathfrak{g}_{n-1}^*). Hence, $0 = \phi_{\rho_{\ell}}$ for almost all $\ell \in W_{\epsilon}$ (from the above calculation of $\phi_{\rho_{\ell_{\alpha}}})$.

Hence $\hat{\phi}_{\rho} = 0$ for almost all ρ relating with the Plancherel measure. By the Plancherel formula for completely solvable Lie groups, we have

$$
\phi(e) = \sum_{\epsilon} \int_{\Lambda_{\epsilon}} Tr(A_{\psi,\lambda,\epsilon}^{-1/2} \rho_{\lambda,\epsilon}(\phi) A_{\psi,\lambda,\epsilon}^{-1/2}) |r_{\psi,\epsilon}(\lambda)| d\lambda
$$

which implies that $\phi = 0$.

Now, we consider $\phi \in L_c^{\infty}(G)$. Let $\{f_n\}_n$ be an apporoximate identity in $C_c^{\infty}(G)$. For all integers $n, f_n * \phi \in C_c^{\infty}(G)$. Let $\rho \in E$. If $\widehat{\phi}_{\rho}$ vanishes, then $(\bar{f}_n * \bar{\phi})_\rho$ also vanishes. Hence by what precedes, $f_n * \phi = 0$ (for all integers n). But, $(f_n * \phi)_{n \in \mathbb{N}}$ converges to ϕ in $L^1(G)$, which implies that $\phi = 0$ almost everywhere on G .

5. Example: The $ax + b$ Group.

Consider the group

$$
G = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \mid a > 0, b \in \mathbb{R} \right\}.
$$

We use the notation

$$
(a,b) = \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}.
$$

The Matrix multiplication gives:

$$
(a_1, b_1)(a_2, b_2) = (a_1a_2, a_1b_2 + b_1)
$$

and the inverse

$$
(a,b)^{-1} = (a^{-1}, -ba^{-1}).
$$

Let $H = (1, b)$ be the derived group of G which is identified with R. Let $y \in \mathbb{R}$, χ_y the character of H defined by $\chi_y((1, b)) = e^{iby}$.

Remark that $(a, b) = (1, b)(a, 0)$. Let $\rho_y = \text{Ind}_{H}^{G} \chi_y$ be the induced representation of G. This representation is realized in the space $L^2(\mathbb{R})$. Recall that for all $y > 0$, ρ_y is equivalent to ρ_1 and we denote by ρ_+ the class of the representation ρ_1 . If $y < 0$, ρ_y is equivalent to ρ_{-1} ; we denote by ρ_- the equivalence class of this representation.

The Lie algebra $\mathfrak g$ of G is the set of matrices

$$
\mathfrak{g} = \left\{ \begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix}, (x, y) \in \mathbb{R}^2 \right\}.
$$

In the basis

$$
X = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \quad \text{and} \quad Y = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}
$$

we have $[X, Y] = Y$. With the basis X and Y we have

$$
Ad(a,b) = \begin{pmatrix} 1 & 0 \\ -b & a \end{pmatrix}.
$$

Also in the dual basis $\{X^*, Y^*\}$

$$
Ad^*(a,b) = \begin{pmatrix} 1 & ba^{-1} \\ 0 & a^{-1} \end{pmatrix}.
$$

For $\ell = \alpha X^* + \beta Y^* \in \mathfrak{g}^*$ the orbits of G in \mathfrak{g}^* are the upper half plane $\beta > 0$, the lower half plane $\beta < 0$ and the points $(\alpha, 0)$.

Let $\mathfrak{B} = \{X, Y\}$ be the basis of g defined above, and $\mathfrak{B}^* = \{X^*, Y^*\}$ the dual basis of \mathfrak{g}^* . There exists a set $J = \{j_1, j_2\} \subseteq \{1, 2\}$ and $M = \{j_2\}$ a subset of J, so that $V \subset \mathbb{R}^2$, $V =]0, \infty[\times \mathbb{R}$. We have $W_D = (0)$ and W_M is spanned by the vector $\{X_{j_2}^* \mid j_2 \in M\}$.

The Zariski open sets \tilde{U}_+ and U_- are the half planes of \mathfrak{g}^* defined above and $U = U_+ \cup U_-$. Here, $a = 1$ and $\epsilon \in \{1, -1\}.$

Since there are only two orbits, the set

$$
W = \{ \ell \in W_M \cap U \mid |q_{j_2}(\ell)| = 1, j_2 \in M \}
$$

is a union of two points in \mathfrak{g}^* . We have $W_+ = W \cap U_+$ and $W_- = W \cap U_-$. Let $\epsilon \in \{1, -1\}$. In this case the Zariski open set is $\Lambda_{\epsilon} = \Lambda_{+}$ or $\Lambda_{\epsilon} = \Lambda_{-}$ of W_D , which reduces to a point.

In this particular case we can prove weak Paley–Wiener property by direct calculations.

Let $\phi \in \mathrm{C}_c^{\infty}(G), f \in L^2(\mathbb{R}_+^*)$ and $(t,0) \in \mathbb{R}_+^*$: then

$$
(\hat{\phi}_{\rho_{\ell}}f)(t) = \int_{G} \phi((a,b)) \rho_{\ell}((a,b)) f(t) a^{-2} da db
$$

\n
$$
= \int_{G} \phi((a,b)) f((a,b)^{-1}(t,0)) a^{-2} da db
$$

\n
$$
= \int_{\mathbb{R}_{+}^{*}} \int_{\mathbb{R}} \phi((a,b)) f((a^{-1}t, -ba^{-1})) a^{-2} da db
$$

\n
$$
= \int_{\mathbb{R}_{+}^{*}} \int_{\mathbb{R}} \phi((a,b)) f((a^{-1}t,0)(1,-bt^{-1})) a^{-2} da db
$$

\n
$$
= \int_{\mathbb{R}_{+}^{*}} \left(\int_{\mathbb{R}} \phi((a,b)) \chi_{y}((1,-bt^{-1})) db \right) f((a^{-1}t,0)) a^{-2} da
$$

\n
$$
= \int_{\mathbb{R}_{+}^{*}} \left(\int_{\mathbb{R}} \phi^{a}(b) e^{-ibyt^{-1}} db \right) f((a^{-1}t,0)) a^{-2} da
$$

\n
$$
= \int_{\mathbb{R}_{+}^{*}} \widehat{\phi}_{\chi_{yt^{-1}}}^{a} f((a^{-1}t,0)) a^{-2} da,
$$

where $\phi^a(b) = \phi((a, b)).$

Remark that $\phi^a \in C_c^{\infty}(\mathbb{R})$. By hypothesis we have $\widehat{\phi}_{\rho_\ell} = 0$ for all $\ell \in E$. The above calculation implies that for all $a > 0$ we have $\widehat{\phi}_{\chi_{yt}-1}^a = 0$ for almost all $t > 0$ and for fixed y.

As $\phi^a \in C_c^{\infty}(\mathbb{R})$, $\widehat{\phi}^a_{\chi_{yt^{-1}}}$ extends as an entire function over \mathbb{C} . $\widehat{\phi}^a_{\chi_{yt^{-1}}}$ vanishes on a set in which the Plancherel measure $d\mu_1$ is positive hence by the classical Paley–Wiener theorem, we can conclude that $\phi^a = 0$, and then $\phi = 0$ almost everywhere on G.

Acknowledgement. This article is part of the author's Ph.D thesis. The author is indebted to her advisor Professor Gérard Grélaud, for his help with this work.

References

- [B1] P. Bernat and al, Sur les représentations unitaires des groupes de Lie résolubles, Ann. Sci. EC. Norm. Sup, 3ème série, 82 (1965).
- [B2] , Représentations des groupes de Lie résolubles, Paris, Dunod, 1972.
- [C] B.N. Currey, An explicit Plancherel formula for completely solvable Lie groups, Michigan Math Journal, 38 (1991), 75-87.
- [DR] M. Duflo and M. Raïs, Sur l'analyse harmonique sur les groupes de Lie résolubles, Ann. Sci. Ecole. Norm. Sup., $9(4)$ (1976), 107-144.
- $[GG1]$ G. Garimella, Un théorème de Paley–Wiener pour les groupes de Lie nilpotents, Journal of Lie Theory, 5 (1995), 165-172.
- [GG] $\qquad \qquad$, Théorèmes de Paley–Wiener. Opérateurs différentiels invariants sur les groupes de Lie nilpotents, Ph.D thesis, Universit´e de Poitiers, 1997.
- [Pu] L. Pukanszky, On the characters and the Plancherel formula of nilpotent Lie groups, J. Func. Anal., 1 (1967), 255-280.

Received July 21, 1997 and revised October 22, 1997.

INDIAN STATISTICAL INSTITUTE Bangalore - 560059 **INDIA** E-mail address: gaya@ns.isibang.ac.in