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‘We realize an idea suggested in the literature by Yuzvinsky,
giving a construction of logarithmic 1-forms from syzygies of
linear functionals.

1. Introduction.

Let V be a vector space of finite dimension [ over a field K. An arrangement
is a finite set A = {Xi,...,X,} of hyperplanes in V. We assume the
arrangement is central, i.e., all hyperplanes contain the origin. Let S be the
symmetric algebra of V*, which is canonically isomorphic to the polynomial
algebra Klz1,... x| for any basis (z1,...,x;) of V*. For each X € A, fix
a linear functional ax € V* with kerax = X. Let Q =[]y 4 ax.

The module of logarithmic differential forms with poles along a divisor
was introduced by Deligne [De] for a divisor with normal crossings, and the
definition was generalized by Saito [Sa] to an arbitrary divisor. Extensive
research has been done into the structure of this module when the divisor is
a union of hyperplanes, but some important motivating questions, such as
[OT, Conjecture 4.138], remain unanswered.

Let Q9[V] represent the S-module of differential ¢-forms on V' with coef-
ficients from .S and let

Q4(A) = {w ‘ w is a global rational differential ¢-form on V' }
such that Qw € Q4[V] and Qdw € QITL[V]
This is the module of logarithmic differential q-forms corresponding to A.
The S-module Q!(A) and its dual are important algebraic objects studied in
arrangement theory, and we herein restrict our attention to the case ¢ = 1.

The present work is motivated by several discoveries by Rose, Terao,
Yuzvinsky, and Ziegler, appearing in [RT], [Yu], and [Zi], which suggest that
there may be a construction of generators for Q! (A) from either combinatoric
data or simple algebraic information about the functionals ax. Some of
these results can be elegantly formulated by using a chain complex of relation
spaces, here denoted € R.(Ax), which has appeared in the papers [BT] by
Brandt and Terao and [Yu] by Yuzvinsky. The results in [RT] and [Zi] imply
that if the second relation space, @ Ra(Ax ), vanishes, then the logarithmic
forms dax/ax generate the whole S-module Q'(A). In [Yu], Yuzvinsky
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gives forms which generate the module 2!(A) whenever the third relation
space, @ R3(Ax), vanishes.

In [Yu], Yuzvinsky suggests that there may be an interesting construction
of logarithmic 1-forms from elements of @ R.(Ax). In this paper we realize
Yuzvinsky’s idea, giving an explicit construction. The proof that the result-
ing forms are logarithmic proceeds by the method of deletion and restriction,
which was introduced by Zaslavsky in [Za] and has become very pervasive
in the algebraic theory of arrangements. One family of arrangements for
which Q'(A) is generated by these 1-forms is the family associated to the
real reflection groups of type A.

In Section 2, we define the chain complex @ R.(Ax). In Sections 3 and
4, we apply Zaslavsky’s method of deletion and restriction to @@ R.(Ax). In
Sections 5 and 6, we recursively construct logarithmic 1-forms w,, associated
to elements p of Rp(Ax) and prove some properties of these forms. In
Section 7, we show that Q!(A) is generated by these forms for reflection
arrangements of type A.

2. A chain complex of relation spaces.

This section introduces a chain complex, denoted € R.(Ax), which has
appeared in [BT] and in [Yu].

Let L be the poset of all intersections of the hyperplanes of A, ordered
by reverse inclusion, with V itself regarded as the empty intersection. It is
well-known that L is a geometric lattice. We let Lj represent the lattice
elements of codimension k. For any Y € L, let Ay denote the subset of A
consisting of all X € A with Y C X. Note that A= 1L C L.

Let R1(A) be the vector space with basis (ej,... ,e,) in one to one cor-
respondence with the hyperplanes of A. Note that there is an obvious iso-
morphism

@ Ri(Ax) — Ri(A),

Xely

so we may write Py, R1(Ax) in place of R;(A). We will use this nota-
tion, since it is more convenient for the recursive definitions in later sections.
Let 514 : Dxer, B1(Ax) — V™ be the linear map defined via 51462- = ax,.
Let Ry(A) = ker 674,

For 2 < k, assume that we have vector spaces Ri(A) and Ri_1(A), de-
pending on A, such that Ry(A) C Dxcp, , Be-1(Ax). We define a new
vector space Rj41(A).

Let 6,;4 be the map

A @ Ri(Ay) — @ Rp_1(Ax)

YeLy XeLp_1
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induced by the canonical inclusions

Ri(Ay) — @ Ry_1(Ax).

XeLly_ 1

Let Ry11(A) = ker 5.

For k > I, note that Ry(A) = 0. For simplicity, we will write 67 as &; for
every i. For any Y € L, write 5;4" as 53/ for every i. Forany k > 2, Y € Ly
and any u € @YeLk R (Ay), let uy denote the Y coordinate of p. For any
Y eL,and X € Lk 1, observe that this defines the notation (uy)x. It is
convenient to extend this definition to all X € Li_1 by letting (uy)x =0
in case X € Lk_l\szl. Notice that for £ > 2, X € L;_q, the X coordinate

of dppis Yoy er, (Hy)x
Observe that the sequence

o1 2 1 *
0—>R1(A)i> EB Rl_l(AX)l—1>---6—> EB Rl(Ax)6—>V — 0

Xel;_4 Xels

is a chain complex.

3. Deletion and Restriction.

We now apply Zaslavsky’s method of deletion and restriction to the chain
complex @ R.(Ax). For convenience in this section and later sections, we
put

V(p1,.-. ypm) = Nity kerp;
for any p1,... ,pm € V*.

Let 6 € V*. Let A’ = A\{V(0)}. In particular, if V(0) & A, then A" = A.
Let A7 ={XNV(0) | X € A}. For each Z € A", choose some 17 € V(0)*
with kerngz = Z.

Again, we simplify notation. Let L” denote L(A”) and for any X € L,
let X" denote X NV(f) € L”. For any a € V*, let o” denote aly(g). For
i > 1, let 6/ denote 07"

Let hgl: V* — V(G) be given by hg'(a) = o”.

For any X € A, X ;é V(6), notice that o and nx» are K—proportional.

Thus we may let - denote the scalar a € K such that % = anxr. Now
define
h“f‘: P Ri(Ax) — P Ri(Ay)
Xely ZelY
via
Oé”

X exrn if X £V (60), and
(1) €Ex — nx X # ( )
0 it X =V(6).
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By definition of h{‘, the following diagram commutes.

5 .
Pxer, R1i(Ax) —— V

©) n | [

1"

07
Dzery Bi(A) —— V(0)
Lemma 3.1. For anyY € Lo, h YRQ(.Ay) C Ra(AY).

Proof. Let u € Ro(Ay). Observe that (Ay)” C AY.,. By (2), 514’”" WY =
WY 8Y = hy¥ 0 =0. O

4. The chain map.

We now recursively generalize the preceding construction and properties,
obtaining a chain map. Let £ > 1, and assume that we have a linear map

hit s @ Ri(Ax) — € Ri(A%)

XeLy ZeLy
so that, for any Y € L,
(3) WY Ry 1 (Ay) C Ryr (Aln).

When k = 1, the assumption (3) amounts to Lemma 3.1. For the case k > 1,
the reader is referred to Lemma 4.1. We now define a new linear map

AR @ Ryt (Ay) — @ Rit1(Afy)

Y€Lkq weLy

The construction proceeds coordinate by coordinate. For every Y € Ly,
assumption (3) gives rise to a composition

hAY
(4) Riy1(Ay)"=Ri1(AV) — €D Risa(Al).

"
werLy,

If # ¢ Y, then the inclusion in the composition (4) is the canonical injec-
tion. If € Y+, then

Ripy1(Ayn) = Ryp1(Ay) =0
so the inclusion in composition (4) is the trivial inclusion 0 — @y cpn

k+1
Rj+1(Aly). The compositions (4) induce the linear map

hil s @ Rit1(Ay) — @ Ryy1(Ajy)

Y€Lgs1 WeLi,
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Note that we have, for any W & LZ+1’

Q (= Y

YeL,C+1
Y//

By definition of hk 1, the following diagram commutes.

1)
®Y€Lk+1 Rk-i—l(AY) — @XGLIC Rk(-AX)
hA

] [
" 6k+1 "
@WeLgH sz+1(v4w) @Zey' Rk(-A )
The proof of the following lemma is exactly analogous to Lemma 3.1.
Lemma 4.1. For anyY € Ly, hyp1Ri1(Ay) C Ry1(AV).

For simplicity, we will write hg“ as h; for every i. In general, the maps
hf‘x with X € L will be written hX. We have now shown that the following
diagram commutes.

5 S
- —— @xer, Br(Ax) —— Bxep, , Be-1(Ax) —

N |

5” é‘//_
e @ZeLg R(A) —— @ZeLgA Ry1(Ay) ——
52 51 60

T @XeLl Ri(Ax) —— V¥

.| .|

5// 5// 5//
C— @ZeL’l’ Ri(A%) —— V(0)* —— 0.

0

The commutativity of the big diagram is summarized in the following
proposition.

Proposition 4.2. Let k > 1. Let p € @y, Re(Ax). Then
Ophipt = hi—10pp.

The following observation is useful in the proof of our main result, Theo-
rem 6.5.

Lemma 4.3. Let 2 < k <1, Y € Ly, and p € Rp(Ay). Assume € Y.

Then

Y
XGLk 1

ogx-L
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Proof. Note that the codomain of hY : Ri(Ay) — Ri((Ay)”) is 0, and
so h) is the zero map. Thus 5,E:AY)Nh}€/u = 6,(;4")”0 = 0. By Proposition
4.2, this implies h)_ 6y u = 0. The map J} is the inclusion Ry(Ay) —
Dxer, Br-1(Ax), s0 hY pu =hg_16) p=0. Now observe Lj_1( (Ay)") =

{Y'}. Also observe, for X € LY |, X" =Y if and only if § ¢ X*. Therefore,

by (5),
Y X
W= Y hianx.
xeLy |
ogx-L
This completes the proof. O

5. Construction of differential 1-forms.

In this section we construct differential 1-forms w;, in a recursive manner.
It will be shown in the next section that these forms are logarithmic.

Lemma 5.1. LetY € Ly, 1 < j <k, and X € kaij. Let (B1,...,0Bk) be

any basis of Y. Let (B1,...,3;) denote the span of {31,...,B;} in YL, If
(Br1,--.,0)) NX+ =0, then:

(i) There is a unique basis C~* = (’y]_H, c ) of X+ so that

W8 = Bivts - B)lvia,... 5.
(i) Let j4+1 <i < k. Let any 1m; € X have the property nilve,...0) =
Bilv(a,... 3, Then ni =X
Proof. Note that Y has the internal direct sum decomposition

= <61,... ,ﬂj>@XJ'.
Let 7 : Y+ — (B, .. , ;) and 7o : Y+ — X be the projections. For
each i, j+1<i <k, let v = m(8), and let C¥ = (7]+1’ .o »7X). This
proves existence in (i). Part (ii) now follows. The uniqueness of CX in (i)
is a direct consequence of (ii). O
For Y € Ly(A) , X € L} |, let (B1,...,B) be a basis of Y1 with
61 & X+. Since YJ-/XL is one-dimensional and ﬁf( #0 mod X, there is
a scalar a € K (possibly zero) so that
X =aX B mod Xt
Lemma 5.2. Let Y € L(A) and X € LY |. Let (B1,...,B) be a basis of
Y+ with 81 ¢ X+, and CX = (v5,...,7X) be as in Lemma 5.1. Then for
every i, 2 < i < k, v = B — aX By.

Proof. Note that (3; — a;* 1) lvs) = Bilv(s,), and B — aXp € X+. The
result follows by Lemma 5.1(ii). O
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Let 1 <k <I,Y € L, and p € Ri(Ay) be fixed. Let B = (f1,..., k)
be a k-tuple of elements in Y. If B is linearly dependent or y = 0, then
we define w,(B) = 0. In particular, if B = (0,...,0), then w,(B) = 0.
Otherwise, w,(B) is defined recursively as follows.

Suppose k = 1. Then Y € L; = A, and, since p € Ri(Ay), p is of the
form cey for some ¢ € K. Furthermore, B = ((31) is a 1-tuple. We let
wu(B) = g doy.

Now suppose k > 2. Assume for any X € Li_1, any (k — 1)-tuple C of
elements of X+, and any v € Ri_1(Ax), we have a global rational 1-form
wy(C) on V.

Observe that if X € LkY_1 and ) ¢ X1, then Lemma 5.1 gives us a basis
CX = (v, ... ,7%Y) of X so that C’X]V(gl) = B2y Br)lv(s). We may
extend the definition of CX to any X € Lz_l via

0,...,0) otherwise.

Observe that u € Ri(Ay) C GBXELf_l Ri—1(Ax). Recall that, for X €

szl, the notation px denotes the X coordinate of . Now we may define

wu(B)= = 3w ().

A
XeLy |

If k = 2, there is a convenient alternative formula for w,,. In this case, B =
(B, Bo) for some By, B2 € Y. Observe u € Ro(Ay) C @XeL}’ Ri(Ax).
We may write p = ZXEAY cxex, where cx € K. For every X € Ay, write
ax = ax101 + axof with axi,axs € K. Then

1 do
(6) wu(B) = ﬁ Z CXOZX2TX-
1 XeAy X

6. Properties.

We prove several properties of the forms constructed in the previous section,
including the property that these forms are logarithmic. In Theorem 6.7 it is
shown that these forms are, up to scalar multiple, independent of the tuple
B.

First we prove a technical lemma. Let 2 < k < [, Y € Li, and p €
Ry(Ay). Let B = (B1,...,3) be a basis of Y. To simplify notation, for
any X € Ly 1,7 € Li_o, write ,u)Z( = (/Lx)z.

For any Z € Lk,Y_Q, if Z+ N {(B1,B2) = 0, then let C? be the basis of Z
given by Lemma 5.1 so that CZ|V(51”32) = (B3, Br) Vs, )
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Extend this definition to all Z € L/,CY_2 via

oz _ c? (as above) if Z+ N (B, F) =0
0,...,0) otherwise.

Lemma 6.1. We have the identity

bifawou(B) = > > qug (C%).
XeLY | ZeLY ,
BlezxL

Proof. First, for any X € ka_l, fr & X+, and Z € L?_Q with 5 & Z+,
Lemma 5.1 gives a unique basis CX% with CX’Z|V(,YQX) = (55, ...y 'y,f)\v(bx).
Extend this definition to all X € L/,CY_1 with 01 € X Land Z € L{_Q via

X% _ {C’X’Z (as above) if Z € LY , and 75 € Z+
(0,...,0) otherwise.

Observe that, for any X € L , with 81 € X1, the definition of w,,, (C¥)
gives us

1 X.Z
@)= T ug@),
L ozery

By definition of C4 and C*Z, we have CX% = C? for every X € LZ_l
with 81 ¢ X*, Z € LY,
Now we are ready to prove the equation. By definition,

B1Bowy(B) = 2 Z wyux (C)

XeLy
1
— Z . Z X,Z
_/62 ’)/X /j,X(C )
xerY | 2 zeLX
prgx+t

_ Z
ST Y Zegen
xeL)y | ZeLi¥ ,
ﬁ1€XL

If Z e LY ,\Li ,, then % =0 and W,z (C?%) =0, so the last expression is

2. 2 X#XC>

XxeLy | ZeLY ,
61@?)(L
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The following lemma is well-known. It is needed in Lemma 6.3 to establish
a necessary and sufficient condition for certain rational differential 1-forms
to be logarithmic.

Lemma 6.2. Let w be a global rational differential p-form on V' such that
Quw € QP[V]. Then w € QP(A) if and only if Q(dax /ax) Aw € QPFLV] for
every X € A.

Proof. See [OT, Proposition 4.78]. O

Lemma 6.3. Let w € QY(A) and X € A. Let p denote restriction to X.
Assume that ax divides Qu in the S-module Q'[V]. Then - W € QA if

and only if p(%w) =0.

Proof. Since ay divides Qw in Q![V], we have Q%w € Q'[V] and we may
apply Lemma 6.2.

Choose a basis (r1,z2,... ,2;) of V* with 1 = ay. For every i,1 <i <1,
let % represent the dx; coefficient of w, where p; and ¢; are chosen to be

relatively prime elements of S = K[z, ... , 2], with ¢; monic.
Assume iw € Q'(A). Then by Lemma 6.2,

!
d 1 i
QN —w =3 QP dey nde; € V],
rr i—p 4T

Let 7,2 < i < | be arbitrary. Since Q?[V] is a free S-module with basis
{dx; Ndxy|l < j < k <1} we have Q ?izdxl Adz; € Q?[V]. Therefore Qq?;Q
iZ]

is polynomial. Thus z; divides Q Pi v in the ring S, and so p (Q q%’cl) =0

Thus
Pi B
( ) ( da:1> +p (Z quxld%) 0.
Q

w) = 0. We have

() =g (o) e

Since Q[V (21)] is a free K[p(x2), ... , p(x;)] module with basis {dp(x2), ... ,
dp(z))}, p (Q Pi ) =0 for i = 2,...,l. Therefore, z; divides qu’;l in the

Conversely, assume p(

qiT1
ring S. Thus Qq?’;Q € S and so qu.);2 dxi A dz; € Q[V]. Therefore Q%l A
1] Chadi |
éw = 2222 qu;% dxy A dx; is regular. By Lemma 6.2, %w is logarithmic.
O
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Lemma 6.4. For v,v € Ri(Ay) and a,b € K,
awy (B) 4 bwy(B) = Way+pv(B).
That s, the assignment j — w,, 1s K-linear.

Proof. This is obvious for £ = 1, and follows immediately for arbitrary k& by
induction. (]

The following theorem is our main result. It is a list of properties of
wy(B), with property (iii) being the most important.

Notation. For Theorem 6.5 and its proof, we make the following notational
conventions. The symbol 6 will represent an element of V*, p will denote
restriction of differential forms to V(6), and A” will denote the restriction
of A to V(). For 1 <i <1, let h; be the linear map defined in Sections 3
and 4. For X €e L, a € V*, and Z € A" let X", ", and 1z be as in Section
3.

Theorem 6.5. Let k >2,Y € Ly, and pp € Ri(Ay). Write w, = w,(B).
(i) For any permutation o of (1,... k),
w,u(/Bo'(l)’ e 7ﬁ0'(k)) = (Sgn U)wﬂ'
(ii) Let n =b151 + ...+ biOk, where each b; € K and by # 0. Then
bl“u@%ﬁ% cee 76’6) = Wy
(ill) wy, € Q(Ay).
(iv) Assume @ € Y. Then
plw) =y (Bl 1B

Proof. First we prove (i)-(iv) in the case k = 2. Write u = Yy 4, cxex,
and use Equation (6) to write w, = % Do XeAy chX2‘%f.

(i) Since k = 2, o is either the identity or the transposition (1,2). If 0 =
identity, the claim is obvious. If o = (1,2), the claim is w, = —w, (B2, F1).

By definition of Ra(Ay), 67 u = 0. However, 61 (u) = > Xedy CXAX, SO

Z cxax = 0.

XeAy
Therefore
dax
B1Ba(wu(Be, B1) +wp) = Y CXOéXlﬂl S +0) cxaxafa_——
XeAy XeAy
= Z deOzX
XeAy

=0.
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There are no zero divisors in the S-module of global rational 1-forms on V.
Since (3102 # 0, we have w, (02, 1) + wy, = 0, proving the claim.
(i) Since by # 0, (n, 32) is a basis of Y. For any ax € Ay, write

/ /
ax = axn + dxoe.

Then ax; = bia'y,. Therefore

biwu(n, B2) = —biwu(B2,n)

1 daX
= CXOx]1—
62 XeAy ax
= —wu(B2, £1)
= wu(B1, Ba)

which proves property (ii).

(iii) Without loss of generality we may assume that V(31) € Ay. Indeed,
choose any X € Ay so that X # V(). Then, writing ax = ax1/1+ax22,
we have axi # 0. By (ii), axiw(ayx, 32) = w(B1, 32). Since Q'(A) is closed
under scalar multiplication, it suffices to show w(ay, 32) € Q'(A). Thus we
may and shall assume V() € Ay.

Since for every X € Ay, do?‘ix € Q(Ay), the sum ZXE.AY chXQda—X is in
the module Q(Ay ). We now check that 5 divides Qy ZXeAy chXQda—X in

the S-module Q![V] so that we may apply Lemma 6.3. Since V(3;) € Ay,
061 divides Qy. For any ax € Ay with ax # (1, ax is nonproportional to
01, so ax and 1 are not associates in the unique factorization domain S.
Thus 8 divides X in S, so 4 divides Qycxax2%X in Q'[V]. Therefore,
(1 divides each summand of

dayx dax
Qy Z cxaxa_—— Z QYCXOéXQ
XeAy XeAy
dax
E QYCXaXQ
XeAy
ax #B1

in Q'[V], and so By divides Qy Y- e 4, Cxx2 %X
Let p; denote restriction to V(1). By Lemma 6.3, it suffices to show

Y X
p1(Qvwy) =p1 | - cxaxy——
( ,U«) /6 ax
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By definition, p € ker 6. But

= Z ex(ax161 + axz2)

XeAy

= Z cxaxy | b1+ Z cxaxs | Ba.

XeAy XeAy
Since (31, 32) is a basis of Y'*, Y xedy Cxaxz =0.
Thus
da d
pP1 & cxax27X =P <Qy> Z CXQx2 p1(ﬁ2)
P e, ax A i p1(f2)
X#£V (1)
=0.

Therefore, by Lemma 6.3, w,, = % Yo xed chXQdo?—;( € Q(Ay).
(iv) For any Z € (Ay)”, write
Nz =Nz101 + nz205-
For X € Ay, write oy, = ax18] + ax20y, and note that
axanxr = Nxrady

ie.

"
oy B
nNxrg = ax2.
’I’]X//
Y ok
Now recall that hy 1= 3 ¢ 4, CX 7o ex; SO
1 Oé// d "
11 1 X Nx
wh}/u( 1o Pr) =27 E CX = TX2
1
L xeay "X X
"
1 do’y
— ﬁ CXO X9 a”
1 XeAy X
= pwp).

This proves property (iv).
Now we prove properties (i)-(iv) in the case when k > 2.

i) Step 1. We claim w,, (52, 51, 33, - - - , Bk) = —wy, i.e., the property holds
I I

if o is the transposition (1,2).
For X € LkY_17 B & X, let a;X be as in Lemma 5.2. Then CX

(v, ... ,7) has v; = B; — a1 for each i. Now consider the basis
2, 01,03, P4y --- ,Pk) O . Por any S 4, wit 2 , let e
B, Bhs B, B B) of Y. For any X € LY | with fy ¢ X, let DX b
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the unique basis of X given by Lemma 5.1 with DX|V(52) = (01,03, B4y - - -,
Br)lv(gy)- Then for each i, i = 1,3,4,... ,k, let bX be the scalar with
bXBs =B (mod X*). Lemma 5.2 applied in this situation shows

X = (81— B, Bs—b3 B2, Ba—by By B — by Bo).
Now apply Lemma 6.1, obtaining
Bibawu(B) = > > o wu)z((CZ)
xery_, ZeLy , 2
ﬁlexi

Another application of the same lemma yields

B1Bowu(Ba, B, Ba, . ) = > > 5 bXﬁgw 7(C%).

xerY | Z€Llp_
ﬂzexl

Now notice that for any X € Li:l with 8, € X, B2 & X', we have
b = L%X by definition of these scalars. Also note that, for X with 5 ¢ X+,
2

az =0 if and only if B2 € X1 and for X with 3 ¢ X+, b = 0 if and only
if B1 € X+. Together, these observations imply that

B1B2(wu(B2, B1, B3y - -+, Br) + wy) = Z Z w,z ( (C7).

ZeL} , XeLy

By Lemma 6.4, the last expression is

Z wo(cz))

ZeLy ,

where o = ZXGLY ,uX Now, by definition of 6}, o = (6Y_,u)z. However,
§Y ;= 0. So by deﬁmtlon, each w,(C%) = 0. Therefore

B1B2(wu (B2, B, Bss - .., Br) + wy) = 0.

Since (159 is nonzero,

wu(Bay B, B35+ -+, Br) +wp =0
ie., wu(B2,P1,0s,...,0k) = —w,. This proves the claim in Step 1.

Step 2. We now show, for any ¢ > 1,

Wu(ﬂla ﬁ?a s 76(1—17 ﬁq-ﬁ-l: ﬁqv ﬁq+2 s 75]6) = —Wy,
that is, the claim in (i) holds when o is the transposition (q,q + 1).
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Proof of Step 2: Let CX = (75°,...,7;*) be as in Lemma 5.1. Then by the
inductive hypothesis,

1
Wy = Ezwux(cx)
1 X X X X
= _EZWMX(’VQ v Vg1 Vg oo 5 Uk )

= _wﬂ(ﬁlulg27 cee uﬁq-&-lw@q: s )ﬂk)

Step 3. We now show wy,(By(1); - -+ s Bo(k)) = Sg0 0wy
Write o as a product oy oon_1 0---0 01 of transpositions o; with the
following property.

Let 7; = gj_10---001 fori > 1 and 71 be the identity. Then for every
i, 1 <14 < N, g; switches the positions of two adjacent entries in the tuple

(Ti(]')v v aTl(k))
By Steps 1 and 2,

wu(ﬁ(r(l)a s ’ﬂo(k)) = wu(/@TN+1(1)7 s ?ﬁ’TN+1(k))
= _wu(ﬁTN(l)v R ’BTN(]C))

= (_1)qu
= sgn owy,.

X X

(ii) By property (i), Lemma 5.2, and induction we have, for some s;', 7",

séf,-‘-si(GK,

blwu(Thﬁzv e 7616) - _blwu(/827777/83 e 75]47)

b
= —[71 Z wu(n — snXﬁz,ﬂg — S§ﬂ2, s Bk — 8?52)
2 XeLp_1
- _ﬂl > wulB— 57 B, Bs — 53 Ba- -, B — si B2)
2 XEkal
_wu

(ili)) We may assume without loss of generality that V(3;) € Ay. In-
deed, take any X € Ay with ax; # 0, where ax = ax161 + axa02 +
-+ + axpfg. Then by (ii), wu(ax, B2, ..., 0k)=w,. Thus it suffices to
show wy(ax,B2,...,0:) € Q(A). Thus we may and shall assume that
V(,Bl) € Ay.

By the inductive hypothesis (iii), Qxw,,(C¥) € Q'[V] for each X €
szl. For any X € Li:l with (3 ¢ X+, we have 3 ¢ Ax so (31 does not

divide Qx in S. However, (1 divides Qy so (3 divides 8—}’; . Thus (1 divides
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S Qxwyy (CF) = Qywyy (CX) in Q'[V]. Any X with 81 € X+ has ux =0
so (3 divides

X X X

Qy E : w#x(c ): Qy E , w#x C E : Qywﬂx C )
XeLy XeL) XerL) |
BrgxL Brgxt

in Q'[V]. Thus by Lemma 6.2 it suffices to check that the restriction of
Qvw, = G~ Yxery  wux (CX) to V(f) is 0.

To see this, we apply the inductive hypothesis in the case # = B1. Note
that for X € L} | with 1 € X+, and i > 2, (vX)” = 8/ by definition. Also

note that for X € LY | with 3 gZ X+ X"=Y.
By Lemma 6.4 we have

p1<%f > wuX(CX))=P1<QY > wux(CX)>

1

XeLy xeLY |
pext
o 2 : 1/
_p1< ) wh QMX PR k)
Xe L}; N
pext

_ m(%f)%( L.

Where ¢ = ZXEL}:—l hiX ,ux. This is 0 by Lemma 4.3.

Brgxt
Thus we have shown

p1(Qywy) = wo(By,...,03) =0.

This proves (iii).

(iv) To simplify notation, we write ;* " to stand for (v%)". For any Z €
L, let Z\J;(@) represent the orthogonal complement of Z in V(6)*. Observe
that since 6 ¢ Y+, the codimension of Y” in V(0) is k, and 3, ... , 8y form
a basis for (Y”)V(e)

Recall that (Ay)” c AY,, and in particular, L( (Ay)") c L(AY,) .

Y v
Thus for Z € Li_1((Ay)") with 8] ¢ ZV(@)’ Lemma 5.1 gives us a basis
EZ of elements in Z‘J;(e) with EZ|kerﬁi’ = ( ey g)|kerﬁ” For any X €
Ly_1 with X” = Z, the tuple ('yg(”, e ,'yk ) consists of elements of ZV(G)

Furthermore, for any i, i = 2,... , k, 3 ‘ker X = B! xer gy~ Thus by part (ii)
of Lemma 5.1, EZ = (<", ... ,fy;gX”).
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We have
1
p(wu(ﬁla"' 7ﬁk’)):p /87 Z wux(’yg(a"' 77]?)
! XeL) |
1 X X
:@ Z p(wNX(IVQ""v’Yk))
U xery |
1 X X
= an Z whiiQ,u,X(FYQ v Vk )
U xery |
X//
Z wh Q#X )
XeLY

By Lemma 6.4, we obtain

ponBr B =~ S wl(ED).

A Z€L—1((Ay)")
Where ¢ = ZXELZ_1 hiX oux = (h}_ u)z. This proves (iv). O
X=z

To prove that the definition of w,,(B) is, up to scalar multiple, independent
of the tuple B, we need the following well-known result.

Lemma 6.6. (Chio’s Pivotal Condensation Method.) Let A= |(7’ij)1§i,j§k’
be a determinant. Let 1 < m < k.

Let
X12 T X1k
A = Xm—-12 *°° Xm-1k where Yii = NMm1  Timj
Xm+12  °° Xm+1k Y i1 T
Xk2 o Xkk
Then A' = (—1)™ Tk 2A.
Proof. This is an easy generalization of [Ev, Theorem 3.6.1]. (]

The next theorem shows that the definition of w,(B) is, up to scalar
multiple, independent of the tuple B.

Theorem 6.7. Let Y € Ly, and let B = (81,...,0%) and E = (n1,... ,nk)
be bases of Y. Let u € Rp(Ay). Foreachi, 1 <i <k, letn; = Z?:l i35 -
Let A denote the determinant A = |(nij)1<ij<k|- Then wy(B) = Aw,(E).
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Proof. The proof proceeds by induction on k.
For k = 2, we give the argument in case 1;; # 0. The proof for the only
other case, 711 = 0 and 721 # 0, is similar.

First observe
721 7121712
n2 = *771 + (?7 > Ba.
m1 1

Now

w(B1, B2) = nuw(ni, B2)
= —nuw(B2,m)

21712
= -1 (7722 - 771771> w(n2,m)
1

= (m1m22 — man21)w(n1, n2).

This completes the proof for k = 2.
For k > 2, assume that the result holds for every k', 2 < k' < k. Choose
m,1 < m < k so that n,,1 # 0. By Theorem 6.5

wu(Br, B2 - -, Br) = Nm1w(m, B2, - -+ 5 Br)
=D N (€8,

"hm XeLy 1
Where (£5°,...,&Y) is a basis of X+ with (&5,... ’5§)|V(nm) = (B2y...,
BV () -
Note that for i # m,
i1
(7) i = NMm + Z <771] nmj) ﬁ]

Fixani,1 < i < k with ¢ # m, and consider 2?22 (77ij nm1 nmj> fX By
(7) and Lemma 5.2, this is a linear functional of the form 7; — an,, for some

a € K. Thus this functional’s restriction to V(n,,) is exactly the functional
Nilv () It is in X1, since each 5])-( isin X+, For 1 <i<m,i#m,let

k
Ni1
¢ = E (ﬁz’j— = 77mj> &r.
— hm1
j=2
Then

(CiXJ 7Cr)p§—17<7)r§+17"' 7C}§)|V(nm) = (7717"' y Im—1,TIm~+1, - - - 777]6)"/(77»,,1)

so, by definition,

) S .
Wu(ﬁmaﬁlvﬁ2a--~ > Nhmes - - - ank) = w,ux(ClXa"' 7<7)rf,"' 74]?)
m v
XeL;
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By the inductive hypothesis and the definition of (¥,

w(ﬂlaﬁ?;"'uﬁk)zw Z wux(£§’~'-7§k);()

" xeLY |
NIm1 X X X X
:7]& Z Alwux(C1 PR 7<m717Cm+17"' 7Ck )
" xeLY |
Where
Ay -+ Agg
Am—12 - Ap_1k
A — m m
YU A2 o A
A - A
and A;; = L (Tt Thmg |
Mmlnin Mg
Let
Agy Ay
A Ay
AQ _ Am 12 Am 1k
m+12 m-1k
Ao App,
where Aij = fimThmgj .
it Mij

k-1
Then by elementary row operations, A = (TTL) As. Thus

1 k—?A
o 2
w(ﬂl?ﬂ?u"' 75](:) = M Z wMX(giXW" 74—7)5717CT))§+17"' )Ck)()

hm Xery |

By applying Lemma 6.6,

1 k-2 nk72
(771) Ay = ImL(_1)mIA = (1) 1A,
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So
m1
W(BL Bay o Br) = D Awp (G G Gt G
Nm xery
1 A
= (- t— Z Wiz (Cls v v s Cm=1, CGmt1s - -+ Ck)
"hm ZEeLj_1
= (‘UmilAWu(Uma My« 5 Mm—1,NMm+1,--- 777k)
= ()" =0 Awus ).
This proves the theorem. U
7. Type A arrangements.
Consider a vector space of dimension [+ 1 with basis uj,... ,u;41. The Cox-

eter arrangement of type A; consists of the planes perpendicular to u; — u;
for 1 < i < j <[+ 1. This arrangement is the product of an empty
l-arrangement with an irreducible arrangement. We consider here the irre-
ducible factor A of the Coxeter arrangement of type A;. We compute certain
elements of the relation spaces associated to A, compute their correspond-
ing logarithmic 1-forms, and show that they generate the module Q' (A). It
is an easy consequence that the logarithmic 1-forms described in Section 5
generate all logarithmic 1-forms for Coxeter arrangements of type A;. The
argument here is field-independent.

For the example in this section, we will need the following well-known

property.

Proposition 7.1. (Saito’s criterion.) Let wy,...,w; € Q1(A). Then Q' (A)
s a free S-module with basis wi,...,w; if and only if w1 A -+ Awy is a
K-multiple of Q~'dxy A -+ - A day.

Proof. See [OT, Proposition 4.80]. O

Let z1,... ,2; be a basis of V*. For 1 < p <, let X, = V(z;), and for
1<p<q<lletY, =V(x,—1z4). Let A be the arrangement consisting of
all the hyperplanes X, and Y),,. We choose linear functionals associated to
elements of A as follows. For 1 <p </, let ax, = xp, and for 1 <p < ¢ <1,
let ay,, = xp — x4

For 1 < p <, denote the basis element of @ L, (Ax) corresponding
to X, by ep, and for 1 < p < ¢ <, denote the basis element corresponding
to Ypq by epq.

We now recursively compute certain elements of the spaces Ry(Ax) for
k > 2 Fork > 2and 1 < 4 <i2<"-<ik§l,letXi1...ik =
V(xiys... i) € Lg, and let Yi, .., = V(@i — Tiy, Tiy — Tigy -+ Tiy —Xiy) €
Lj_1. Observe that this is consistent with the definition of Y, above.
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For every p and ¢ with 1 < p < ¢ <1 we have a relation p,, = e, — ¢4 —
epg € Ra(Ax,,), and for every p,q, and r with 1 <p < ¢ <r <[, we have a
relation vpg, = —epq + epr — €qr € Ra(Ay,,, )-

These relations generalize recursively as follows. For k > 3 and 1 < i1 <
s <y <, let

(1 tyy iy Vinei, € Bl Ax, )5
1

Hiy-eeiy, =

k
Jj=

and let

k
_ j+1
Vigoiyy = 3 _(—1)7 Vigeijoiy € Br1(Avi L )-
=1
It now follows by direct computation and recursion that, for any & > 2
and 1 <4 < -+ <4 <1, we have
k
i+1
w“iln-ik (:Uil? s 7$ik) = Z(_l)]+

=1

dx ij

Li; H1§p<j (i, — xiy) Hj<p§k(xij — )

Proposition 7.1 now implies that the forms

Wiy (xl)ywiliz (.%'1, .’EQ), ooy Wigigeq, (.%'1, Z,. .. 7$l)

constitute a basis for the free S-module Q!(A).
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