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We prove a weak Paley—Wiener property for completely
solvable Lie groups, i.e. if the group Fourier transform of a
measurable, bounded and compactly supported function van-
ishes on a set of positive Plancherel measure then the function
itself vanishes almost everywhere on the group.

1. Introduction.

Let G be a connected, simply connected, and completely solvable Lie group,
with the Lie algebra g. Let g* be the dual of g. The equivalence classes of
irreducible unitary representations G of G is parametrized by the coadjoint
orbits g*/G via the Kirillov-Bernat bijective map K : G — g"/G. If p € G
and ¢ € K(p), then there exists an analytic subgroup H of G and a unitary
character x of H, such that f|, = Id,, where b is the Lie algebra of H.
The induced representation p = Indgx is irreducible. Moreover, K is a
bijection. The image on g*/G of a measure equivalent to Lebesgue measure
on g* gives a Plancherel measure on G.

Let ¢ be a bounded, measurable and compactly supported function on
R™. By the classical Paley—Wiener theorem, the Fourier transform $ of ¢
extends to an entire function on C". Using this we can conclude that if ¢
vanishes on a set of positive Plancherel measure which is nothing but the
Lebesgue measure, then ¢ vanishes on the whole of R™. This in turn implies
that ¢ =0 on R".

In the same spirit, for a completely solvable Lie group we will think of
the following as a weak Paley—Wiener property:

Theorem. Let G be a connected, simply connected, and completely solvable
Lie group, with the unitary dual G. Let ¢ be a measurable, bounded, and
compactly supported function (i.e ¢ € LF(G)). Assume that there exists
a subset E C G with positive Plancherel measure such that ¢p = 0 for all
p € E where qbp is the group Fourier transform of ¢. Then ¢ = 0 almost
everywhere on G.

In [GG1] we proved, the same theorem for nilpotent Lie groups, by in-
duction on the dimension of G. To prove the above theorem, also by using
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induction on the dimension of G, we need a description of the dual space G
of G and an explicit Plancherel measure on G. Here, we use the results of
B.N. Currey [C], which are generalizations of the results of L. Pukanszky
[Pu] on nilpotent Lie groups concerning the Plancherel measure and the
Plancherel formula.

2. Preliminaries.

Let G be a connected, simply connected, and completely solvable Lie group,
with the Lie algebra g. Let g* be the dual of g. We fix a basis B =
{X1,...,Xn} of g, such that g; is spanned by the vectors {X1, Xo---, X},
1 <j<nandgy=(0). As G is completely solvable, there exists a chain of
ideals
0=g0Co1C--Cgi~ Con1Con=9

of g, such that the dimension of g; be i for all 1 < i < n. Let B* =
{X5,..., X} be the dual basis of g*. We fix a Lebesgue measure dX on g,
and a right Haar measure dg on G such that d(exp X) = jg(X)dX, where

1— e—adX
det | ———— 1.
¢ < adX >
Let A be the modular function such that for all ¢’ € G, d(gg9’) = A(g')dyg.
Let O be a coadjoint orbit in g* and ¢ € O. The bilinear form By : (X,Y) —
¢([X,Y]) defines a skew-symmetric and nondegenerate bilinear form on g/g’.
As the map X — X./ induces an isomorphism between g/g‘ and the tangent

space of O at /¢, the bilinear form B, defines a nondegenerate 2-form wy on
this tangent space. If 2k is the dimension of O we note that

Bo=2r)FE) WA Aw (k  times)

the canonical measure on O. Lemma 3.2.2. in [DR], says us that there
exists a nonzero rational function ¢ on g* such that 1 (g.f) = A(g) = (¥),
g € G, and ¢ € g*. We fix one such v. There exists a unique measure my,
on g*/G such that

[ o= [ ([ stson) anyo

for all Borel functions ¢ on g*.

B.N. Currey [C] gave an explicit description of the measure m,, with the
help of the coadjoint orbits g*/G. We recall the theorem proved by B.N.
Currey in [C] which is the essential tool to prove our Paley—Wiener property:

Je(X) =

Theorem 2.1. Let G be a connected, simply connected, and completely
solvable Lie group. There exists a Zariski open subset U of g*, a subset
J =A< jo<- < jot of {1,2,---,n}, a subset M = {jr, < jr, <

- < Jro} of J, for each j in M a real valued rational function q; (non
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vanishing on U), and real analytic Pj, 1 < j < n functions in the variables
Wi, W, . .. ,Wak, L1, 0o, -+, by such that the following hold.

1) If a denotes the number of elements in M, for each e € {1,—1}, the

set
Ue={tcU| signof gqj, (£)=éem1<m<a}
s a non empty open subset in g*.

2) Define V. .C R?* by V' =[] R,, where R, =]0,00] if j, € M and R, =R
otherwise. Let € € {1,—1}% and for v € V, define ev € R?* by (ev); = emv;
if j = Jrm, € M and (ev); = vj otherwise. Then for each { € U, the mapping
v — Zj Pj(ev,0) X7 is a diffeomorphism of V' with the coadjoint orbit of L.

3) Define Wp as the subspace spanned by the vectors {X | i ¢ J} and
W the subspace spanned by {X; | j € M}. Then the set

W={te(WpadWy)NU||g)|=1,jc M}

is a cross-section for the coadjoint orbits U. For each j € M the rational
function q; is of the form q;j(¢£) = ¢; + pj(¢1,l2,--- ,¢;_1), where p; is a
rational function.

4) For each £ € U, let e(f) € {1,—1}* such that { € Ugy. Then the
mapping P : V. x W — U, defined by P(v,l) = Eij(e(E)v,E)Xj, s a

diffeomorphism.

B.N. Currey [C] proved that m,; is a Plancherel measure on .

The idea is to compute the measure ¥ (¢)dl in termes of product measures
on V x W and then, using Lemma 1.3 of [C], we can read off m,, as a
measure on W. We have to determine coordinates for W.

If the subset M of J is empty, then W = WpNU and the coordinates for
W are obtained by identifying Wp with R"~2* which is the parametrization
of g* in the nilpotent case. On the other hand, suppose that M is non empty,
and a denotes the number of elements in M. From [C], for each € € {1, —1}¢,
there exists a non empty Zariski open subset U, of U and U is the disjoint
union of the sets Ue. Let € € {1,—1}* and set W, = W N U.. From [C], we
have that

We={te WpeWy)NU |foreach j=j,, €M,
by = €m —pj(l1, Lo, -+, 4j1)}
where j € M and p; is a rational nonsingular function on U.
Let € € {1, —1}%. Then from [C], there is a Zariski open subset A, of Wp
and a rational function pe : Ac — Wiy such that W, = graph (pe).

From [C], the projection of U, into Wp parallel to W defines a diffeo-
morphism m. of W, with A..

Remark 2.2. If G is nilpotent, then M is empty, U = U, p. = 0, and
Ac =W =UnNWp is a open subset in Wp.
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Let Oy ¢ be the coadjoint orbit via w7 }(\) for A € A and let 8y ¢ be the
canonical measure on O .. Identify Wp with R?~2 via the basis {X} |i &
J} and let dA be the Lebesgue measure on Wp. If Wp = (0) the measure
d\ is a point mass measure. This is the case for the “az + b group” (see the
example, paragraph 5).

Define ©, : V x A, — U, by O.(v,\) = P(v,7-%(\)). Then O, is a
diffeomorphism.

From 2.8 of [C], for any integrable function F' on g*/G, we have

. FOMm(©) =37 [ PO IS e i

where Pf(n-1()\)) denotes the Pffafian in 77 1()\).

Set [pac] = K71(Oy) for € € {1,—1}% and A € A.. For each nonzero
rational function v on g* satisfying 1 (g.¢) = A(g)~'v(¢) for ¢ € G and
¢ € g*, let Ay ., denote the semi-invariant operator of weight A for the
irreducible representation py . corresponding to the restriction of 1 to O
(this operator is constructed in [DR]).

In summary: Let G be a connected, simply connected, and completely
solvable Lie group. Let {X7, X5, -, X’} be a Jordan-Hélder basis of g*.
Then, there is a finite collection of disjoint open subsets U, of g* and there
is a subspace Wp of g* such that for each €, U, is parametrized by a Zariski
open subset A, of Wp, UU, is dense in g*, and the complement of UU, has
Plancherel measure zero. Let ¥ be a non empty rational function on g* such
that ¥(g.f) = A(g)~'(¢) for g € G and ¢ € g*. For each e, there is a
rational function r, . on Wp such that for any smooth compactly supported
function ¢ on G, the function

A — TI(A¢1)\/2PA (DA, WA, E)Iw (M)

on A, is Lebesgue integrable. For any such ¢ we have

=3 [ e o (@) ANl V)]dA
€ A

where 75,0(\) = (L () Pf (7 (V) (2m) 2

3. Group Fourier Transform.
We consider two cases:

First case: We suppose that g¢ C g,_1 for all £ € W, i.e. all the general
position orbits are saturated with respect to g,—1. We can choose a basis of
g in which the first n — 1 vectors of the basis

(X1(0), . X (0), o X (0), s X1 (O))
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(%))
ot

for ¢ € W, depends on ¢, the X;(¢) are in gf-j for certain j with £; = /|,

and gﬁj = {X € gjlad*X.L; = 0}. As g° C g,,_1, the last vector of the basis
does not depend on /. Let

By, (E) = {X1(£)7 sy Xr(@? R Xm(g)v cee 7Xn71(£)a Xn}

be one such basis of g.

Remark that the index set J; for Gj—1 is equal to J\{n,j1} and that
My = {Jrys s jra, b is a subset of Ji. For each €1 € {1,—1}, the set U,
is a nonempty open subset of gy _;. Denote Wp, the subspace spanned by
{X7 |i¢ i} in g, ;. Then, we have Wp, = Wp @ RX} and Wy, is the
subspace spanned by {X7 | j € Mi}.

Set We, = W1 NU,, where

Wi ={lr€ (Wp, ®Wn,) UL | [g;(€1)] =1,j € M}

Now, by the corresponding theory for G,,_; we have a Zariski open subset A,
of Wp, and a rational function pe, : A, — Wy, such that We, = graph(p, ).

Remark that a; = @ — 1. In fact there is a case where a; = a. If we start
with any chain of ideals 0 = go C g1 C --- C g C -+ C gn—1 C gn = 6,
to avoid this case it suffices to choose a chain in such a manner that the
chain passes through the nil-radical of g when g is non nilpotent. Also €; is
obtained by deleting an element from e. Let A’ . denote the projection of
A, on gi_, and A]_ denote the projection of A._ on g’ _;.
The measure on We, is

di(rs () = Y @) E () P (rg (M) ds
e1€{1,—1}"1
where Pf( _1()\1)) = det( (Al)([X%Xj])i,jeJl) with 7T€_11()\1) =
7o (N)]gx_, and ¢y is a non empty rational function on g'_; such that
we have 91(h.f1) = A(h)"'41(f1). Remark that, g+ = g* @ RXj,,
[Xi, X;] € gn—1 for 4,j in Jy, and £([X;,, gn—1]) = 0.

Remark 3.1. For ¢ € W, let A(¢) = (£[X;, Xj]); jes be the skew-symmetric
matrix.

0 0 (X X))
0 k
Al) = : An 1 (0) :
WX X)) *

where A, _1(¢) = f([X,-,X}) 7]6]1
Then: det A(¢)2 = |[¢([X ]1, X,])|(det A,,— 1(5) ).
That is, Pf(£) = £([X;,, Xu]) P f(€n—1) where €,y = {]g, ;.
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Lemma 3.2. We suppose that g° C g,_1 for all £ € W,. Let ¢ be a non
empty rational function on g* such that 1 (z.0) = A(x)~p(€) for all £ € W,
and x € G. Then:

i) =) forl €L+ gy 4.

ii. Let 1 € g%_, and £y be an extension of £, to g*. By taking ¢y (f1) =
Y(61) we obtain a rational function ¥y on gt_, verifying i(h.ly) =
AGn,l(h)_lwl(gl) forhe Gp_1 and 01 € Wel.

Proof. We have G ¢ G for ¢ € W, hence the stabilizer of ¢,_; € g1
in G is also equal to G¢n—1.

Let ¢/ = ¢+~ where v € g:- ;. Then ¢ = a.{ with a € G'~1, hence we
have that (') = v(a.f) = A(a)"(¢). We have to verify that A(a) = 1
if a € G-1. But, A(a) = Ag,_, (a) since G,,_1 is normal in G. Moreover,
Gn,l/Gf{ff has an invariant measure, so we have Ag, ,(a) = AGen,l (a).

n—1
It suffices to see that Gfl’ff is abelian since, the orbit of /1 is of maximal
dimension (see [B2|, Chapter II). Hence 1(¢') = 1 (¢) which allows us to

define 1.
For all h € Gj,—1 and ¢ € g_; we have

Yi(hty) = P(hty) = p(hfr) = Aa(h)"D(01) = Ag,_, (h) " 1 (4r).
O

We express the measure dp; on We, in terms of local coordinates on g, ;.
From the above remark and the Lemma we have that

duy = 9)2k—2 1 1
" 616{;1}a1(7f) Ui(re (M) Pt (A1)

_ k— Tre_l()‘)([levXn]) 1 *
- (Z,(W R ) wwzlmﬁ) i

€

dA1

where €' describes a part of {1, —1}%.

This measure W, C g;_; is a Plancherel measure on G{n:, the unitary
dual of Gp,_1.

For £ € We, pr = pre = Indgn_ Pe,_, is an induced representation of G,
where ¢,_1 = {|g,_, and py, , = pr,c is a representation of Gj,_1. Let
C>(G, p) be the set of f € C*°(G) with compact support modulo G,_; such
that f(hg) = (pe,_,(R))f(g) for all h € Gy—1, g € G.

For all ¢ € C°(G) and py € G such that ¢ € W, the group Fourier
transform is defined by

Bpe = /G o(9)pe(9)dg.
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Set ¢t = Ad*(exp(—tX))f. Remark that

pee(g) = pe(exp(tX).g. exp(—tX)).

Choose X € g\gn—1. For all s, t in R, the action of ¢ € CX°(G) on f € Hy,
gives us

(B0 ) (exp(tX)) = /G 6(9)pe(9) f(exp(tX))dg.

As the induced representation acts by right translation on f € H,,, we have

(quef)(exp(tX)):/¢(g)f(exp(tX).g)dg
G
:// d(h.exp(sX))f(exp(tX).h.exp(sX))dhds
RJGh 1
:/R/G d(h.exp(sX))f(exp(tX).h.exp(—tX).exp(tX).exp(sX))dhds
= /R/G ¢(h.exp(sX))f(exp(tX).h.exp(—tX).exp(t + s)X)dhds
- /R /G ¢(h-exp(sX))pury, ,(h) f(exp(t + s)X)dhds
= / / ¢*(h)p(ey._ (h) f(exp(t + )X )dhds
RJGn-1

= /R (g/b\;w )f(exp(t—l—s)X)ds

Jn—1

where ¢*(h) = ¢(h. exp(sX)).

For all a € R we set fu(h.exp(sX)) = e/ f(h.exp(sX)). We have f, €
H,,, since f is in H,,.

Let ker py denote the kernal of py in C*(G), the C*- algebra of the group
G. If ¢ € ker py, then, from the above calculations, for all f € H,, we have

In—1

0= /Rq/b\f,w falexp(s +t)X)ds

— [ eials+Dgs f(exp(s +t)X)ds Va € R,
- Petyn—1

which implies that éﬁ\

R, if (bfs’(zt)nfl
established an equivalence

Z(Zt) =0 for all s € R. Conversely, for all s and ¢ in
n—1

= 0 we have ggpe = 0 which implies that ¢ € ker py. We have

¢ € ker py <— (5;(2%_1 =0 Vs,t) :
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Second case: If all the general position orbits are not saturated with respect
to gn—1, we can choose a basis of g in such a way that the last vector of the
basis X,, does not depend on £ and X, (¢) € g°. Let

Bw, () ={X1(0),..., X (0),..., X;n(€), ..., Xpn_1(£), Xp(£) }

be one such basis of g in which the X;(¢) are in g? for certain j with £; = £|g;.

Lemma 3.3. Assume that g ¢ g,_1 for all £ € W,. Let ¢ be a non
empty rational function on g* such that ¢¥(x.) = A(x) " 1(L) for all £ €
We and x € G. Let 1 € g, and (1 be an extension of {1 to g*. By
letting 11 (01) = ¢(f1) we obtain a rational function 11 on g’ satisfying
1/}1 (hﬁl) = A(h)_lwl(gl) fOT allh € Gp_1.

Proof. For all ¢ € g* and o € R we have ¢, = {+a X, and g* =g _; DRX,.
For all h € Gp—1, we have h.ly = h.l+aX; since G.X; = X7. By choosing
a =0, we have ¢y = £+ 0X, and h.ly = h.l. Hence, 91(¢1) = ¢(¢1) and

P1(h.ly) = (hLy) = A(h) "0 (01) = Ag,_, (B) " 1 (61).

Remark that the set of indices J; for G,,—1 is equal to J. In this case as
ge = ge"*1 +RX,, we have Wp = Wp, +RX,,, where Wp, is the subspace of
g, _, corresponding to Wp in g*. Moreover, A = A, +RX*. The Plancherel

measure over (G can be written as;

) = 2 ) Pty
) (;(W 1 Ow) PR ) dX”‘”H) o

= d,u1 X dX;;

For ¢ = w71 (\) € W, and o € R we let £, = £+ aX*. Hence, £o(X) =
U X)+ aand pr, = pr @ Xa With xo(h.exp(sX)) = €' for all h € G,,_;.
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The restriction of py, to G,—1 is irreducible and equivalent to p,, , for
all € R. For all {, n € Hy, =H,, we have

Gy 1) = /G (o1, (9)€,)d(9)dg
- /G (9 ® xa(9)€, 1) b(g)dg

:/R/G (pe @ xa(exp(sX).h)E,n)d(exp(sX).h)dhds
:/];/G <€io‘8pe(exp(SX))p£"—1(h)fan>¢<eXp(8X).h)dhdS

- /R € (py(exp(s X)) B3, & m)ds

where ¢°(h) = ¢(exp(sX).h). Hence we have expressed qul,a with the help

AS
of d)f’én_l‘

4. Weak Paley—Wiener Property.

Theorem 4.1. Let G be a connected, simply connected, and completely solv-
able Lie group with the unitairy dual @, and let ¢ be a bounded, measurable
and compactly supported function (i.e. ¢ € L°(Q)). Assume that there is
a subset E C G with positive Plancherel measure such that <$p = 0 for all
p € E, where g/gp is the group Fourier transform of ¢. Then ¢ = 0 almost
every where on G.

Proof. We proceed by induction on the dimension n of G. The result is true
if the dimension of G is one, since G = R. Assume that the result is true
for all groups of dimension n — 1. We can assume that F is contained in W,
(it suffices to take E as the finite union of E N W,).

First case: g* C g,,_1 for all £ € W,. Let ¢ € C°(G). By hypothesis, for all
pe, such that £ € E we have 0 = qu[; we will show that ¢ = 0 almost every
where on G.

Notice that for all e € {—1,1}*, the associated set A, corresponds to
two sets A, and A, ex € {=1,1}* in Wp. If A, and A{_ are the projec-
tions of Ac, and Ac_ on g;,_; such that A, = (expRX).A_, U(expRX).AL_
and Ty = {exptX.l,_1 | t € R} are contained in the projection of A, or in
Ac_, A, is a Zariski open set in A,.

From paragraph 3 we have that
=0Vs, t) .

s
o ekerp = (3,
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By hypothesis, g@ = ( for all £ € F and from the above equivalence we have
~ -
Py, =0
for all s, ¢ in R. This relation tells us that a set A contained in A., U A._
has positive Plancherel measure if and only if the set U,,c 4T, has positive
Plancherel measure in A, .
In applying this remark to the set F, we obtain
~ B
’D(Zt)nfl o 0
for all py, |, in E' C Gp_1 with positive Plancherel measure.
By the induction hypothesis ¢* = 0 almost everywhere on G,_1, which
implies that ¢ = 0 almost everywhere on G by using Fubini’s theorem.

Second case: g° ¢ gn_1 for all £ € W. Let ¢ € C°(G). By hypothesis, for
all py, such that ¢ € E we have ¢,, = 0; let us show that ¢,, = 0 for all

e We.
Let ¢ € E. For all € R we have

Gaem = [ prlexn(s3)35, € mds:

hence
Por, = /Rezaspe(exp(sm) pry_y 05
Set o
U(s) = pelexp(sX))dp, -
Hence

%a :/R\I’(S)emsds
= U(a).

By hypothesis, for all £ € E we have &EM = 0. The above calculation tells us
that there exists a set £/ C E with positive Plancherel measure such that
\/I\l(a) = 0 for a belonging to a set of reals with positive Lebesgue measure
and ¢ € E’'. Hence ¥ = 0 almost everywhere; consequently we have ¥(s) = 0
for almost every s € R. Hence

0= a;pea = /Remspg(exp(sX))Af)ln_lds

for all a in R, which implies that gE;e = 0 for all ¢,,—1 in Ey (path of E

on g’ ;) with positive Plancherel measure on G,_;. By using the induction
hypothesis ¢,, = 0 for almost all £,,_1 € W' (path of W, on g¥ _;). Hence,

0= ngﬁpe for almost all £ € W, (from the above calculation of gE%).
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Hence (EP = 0 for almost all p relating with the Plancherel measure. By
the Plancherel formula for completely solvable Lie groups, we have

&) =3 /A Tr(A7Y o (B) AT YD) (V) dA

which implies that ¢ = 0.
Now, we consider ¢ € L(G). Let {f,}n be an apporoximate identity in
CX(G). For all integers n, fp x ¢ € C°(G). Let p € E. If ¢, vanishes, then

N

(fn * @), also vanishes. Hence by what precedes, f, x ¢ = 0 (for all integers
n). But, (f, * ¢)nen converges to ¢ in L'(G), which implies that ¢ = 0
almost everywhere on G. O

5. Example: The ax + b Group.

Gz{(S l;) |a>0,beR}.
We use the notation
a b
(a,b) = <0 1> .

The Matrix multiplication gives:

(a1,b1)(az, b2) = (a1az,arby + by)

Consider the group

and the inverse

(aa b)_l = (a_la _ba_l)'
Let H = (1,b) be the derived group of G which is identified with R. Let
y € R, x, the character of H defined by x,((1,b)) = %Y.

Remark that (a,b) = (1,b)(a,0). Let p, = Ind§x, be the induced repre-
sentation of G. This representation is realized in the space L?(R). Recall
that for all y > 0, p, is equivalent to p; and we denote by p the class of
the representation p1. If y < 0, p, is equivalent to p_1; we denote by p_ the
equivalence class of this representation.

The Lie algebra g of G is the set of matrices

o= {(b 4) wwer}
(5 0) wma v=(30)

we have [X,Y] =Y. With the basis X and Y we have
1 0
Ad(a,b) = <—b a) .

In the basis
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Also in the dual basis {X™, Y™}
" 1 ba!
Ad (a/, b) = <0 a_l > .

For £ = aX* 4+ (8Y™* € g* the orbits of G in g* are the upper half plane 5 > 0,
the lower half plane 5 < 0 and the points (a,0).

Let 8 = {X, Y} be the basis of g defined above, and B* = {X*,Y*} the
dual basis of g*. There exists a set J = {j1,j2} C {1,2} and M = {j2} a
subset of J, so that V C R?, V =]0, 0o[xR. We have Wp = (0) and W), is
spanned by the vector {X7 | j2 € M}.

The Zariski open sets U, and U_ are the half planes of g* defined above
and U =U; UU_. Here,a =1 and € € {1, —1}.

Since there are only two orbits, the set

W={eWynU|l|g,l)|=1,j€ M}

is a union of two points in g*. We have W, =W NU; and W_ =W NU_.
Let € € {1,—1}. In this case the Zariski open set is Ac = Ay or A, = A_ of
Wp, which reduces to a point.

In this particular case we can prove weak Paley—Wiener property by direct
calculations.

Let ¢ € C°(G), f € L*(R%) and (¢,0) € R%: then
@O = [ ol(a.b)oul (b)) (00~ dad
= [ ota.) (e (.00 doc
2/1/R¢((a,b))f((a1t, —ba"1))a"2dadb

:/* A¢((aab))f((a_lt,0)(l,—bt_l))a—gdadb

+

( [ sttt bt*))db) f((a™'t,0))a"da

— / * ( /R ¢a(b)eibyt‘ldb> f((a™'t,0))a"%da

o~

_ a -1 -2
= - ¢th71f((a t,0))a" “da,
where ¢%(b) = ¢((a,b)).
Remark that ¢* € C°(R). By hypothesis we have ¢,, = 0 for all £ € E.
The above calculation implies that for all @ > 0 we have ¢ = 0 for
Y
almost all ¢ > 0 and for fixed y.
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As ¢* € CX(R), gg‘;( ., extends as an entire function over C. gg‘;( -
Y Y

vanishes on a set in which the Plancherel measure du; is positive hence by

the classical Paley—Wiener theorem, we can conclude that ¢® = 0, and then

¢ = 0 almost everywhere on G.
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