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We prove a weak Paley–Wiener property for completely
solvable Lie groups, i.e. if the group Fourier transform of a
measurable, bounded and compactly supported function van-
ishes on a set of positive Plancherel measure then the function
itself vanishes almost everywhere on the group.

1. Introduction.

Let G be a connected, simply connected, and completely solvable Lie group,
with the Lie algebra g. Let g∗ be the dual of g. The equivalence classes of
irreducible unitary representations Ĝ of G is parametrized by the coadjoint
orbits g∗/G via the Kirillov-Bernat bijective map K : Ĝ → g∗/G. If ρ ∈ Ĝ
and ` ∈ K(ρ), then there exists an analytic subgroup H of G and a unitary
character χ of H, such that `|h = Idχ, where h is the Lie algebra of H.
The induced representation ρ = IndGH χ is irreducible. Moreover, K is a
bijection. The image on g∗/G of a measure equivalent to Lebesgue measure
on g∗ gives a Plancherel measure on Ĝ.

Let φ be a bounded, measurable and compactly supported function on
Rn. By the classical Paley–Wiener theorem, the Fourier transform φ̂ of φ
extends to an entire function on Cn. Using this we can conclude that if φ̂
vanishes on a set of positive Plancherel measure which is nothing but the
Lebesgue measure, then φ̂ vanishes on the whole of Rn. This in turn implies
that φ = 0 on Rn.

In the same spirit, for a completely solvable Lie group we will think of
the following as a weak Paley–Wiener property:

Theorem. Let G be a connected, simply connected, and completely solvable
Lie group, with the unitary dual Ĝ. Let φ be a measurable, bounded, and
compactly supported function (i.e φ ∈ L∞c (G)). Assume that there exists
a subset E ⊂ Ĝ with positive Plancherel measure such that φ̂ρ = 0 for all
ρ ∈ E where φ̂ρ is the group Fourier transform of φ. Then φ = 0 almost
everywhere on G.

In [GG1] we proved, the same theorem for nilpotent Lie groups, by in-
duction on the dimension of G. To prove the above theorem, also by using
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induction on the dimension of G, we need a description of the dual space Ĝ
of G and an explicit Plancherel measure on Ĝ. Here, we use the results of
B.N. Currey [C], which are generalizations of the results of L. Pukanszky
[Pu] on nilpotent Lie groups concerning the Plancherel measure and the
Plancherel formula.

2. Preliminaries.

Let G be a connected, simply connected, and completely solvable Lie group,
with the Lie algebra g. Let g∗ be the dual of g. We fix a basis B =
{X1, . . . , Xn} of g, such that gj is spanned by the vectors {X1, X2 · · · , Xj},
1 ≤ j ≤ n and g0 = (0). As G is completely solvable, there exists a chain of
ideals

0 = g0 ⊂ g1 ⊂ · · · ⊂ gi · · · ⊂ gn−1 ⊂ gn = g

of g, such that the dimension of gi be i for all 1 ≤ i ≤ n. Let B∗ =
{X∗

1 , . . . , X
∗
n} be the dual basis of g∗. We fix a Lebesgue measure dX on g,

and a right Haar measure dg on G such that d(expX) = jG(X)dX, where

jG(X) =
∣∣∣∣det

(
1− e−adX

adX

)∣∣∣∣ .
Let ∆ be the modular function such that for all g′ ∈ G, d(gg′) = ∆(g′)dg.
Let O be a coadjoint orbit in g∗ and ` ∈ O. The bilinear form B` : (X,Y ) →
`([X,Y ]) defines a skew-symmetric and nondegenerate bilinear form on g/g`.
As the map X → X.` induces an isomorphism between g/g` and the tangent
space of O at `, the bilinear form B` defines a nondegenerate 2-form ω` on
this tangent space. If 2k is the dimension of O we note that

βO = (2π)−k(k!)−1ω ∧ · · · ∧ ω (k times)

the canonical measure on O. Lemma 3.2.2. in [DR], says us that there
exists a nonzero rational function ψ on g∗ such that ψ(g.`) = ∆(g)−1ψ(`),
g ∈ G, and ` ∈ g∗. We fix one such ψ. There exists a unique measure mψ

on g∗/G such that∫
g∗
φ(`)|ψ(`)|d` =

∫
g∗/G

(∫
O
φ(`)dβO(`)

)
dmψ(O)

for all Borel functions φ on g∗.
B.N. Currey [C] gave an explicit description of the measure mψ with the

help of the coadjoint orbits g∗/G. We recall the theorem proved by B.N.
Currey in [C] which is the essential tool to prove our Paley–Wiener property:

Theorem 2.1. Let G be a connected, simply connected, and completely
solvable Lie group. There exists a Zariski open subset U of g∗, a subset
J = {j1 < j2 < · · · < j2k} of {1, 2, · · · , n}, a subset M = {jr1 < jr2 <
· · · < jra} of J , for each j in M a real valued rational function qj (non
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vanishing on U), and real analytic Pj, 1 ≤ j ≤ n functions in the variables
w1, w2, . . . , w2k, `1, `2, · · · , `n such that the following hold.

1) If a denotes the number of elements in M , for each ε ∈ {1,−1}a, the
set

Uε = {` ∈ U | sign of qjrm
(`) = εm, 1 ≤ m ≤ a}

is a non empty open subset in g∗.
2) Define V ⊂ R2k by V =

∏
Rr, where Rr =]0,∞[ if jr ∈M and Rr = R

otherwise. Let ε ∈ {1,−1}a and for v ∈ V , define εv ∈ R2k by (εv)j = εmvj
if j = jrm ∈M and (εv)j = vj otherwise. Then for each ` ∈ Uε, the mapping
v →

∑
j Pj(εv, `)X

∗
j is a diffeomorphism of V with the coadjoint orbit of `.

3) Define WD as the subspace spanned by the vectors {X∗
i | i 6∈ J} and

WM the subspace spanned by {X∗
j | j ∈M}. Then the set

W = {` ∈ (WD ⊕WM ) ∩ U | |qj(`)| = 1, j ∈M}

is a cross-section for the coadjoint orbits U . For each j ∈ M the rational
function qj is of the form qj(`) = `j + pj(`1, `2, · · · , `j−1), where pj is a
rational function.

4) For each ` ∈ U , let ε(`) ∈ {1,−1}a such that ` ∈ Uε(`). Then the
mapping P : V × W → U , defined by P (v, `) =

∑
j Pj(ε(`)v, `)X

∗
j , is a

diffeomorphism.

B.N. Currey [C] proved that mψ is a Plancherel measure on W .
The idea is to compute the measure ψ(`)dl in termes of product measures

on V × W and then, using Lemma 1.3 of [C], we can read off mψ as a
measure on W . We have to determine coordinates for W .

If the subset M of J is empty, then W = WD ∩U and the coordinates for
W are obtained by identifying WD with Rn−2k, which is the parametrization
of g∗ in the nilpotent case. On the other hand, suppose that M is non empty,
and a denotes the number of elements inM . From [C], for each ε ∈ {1,−1}a,
there exists a non empty Zariski open subset Uε of U and U is the disjoint
union of the sets Uε. Let ε ∈ {1,−1}a and set Wε = W ∩ Uε. From [C], we
have that

Wε = {` ∈ (WD ⊕WM ) ∩ U | for each j = jrm ∈M,

`j = εm − pj(`1, `2, · · · , `j−1)}

where j ∈M and pj is a rational nonsingular function on U .
Let ε ∈ {1,−1}a. Then from [C], there is a Zariski open subset Λε of WD

and a rational function pε : Λε →WM such that Wε = graph (pε).
From [C], the projection of Uε into WD parallel to WJ defines a diffeo-

morphism πε of Wε with Λε.

Remark 2.2. If G is nilpotent, then M is empty, Uε = U , pε = 0, and
Λε = W = U ∩WD is a open subset in WD.
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Let Oλ,ε be the coadjoint orbit via π−1
ε (λ) for λ ∈ Λε and let βλ,ε be the

canonical measure on Oλ,ε. Identify WD with Rn−2k via the basis {X∗
i | i 6∈

J} and let dλ be the Lebesgue measure on WD. If WD = (0) the measure
dλ is a point mass measure. This is the case for the “ax+ b group” (see the
example, paragraph 5).

Define Θε : V × Λε → Uε by Θε(v, λ) = P (v, π−1
ε (λ)). Then Θε is a

diffeomorphism.
From 2.8 of [C], for any integrable function F on g∗/G, we have∫
g∗/G

F (O)dmψ(O) =
∑
ε

∫
Λε

F (Oλ,ε)|ψ(π−1
ε (λ))||Pf(π−1

ε (λ))|(2π)−2kdλ

where Pf(π−1
ε (λ)) denotes the Pffafian in π−1

ε (λ).
Set [ρλ,ε] = K−1(Oλ,ε) for ε ∈ {1,−1}a and λ ∈ Λε. For each nonzero

rational function ψ on g∗ satisfying ψ(g.`) = ∆(g)−1ψ(`) for g ∈ G and
` ∈ g∗, let Aψ,λ,ε, denote the semi-invariant operator of weight ∆ for the
irreducible representation ρλ,ε corresponding to the restriction of ψ to Oλ,ε
(this operator is constructed in [DR]).

In summary: Let G be a connected, simply connected, and completely
solvable Lie group. Let {X∗

1 , X
∗
2 , · · · , X∗

n} be a Jordan-Hölder basis of g∗.
Then, there is a finite collection of disjoint open subsets Uε of g∗ and there
is a subspace WD of g∗ such that for each ε, Uε is parametrized by a Zariski
open subset Λε of WD, ∪Uε is dense in g∗, and the complement of ∪Uε has
Plancherel measure zero. Let ψ be a non empty rational function on g∗ such
that ψ(g.`) = ∆(g)−1ψ(`) for g ∈ G and ` ∈ g∗. For each ε, there is a
rational function rψ,ε on WD such that for any smooth compactly supported
function φ on G, the function

λ→ Tr(A−1/2
ψ,λ,ερλ,ε(φ)A−1/2

ψ,λ,ε)|rψ,ε(λ)|

on Λε is Lebesgue integrable. For any such φ we have

φ(e) =
∑
ε

∫
Λε

Tr(A−1/2
ψ,λ,ερλ,ε(φ)A−1/2

ψ,λ,ε)|rψ,ε(λ)|dλ

where rψ,ε(λ) = ψ(π−1
ε (λ))Pf(π−1

ε (λ))(2π)−2k.

3. Group Fourier Transform.

We consider two cases:

First case: We suppose that g` ⊂ gn−1 for all ` ∈ Wε i.e. all the general
position orbits are saturated with respect to gn−1. We can choose a basis of
g in which the first n− 1 vectors of the basis

{X1(`), . . . , Xr(`), . . . , Xm(`), . . . , Xn−1(`)}



WEAK PALEY–WIENER PROPERTY 55

for ` ∈ Wε depends on `, the Xi(`) are in g
`j
j for certain j with `j = `|gj ,

and g
`j
j = {X ∈ gj |ad∗X.`j = 0}. As g` ⊂ gn−1, the last vector of the basis

does not depend on `. Let

BWε(`) = {X1(`), . . . , Xr(`), . . . , Xm(`), . . . , Xn−1(`), Xn}

be one such basis of g.
Remark that the index set J1 for Gn−1 is equal to J\{n, j1} and that

M1 = {jr2 , · · · , jra1
} is a subset of J1. For each ε1 ∈ {1,−1}a1 , the set Uε1

is a nonempty open subset of g∗n−1. Denote WD1 the subspace spanned by
{X∗

i | i 6∈ J1} in g∗n−1. Then, we have WD1 = WD ⊕ RX∗
j1

and WM1 is the
subspace spanned by {X∗

j | j ∈M1}.
Set Wε1 = W1 ∩ Uε1 where

W1 = {`1 ∈ (WD1 ⊕WM1) ∩ U1 | |qj(`1)| = 1, j ∈M1}.

Now, by the corresponding theory forGn−1 we have a Zariski open subset Λε1
ofWD1 and a rational function pε1 : Λε1 →WM1 such thatWε1 = graph(pε1).

Remark that a1 = a− 1. In fact there is a case where a1 = a. If we start
with any chain of ideals 0 = g0 ⊂ g1 ⊂ · · · ⊂ gi ⊂ · · · ⊂ gn−1 ⊂ gn = g,
to avoid this case it suffices to choose a chain in such a manner that the
chain passes through the nil-radical of g when g is non nilpotent. Also ε1 is
obtained by deleting an element from ε. Let Λ′ε+ denote the projection of
Λε+ on g∗n−1, and Λ′ε− denote the projection of Λε− on g∗n−1.

The measure on Wε1 is

dµ1(π−1
ε1 (λ1)) =

∑
ε1∈{1,−1}a1

(2π)−(2k−2)ψ1(π−1
ε1 (λ1))Pf(π−1

ε1 (λ1))dλ1

where Pf(π−1
ε1 (λ1))2 = det(π−1

ε1 (λ1)([Xi, Xj ])i,j∈J1) with π−1
ε1 (λ1) =

π−1
ε (λ)|g∗n−1

and ψ1 is a non empty rational function on g∗n−1 such that
we have ψ1(h.`1) = ∆(h)−1ψ1(`1). Remark that, g`n−1 = g` ⊕ RXj1 ,
[Xi, Xj ] ∈ gn−1 for i,j in J1, and `([Xj1 , gn−1]) = 0.

Remark 3.1. For ` ∈Wε, letA(`) = (`[Xi, Xj ])i,j∈J be the skew-symmetric
matrix.

A(`) =


0 · · · 0 · · · `([Xn, Xj1 ])
0 ∗
... An−1(`)

...
`([Xj1 , Xn]) ∗ ∗


where An−1(`) = `([Xi, Xj ])i,j∈J1 .

Then: detA(`)
1
2 = |`([Xj1 , Xn])|(detAn−1(`)

1
2 ).

That is, Pf(`) = `([Xj1 , Xn])Pf(`n−1) where `n−1 = `|gn−1 .



56 GAYATRI GARIMELLA

Lemma 3.2. We suppose that g` ⊂ gn−1 for all ` ∈ Wε. Let ψ be a non
empty rational function on g∗ such that ψ(x.`) = ∆(x)−1ψ(`) for all ` ∈Wε

and x ∈ G. Then:
i. ψ(`) = ψ(`′) for `′ ∈ `+ g⊥n−1.
ii. Let `1 ∈ g∗n−1 and ˜̀

1 be an extension of `1 to g∗. By taking ψ1(`1) =
ψ( ˜̀

1) we obtain a rational function ψ1 on g∗n−1 verifying ψ1(h.`1) =
∆Gn−1(h)

−1ψ1(`1) for h ∈ Gn−1 and `1 ∈Wε1.

Proof. We have G` ⊂ G`n−1 for ` ∈ Wε hence the stabilizer of `n−1 ∈ g∗n−1

in G is also equal to G`n−1 .
Let `′ = ` + γ where γ ∈ g⊥n−1. Then `′ = a.` with a ∈ G`n−1 , hence we

have that ψ(`′) = ψ(a.`) = ∆(a)−1ψ(`). We have to verify that ∆(a) = 1
if a ∈ G`n−1 . But, ∆(a) = ∆Gn−1(a) since Gn−1 is normal in G. Moreover,
Gn−1/G

`n−1

n−1 has an invariant measure, so we have ∆Gn−1(a) = ∆
G

`n−1
n−1

(a).

It suffices to see that G`n−1

n−1 is abelian since, the orbit of `1 is of maximal
dimension (see [B2], Chapter II). Hence ψ(`′) = ψ(`) which allows us to
define ψ1.

For all h ∈ Gn−1 and `1 ∈ g∗n−1 we have

ψ1(h.`1) = ψ(h̃.`1) = ψ(h. ˜̀1) = ∆G(h)−1ψ( ˜̀
1) = ∆Gn−1(h)

−1ψ1(`1).

�

We express the measure dµ1 on Wε1 in terms of local coordinates on g∗n−1.
From the above remark and the Lemma we have that

dµ1 =
∑

ε1∈{1,−1}a1

(2π)2k−2 1
ψ1(π−1

ε1 (λ1))
1

Pf(π−1
ε1 (λ1))

dλ1

=

(∑
ε′

(2π)2k−2π
−1
ε (λ)([Xj1 , Xn])
Pf(π−1

ε (λ))
1

ψ(π−1
ε (λ))

dλ

)
dX∗

j1

where ε′ describes a part of {1,−1}a.
This measure Wε1 ⊂ g∗n−1 is a Plancherel measure on Ĝn−1, the unitary

dual of Gn−1.
For ` ∈ Wε, ρ` = ρλ,ε = IndGGn−1

ρ`n−1 is an induced representation of G,
where `n−1 = `|gn−1 and ρ`n−1 = ρλ1,ε1 is a representation of Gn−1. Let
C∞(G, ρ) be the set of f ∈ C∞(G) with compact support modulo Gn−1 such
that f(hg) = (ρ`n−1(h))f(g) for all h ∈ Gn−1, g ∈ G.

For all φ ∈ C∞c (G) and ρ` ∈ Ĝ such that ` ∈ Wε, the group Fourier
transform is defined by

φ̂ρ`
=
∫
G
φ(g)ρ`(g)dg.
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Set `t = Ad∗(exp(−tX))`. Remark that

ρ`t(g) = ρ`(exp(tX).g. exp(−tX)).

Choose X ∈ g\gn−1. For all s, t in R, the action of φ ∈ C∞c (G) on f ∈ Hρ`

gives us

(φ̂ρ`
f)(exp(tX)) =

∫
G
φ(g)ρ`(g)f(exp(tX))dg.

As the induced representation acts by right translation on f ∈ Hρ`
, we have

(φ̂ρ`
f)(exp(tX)) =

∫
G
φ(g)f(exp(tX).g)dg

=
∫

R

∫
Gn−1

φ(h. exp(sX))f(exp(tX).h. exp(sX))dhds

=
∫

R

∫
Gn−1

φ(h. exp(sX))f(exp(tX).h. exp(−tX). exp(tX). exp(sX))dhds

=
∫

R

∫
Gn−1

φ(h. exp(sX))f(exp(tX).h. exp(−tX). exp(t+ s)X)dhds

=
∫

R

∫
Gn−1

φ(h. exp(sX))ρ(`t)n−1
(h)f(exp(t+ s)X)dhds

=
∫

R

∫
Gn−1

φs(h)ρ(`t)n−1
(h)f(exp(t+ s)X)dhds

=
∫

R

(
φ̂sρ(`t)n−1

)
f(exp(t+ s)X)ds

where φs(h) = φ(h. exp(sX)).
For all α ∈ R we set fα(h. exp(sX)) = eiαsf(h. exp(sX)). We have fα ∈

Hρ`
, since f is in Hρ`

.
Let ker ρ` denote the kernal of ρ` in C∗(G), the C∗- algebra of the group

G. If φ ∈ ker ρ`, then, from the above calculations, for all f ∈ Hρ`
we have

0 =
∫

R
φ̂sρ(`t)n−1

fα(exp(s+ t)X)ds

=
∫

R
eiα(s+t)φ̂sρ(`t)n−1

f(exp(s+ t)X)ds ∀α ∈ R,

which implies that φ̂sρ(`t)n−1
= 0 for all s ∈ R. Conversely, for all s and t in

R, if φ̂sρ(`t)n−1
= 0 we have φ̂ρ`

= 0 which implies that φ ∈ ker ρ`. We have
established an equivalence

φ ∈ ker ρ` ⇐⇒
(
φ̂sρ(`t)n−1

= 0 ∀s, t
)
.
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Second case: If all the general position orbits are not saturated with respect
to gn−1, we can choose a basis of g in such a way that the last vector of the
basis Xn does not depend on ` and Xn(`) ∈ g`. Let

BWε(`) = {X1(`), . . . , Xr(`), . . . , Xm(`), . . . , Xn−1(`), Xn(`)}

be one such basis of g in which theXi(`) are in g
`j
j for certain j with `j = `|gj .

Lemma 3.3. Assume that g` 6⊂ gn−1 for all ` ∈ Wε. Let ψ be a non
empty rational function on g∗ such that ψ(x.`) = ∆(x)−1ψ(`) for all ` ∈
Wε and x ∈ G. Let `1 ∈ g∗n−1 and ˜̀

1 be an extension of `1 to g∗. By
letting ψ1(`1) = ψ( ˜̀

1) we obtain a rational function ψ1 on g∗n−1 satisfying
ψ1(h.`1) = ∆(h)−1ψ1(`1) for all h ∈ Gn−1.

Proof. For all ` ∈ g∗ and α ∈ R we have `α = `+αX∗
n and g∗ = g∗n−1⊕RX∗

n.
For all h ∈ Gn−1, we have h.`α = h.`+αX∗

n since G.X∗
n = X∗

n. By choosing
α = 0, we have `0 = `+ 0X∗

n and h.`0 = h.`. Hence, ψ1(`1) = ψ( ˜̀
1) and

ψ1(h.`1) = ψ(h.`1) = ∆(h)−1ψ(`1) = ∆Gn−1(h)
−1ψ1(`1).

�

Remark that the set of indices J1 for Gn−1 is equal to J . In this case as
g` = g`n−1 +RXn we have WD = WD1 +RXn, where WD1 is the subspace of
g∗n−1 corresponding toWD in g∗. Moreover, Λε = Λε1+RX∗. The Plancherel
measure over Ĝ can be written as;

dµ(`) =
∑
ε

(2π)2k
1

ψ(π−1
ε (λ))

1
Pf(π−1

ε (λ))
dX∗

1 · · · dX∗
n−2k−1dX

∗
n

=

(∑
ε1

(2π)2k
1

ψ1(π−1
ε1 (λ1))

1
Pf(π−1

ε1 (λ1))
dX∗

1 · · · dX∗
n−2k−1

)
dX∗

n

= dµ1 × dX∗
n.

For ` = π−1
ε (λ) ∈ Wε, and α ∈ R we let `α = ` + αX∗. Hence, `α(X) =

`(X) + α and ρ`α = ρ` ⊗ χα with χα(h. exp(sX)) = eiαs for all h ∈ Gn−1.
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The restriction of ρ`α to Gn−1 is irreducible and equivalent to ρ`n−1 for
all α ∈ R. For all ξ, η ∈ Hρ`

= Hρ`α
we have

〈φ̂ρ`α
ξ, η〉 =

∫
G
〈ρ`α(g)ξ, η〉φ(g)dg

=
∫
G
〈ρ` ⊗ χα(g)ξ, η〉φ(g)dg

=
∫

R

∫
Gn−1

〈ρ` ⊗ χα(exp(sX).h)ξ, η〉φ(exp(sX).h)dhds

=
∫

R

∫
Gn−1

〈eiαsρ`(exp(sX))ρ`n−1(h)ξ, η〉φ(exp(sX).h)dhds

=
∫

R
eiαs〈ρ`(exp(sX))φ̂sρ`n−1

ξ, η〉ds

where φs(h) = φ(exp(sX).h). Hence we have expressed φ̂ρ`α
with the help

of φ̂sρ`n−1
.

4. Weak Paley–Wiener Property.

Theorem 4.1. Let G be a connected, simply connected, and completely solv-
able Lie group with the unitairy dual Ĝ, and let φ be a bounded, measurable
and compactly supported function (i.e. φ ∈ L∞c (G)). Assume that there is
a subset E ⊂ Ĝ with positive Plancherel measure such that φ̂ρ = 0 for all
ρ ∈ E, where φ̂ρ is the group Fourier transform of φ. Then φ = 0 almost
every where on G.

Proof. We proceed by induction on the dimension n of G. The result is true
if the dimension of G is one, since G ∼= R. Assume that the result is true
for all groups of dimension n− 1. We can assume that E is contained in Wε

(it suffices to take E as the finite union of E ∩Wε).

First case: g` ⊂ gn−1 for all ` ∈ Wε. Let φ ∈ C∞c (G). By hypothesis, for all
ρ`, such that ` ∈ E we have 0 = φ̂ρ`

; we will show that φ = 0 almost every
where on G.

Notice that for all ε1 ∈ {−1, 1}a1 , the associated set Λε1 corresponds to
two sets Λε+ and Λε− , ε± ∈ {−1, 1}a in WD. If Λ′ε+ and Λ′ε− are the projec-
tions of Λε+ and Λε− on g∗n−1 such that Λ′ε1 = (exp RX).Λ′ε+ ∪ (exp RX).Λ′ε−
and T` = {exp tX.`n−1 | t ∈ R} are contained in the projection of Λε+ or in
Λε− , Λ′ε1 is a Zariski open set in Λε1 .

From paragraph 3 we have that

φ ∈ ker ρ` ⇐⇒
(
φ̂sρ(`t)n−1

= 0 ∀s, t
)
.
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By hypothesis, φ̂ρ`
= 0 for all ` ∈ E and from the above equivalence we have

φ̂sρ(`t)n−1
= 0

for all s, t in R. This relation tells us that a set A contained in Λε+ ∪ Λε−
has positive Plancherel measure if and only if the set ∪ρ`∈AT` has positive
Plancherel measure in Λε1 .

In applying this remark to the set E, we obtain

φ̂sρ(`t)n−1
= 0

for all ρ`n−1 in E′ ⊂ Ĝn−1 with positive Plancherel measure.
By the induction hypothesis φs = 0 almost everywhere on Gn−1, which

implies that φ = 0 almost everywhere on G by using Fubini’s theorem.

Second case: g` 6⊂ gn−1 for all ` ∈ Wε. Let φ ∈ C∞c (G). By hypothesis, for
all ρ`, such that ` ∈ E we have φ̂ρ`

= 0; let us show that φ̂ρ`
= 0 for all

` ∈Wε.
Let ` ∈ E. For all α ∈ R we have

〈φ̂ρ`α
ξ, η〉 =

∫
R
eiαs〈ρ`(exp(sX))φ̂sρ`n−1

ξ, η〉ds;

hence
φ̂ρ`α

=
∫

R
eiαsρ`(exp(sX))φ̂sρ`n−1

ds.

Set
Ψ(s) = ρ`(exp(sX))φ̂sρ`n−1

.

Hence

φ̂ρ`α
=
∫

R
Ψ(s)eiαsds

= Ψ̂(α).

By hypothesis, for all ` ∈ E we have φ̂ρ`
= 0. The above calculation tells us

that there exists a set E′ ⊂ E with positive Plancherel measure such that
Ψ̂(α) = 0 for α belonging to a set of reals with positive Lebesgue measure
and ` ∈ E′. Hence Ψ = 0 almost everywhere; consequently we have Ψ(s) = 0
for almost every s ∈ R. Hence

0 = φ̂ρ`α
=
∫

R
eiαsρ`(exp(sX))φ̂sρ`n−1

ds

for all α in R, which implies that φ̂sρ`n−1
= 0 for all `n−1 in E1 (path of E

on g∗n−1) with positive Plancherel measure on Ĝn−1. By using the induction
hypothesis φ̂ρ`n−1

= 0 for almost all `n−1 ∈W ′ (path of Wε on g∗n−1). Hence,

0 = φ̂ρ`
for almost all ` ∈Wε (from the above calculation of φ̂ρ`α

).
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Hence φ̂ρ = 0 for almost all ρ relating with the Plancherel measure. By
the Plancherel formula for completely solvable Lie groups, we have

φ(e) =
∑
ε

∫
Λε

Tr(A−1/2
ψ,λ,ερλ,ε(φ)A−1/2

ψ,λ,ε)|rψ,ε(λ)|dλ

which implies that φ = 0.
Now, we consider φ ∈ L∞c (G). Let {fn}n be an apporoximate identity in

C∞
c (G). For all integers n, fn ∗φ ∈ C∞

c (G). Let ρ ∈ E. If φ̂ρ vanishes, then
̂(fn ∗ φ)ρ also vanishes. Hence by what precedes, fn ∗ φ = 0 (for all integers

n). But, (fn ∗ φ)n∈N converges to φ in L1(G), which implies that φ = 0
almost everywhere on G. �

5. Example: The ax+ b Group.

Consider the group

G =
{(

a b
0 1

)
| a > 0, b ∈ R

}
.

We use the notation

(a, b) =
(
a b
0 1

)
.

The Matrix multiplication gives:

(a1, b1)(a2, b2) = (a1a2, a1b2 + b1)

and the inverse
(a, b)−1 = (a−1,−ba−1).

Let H = (1, b) be the derived group of G which is identified with R. Let
y ∈ R, χy the character of H defined by χy((1, b)) = eiby.

Remark that (a, b) = (1, b)(a, 0). Let ρy = IndGHχy be the induced repre-
sentation of G. This representation is realized in the space L2(R). Recall
that for all y > 0, ρy is equivalent to ρ1 and we denote by ρ+ the class of
the representation ρ1. If y < 0, ρy is equivalent to ρ−1; we denote by ρ− the
equivalence class of this representation.

The Lie algebra g of G is the set of matrices

g =
{(

x y
0 0

)
, (x, y) ∈ R2

}
.

In the basis

X =
(

1 0
0 0

)
and Y =

(
0 1
0 0

)
we have [X,Y ] = Y . With the basis X and Y we have

Ad(a, b) =
(

1 0
−b a

)
.
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Also in the dual basis {X∗, Y ∗}

Ad∗(a, b) =
(

1 ba−1

0 a−1

)
.

For ` = αX∗+βY ∗ ∈ g∗ the orbits of G in g∗ are the upper half plane β > 0,
the lower half plane β < 0 and the points (α, 0).

Let B = {X,Y } be the basis of g defined above, and B∗ = {X∗, Y ∗} the
dual basis of g∗. There exists a set J = {j1, j2} ⊆ {1, 2} and M = {j2} a
subset of J , so that V ⊂ R2, V =]0,∞[×R. We have WD = (0) and WM is
spanned by the vector {X∗

j2
| j2 ∈M}.

The Zariski open sets U+ and U− are the half planes of g∗ defined above
and U = U+ ∪ U−. Here, a = 1 and ε ∈ {1,−1}.

Since there are only two orbits, the set

W = {` ∈WM ∩ U | |qj2(`)| = 1, j2 ∈M}

is a union of two points in g∗. We have W+ = W ∩ U+ and W− = W ∩ U−.
Let ε ∈ {1,−1}. In this case the Zariski open set is Λε = Λ+ or Λε = Λ− of
WD, which reduces to a point.

In this particular case we can prove weak Paley–Wiener property by direct
calculations.

Let φ ∈ C∞c (G), f ∈ L2(R∗
+) and (t, 0) ∈ R∗

+: then

(φ̂ρ`
f)(t) =

∫
G
φ((a, b))ρ`((a, b))f(t)a−2dadb

=
∫
G
φ((a, b))f((a, b)−1(t, 0))a−2dadb

=
∫

R∗
+

∫
R
φ((a, b))f((a−1t,−ba−1))a−2dadb

=
∫

R∗
+

∫
R
φ((a, b))f((a−1t, 0)(1,−bt−1))a−2dadb

=
∫

R∗
+

(∫
R
φ((a, b))χy((1,−bt−1))db

)
f((a−1t, 0))a−2da

=
∫

R∗
+

(∫
R
φa(b)e−ibyt

−1
db

)
f((a−1t, 0))a−2da

=
∫

R∗
+

φ̂aχyt−1
f((a−1t, 0))a−2da,

where φa(b) = φ((a, b)).
Remark that φa ∈ C∞c (R). By hypothesis we have φ̂ρ`

= 0 for all ` ∈ E.
The above calculation implies that for all a > 0 we have φ̂aχyt−1

= 0 for
almost all t > 0 and for fixed y.
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As φa ∈ C∞c (R), φ̂aχyt−1
extends as an entire function over C. φ̂aχyt−1

vanishes on a set in which the Plancherel measure dµ1 is positive hence by
the classical Paley–Wiener theorem, we can conclude that φa = 0, and then
φ = 0 almost everywhere on G.
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[B2] , Représentations des groupes de Lie résolubles, Paris, Dunod, 1972.

[C] B.N. Currey, An explicit Plancherel formula for completely solvable Lie groups,
Michigan Math Journal, 38 (1991), 75-87.
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