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We realize an idea suggested in the literature by Yuzvinsky,
giving a construction of logarithmic 1-forms from syzygies of
linear functionals.

1. Introduction.

Let V be a vector space of finite dimension l over a field K. An arrangement
is a finite set A = {X1, . . . , Xn} of hyperplanes in V . We assume the
arrangement is central, i.e., all hyperplanes contain the origin. Let S be the
symmetric algebra of V ∗, which is canonically isomorphic to the polynomial
algebra K[x1, . . . , xl] for any basis (x1, . . . , xl) of V ∗. For each X ∈ A, fix
a linear functional αX ∈ V ∗ with ker αX = X. Let Q =

∏
X∈A αX .

The module of logarithmic differential forms with poles along a divisor
was introduced by Deligne [De] for a divisor with normal crossings, and the
definition was generalized by Saito [Sa] to an arbitrary divisor. Extensive
research has been done into the structure of this module when the divisor is
a union of hyperplanes, but some important motivating questions, such as
[OT, Conjecture 4.138], remain unanswered.

Let Ωq[V ] represent the S-module of differential q-forms on V with coef-
ficients from S and let

Ωq(A) =
{

ω
∣∣∣ ω is a global rational differential q-form on V

such that Qω ∈ Ωq[V ] and Qdω ∈ Ωq+1[V ]

}
.

This is the module of logarithmic differential q-forms corresponding to A.
The S-module Ω1(A) and its dual are important algebraic objects studied in
arrangement theory, and we herein restrict our attention to the case q = 1.

The present work is motivated by several discoveries by Rose, Terao,
Yuzvinsky, and Ziegler, appearing in [RT], [Yu], and [Zi], which suggest that
there may be a construction of generators for Ω1(A) from either combinatoric
data or simple algebraic information about the functionals αX . Some of
these results can be elegantly formulated by using a chain complex of relation
spaces, here denoted

⊕
R·(AX), which has appeared in the papers [BT] by

Brandt and Terao and [Yu] by Yuzvinsky. The results in [RT] and [Zi] imply
that if the second relation space,

⊕
R2(AX), vanishes, then the logarithmic

forms dαX/αX generate the whole S-module Ω1(A). In [Yu], Yuzvinsky
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gives forms which generate the module Ω1(A) whenever the third relation
space,

⊕
R3(AX), vanishes.

In [Yu], Yuzvinsky suggests that there may be an interesting construction
of logarithmic 1-forms from elements of

⊕
R·(AX). In this paper we realize

Yuzvinsky’s idea, giving an explicit construction. The proof that the result-
ing forms are logarithmic proceeds by the method of deletion and restriction,
which was introduced by Zaslavsky in [Za] and has become very pervasive
in the algebraic theory of arrangements. One family of arrangements for
which Ω1(A) is generated by these 1-forms is the family associated to the
real reflection groups of type A.

In Section 2, we define the chain complex
⊕

R·(AX). In Sections 3 and
4, we apply Zaslavsky’s method of deletion and restriction to

⊕
R·(AX). In

Sections 5 and 6, we recursively construct logarithmic 1-forms ωµ associated
to elements µ of Rk(AX) and prove some properties of these forms. In
Section 7, we show that Ω1(A) is generated by these forms for reflection
arrangements of type A.

2. A chain complex of relation spaces.

This section introduces a chain complex, denoted
⊕

R·(AX), which has
appeared in [BT] and in [Yu].

Let L be the poset of all intersections of the hyperplanes of A, ordered
by reverse inclusion, with V itself regarded as the empty intersection. It is
well-known that L is a geometric lattice. We let Lk represent the lattice
elements of codimension k. For any Y ∈ L, let AY denote the subset of A
consisting of all X ∈ A with Y ⊂ X. Note that A = L1 ⊂ L.

Let R1(A) be the vector space with basis (e1, . . . , en) in one to one cor-
respondence with the hyperplanes of A. Note that there is an obvious iso-
morphism ⊕

X∈L1

R1(AX) −→ R1(A),

so we may write
⊕

X∈L1
R1(AX) in place of R1(A). We will use this nota-

tion, since it is more convenient for the recursive definitions in later sections.
Let δA1 :

⊕
X∈L1

R1(AX) −→ V ∗ be the linear map defined via δA1 ei = αXi .
Let R2(A) = ker δA1 .

For 2 ≤ k, assume that we have vector spaces Rk(A) and Rk−1(A), de-
pending on A, such that Rk(A) ⊂

⊕
X∈Lk−1

Rk−1(AX). We define a new
vector space Rk+1(A).

Let δAk be the map

δAk :
⊕

Y ∈Lk

Rk(AY ) −→
⊕

X∈Lk−1

Rk−1(AX)
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induced by the canonical inclusions

Rk(AY ) ↪→
⊕

X∈Lk−1

Rk−1(AX).

Let Rk+1(A) = ker δAk .
For k > l, note that Rk(A) = 0. For simplicity, we will write δAi as δi for

every i. For any Y ∈ L, write δAY
i as δY

i for every i. For any k ≥ 2, Y ∈ Lk

and any µ ∈
⊕

Y ∈Lk
Rk(AY ), let µY denote the Y coordinate of µ. For any

Y ∈ Lk and X ∈ LY
k−1, observe that this defines the notation (µY )X . It is

convenient to extend this definition to all X ∈ Lk−1 by letting (µY )X = 0
in case X ∈ Lk−1\LY

k−1. Notice that for k ≥ 2, X ∈ Lk−1, the X coordinate
of δkµ is

∑
Y ∈Lk

(µY )X .
Observe that the sequence

0 −→ Rl(A) δl−→
⊕

X∈Ll−1

Rl−1(AX)
δl−1−→· · · δ2−→

⊕
X∈L1

R1(AX) δ1−→V ∗ −→ 0

is a chain complex.

3. Deletion and Restriction.

We now apply Zaslavsky’s method of deletion and restriction to the chain
complex

⊕
R·(AX). For convenience in this section and later sections, we

put
V (p1, . . . , pm) = ∩m

i=1 ker pi

for any p1, . . . , pm ∈ V ∗.
Let θ ∈ V ∗. Let A′ = A\{V (θ)}. In particular, if V (θ) 6∈ A, then A′ = A.

Let A′′ = {X ∩ V (θ) | X ∈ A′}. For each Z ∈ A′′, choose some ηZ ∈ V (θ)∗

with ker ηZ = Z.
Again, we simplify notation. Let L′′ denote L(A′′) and for any X ∈ L,

let X ′′ denote X ∩ V (θ) ∈ L′′. For any α ∈ V ∗, let α′′ denote α|V (θ). For
i ≥ 1, let δ′′i denote δA

′′
i .

Let hA0 : V ∗ −→ V (θ)∗ be given by hA0 (α) = α′′.
For any X ∈ A, X 6= V (θ), notice that α′′X and ηX′′ are K-proportional.

Thus we may let α′′X
ηX′′

denote the scalar a ∈ K such that α′′X = aηX′′ . Now
define

hA1 :
⊕

X∈L1

R1(AX) −→
⊕

Z∈L′′1

R1(A′′
Z)

via

(1) eX 7→


α′′X
ηX′′

eX′′ if X 6= V (θ), and

0 if X = V (θ).
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By definition of hA1 , the following diagram commutes.

(2)

⊕
X∈L1

R1(AX) δ1−−−→ V ∗

hA1

y yhA0⊕
Z∈L′′1

R1(A′′
Z)

δ′′1−−−→ V (θ)∗

.

Lemma 3.1. For any Y ∈ L2, hAY
1 R2(AY ) ⊂ R2(A′′

Y ′′).

Proof. Let µ ∈ R2(AY ). Observe that (AY )′′ ⊂ A′′
Y ′′ . By (2), δ

A′′
Y ′′

1 hAY
1 µ =

hAY
0 δY

1 µ = hAY
0 0 = 0. �

4. The chain map.

We now recursively generalize the preceding construction and properties,
obtaining a chain map. Let k ≥ 1, and assume that we have a linear map

hAk :
⊕

X∈Lk

Rk(AX) −→
⊕

Z∈L′′k

Rk(A′′
Z)

so that, for any Y ∈ Lk,

(3) hAY
k Rk+1(AY ) ⊂ Rk+1(A′′

Y ′′).

When k = 1, the assumption (3) amounts to Lemma 3.1. For the case k > 1,
the reader is referred to Lemma 4.1. We now define a new linear map

hAk+1 :
⊕

Y ∈Lk+1

Rk+1(AY ) −→
⊕

W∈L′′k+1

Rk+1(A′′
W ).

The construction proceeds coordinate by coordinate. For every Y ∈ Lk+1,
assumption (3) gives rise to a composition

(4) Rk+1(AY )
h
AY
k−→Rk+1(A′′

Y ′′) ↪→
⊕

W∈L′′k+1

Rk+1(A′′
W ).

If θ 6∈ Y ⊥, then the inclusion in the composition (4) is the canonical injec-
tion. If θ ∈ Y ⊥, then

Rk+1(A′′
Y ′′) = Rk+1(A′′

Y ) = 0

so the inclusion in composition (4) is the trivial inclusion 0 ↪→
⊕

W∈L′′k+1

Rk+1(A′′
W ). The compositions (4) induce the linear map

hAk+1 :
⊕

Y ∈Lk+1

Rk+1(AY ) →
⊕

W∈L′′k+1

Rk+1(A′′
W ).
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Note that we have, for any W ∈ L′′
k+1,

(5) (hAk+1µ)W =
∑

Y ∈Lk+1
Y ′′=W

hAY
k µY .

By definition of hAk+1, the following diagram commutes.⊕
Y ∈Lk+1

Rk+1(AY )
δk+1−−−→

⊕
X∈Lk

Rk(AX)

hAk+1

y yhAk⊕
W∈L′′k+1

Rk+1(A′′
W )

δ′′k+1−−−→
⊕

Z∈L′′k
Rk(A′′

Z)

.

The proof of the following lemma is exactly analogous to Lemma 3.1.

Lemma 4.1. For any Y ∈ Lk, hk+1Rk+1(AY ) ⊂ Rk+1(A′′
Y ′′).

For simplicity, we will write hAi as hi for every i. In general, the maps
hAX

i with X ∈ L will be written hX
i . We have now shown that the following

diagram commutes.

· · · −−−→
⊕

X∈Lk
Rk(AX) δk−−−→

⊕
X∈Lk−1

Rk−1(AX)
δk−1−−−→

hk

y hk−1

y
· · · −−−→

⊕
Z∈L′′k

Rk(A′′
Z)

δ′′k−−−→
⊕

Z∈L′′k−1
Rk−1(A′′

Z)
δ′′k−1−−−→

· · · δ2−−−→
⊕

X∈L1
R1(AX) δ1−−−→ V ∗ δ0−−−→ 0

h1

y h0

y
· · ·

δ′′2−−−→
⊕

Z∈L′′1
R1(A′′

Z)
δ′′1−−−→ V (θ)∗

δ′′0−−−→ 0 .

The commutativity of the big diagram is summarized in the following
proposition.

Proposition 4.2. Let k ≥ 1. Let µ ∈
⊕

X∈Lk
Rk(AX). Then

δ′′khkµ = hk−1δkµ.

The following observation is useful in the proof of our main result, Theo-
rem 6.5.

Lemma 4.3. Let 2 < k ≤ l, Y ∈ Lk, and µ ∈ Rk(AY ). Assume θ ∈ Y ⊥.
Then ∑

X∈LY
k−1

θ 6∈X⊥

hX
k−2µX = 0.
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Proof. Note that the codomain of hY
k : Rk(AY ) −→ Rk( (AY )′′ ) is 0, and

so hY
k is the zero map. Thus δ

(AY )′′

k hY
k µ = δ

(AY )′′

k 0 = 0. By Proposition
4.2, this implies hY

k−1δ
Y
k µ = 0. The map δY

k is the inclusion Rk(AY ) ↪→⊕
X∈Lk−1

Rk−1(AX), so hY
k−1µ =hk−1δ

Y
k µ =0. Now observe Lk−1( (AY )′′ ) =

{Y }. Also observe, for X ∈ LY
k−1, X ′′ = Y if and only if θ 6∈ X⊥. Therefore,

by (5),
hY

k−1µ =
∑

X∈LY
k−1

θ 6∈X⊥

hX
k−2µX .

This completes the proof. �

5. Construction of differential 1-forms.

In this section we construct differential 1-forms ωµ in a recursive manner.
It will be shown in the next section that these forms are logarithmic.

Lemma 5.1. Let Y ∈ Lk, 1 ≤ j ≤ k, and X ∈ LY
k−j. Let (β1, . . . , βk) be

any basis of Y ⊥. Let 〈β1, . . . , βj〉 denote the span of {β1, . . . , βj} in Y ⊥. If
〈β1, . . . , βj〉 ∩X⊥ = 0, then:

(i) There is a unique basis CX = (γX
j+1, . . . , γX

k ) of X⊥ so that

CX |V (β1,... ,βj) = (βj+1, . . . , βk)|V (β1,... ,βj).

(ii) Let j + 1 ≤ i ≤ k. Let any ηi ∈ X⊥ have the property ηi|V (β1,... ,βj) =
βi|V (β1,... ,βj). Then ηi = γX

i .

Proof. Note that Y ⊥ has the internal direct sum decomposition

Y ⊥ = 〈β1, . . . , βj〉 ⊕X⊥.

Let π1 : Y ⊥ −→ 〈β1, . . . , βj〉 and π2 : Y ⊥ −→ X⊥ be the projections. For
each i, j + 1 ≤ i ≤ k, let γX

i = π2(βi), and let CX = (γX
j+1, . . . , γX

k ). This
proves existence in (i). Part (ii) now follows. The uniqueness of CX in (i)
is a direct consequence of (ii). �

For Y ∈ Lk(A) , X ∈ LY
k−1, let (β1, . . . , βk) be a basis of Y ⊥ with

β1 6∈ X⊥. Since Y ⊥/X⊥ is one-dimensional and βX
1 6≡ 0 mod X⊥, there is

a scalar aX
i ∈ K (possibly zero) so that

βX
i ≡ aX

i βX
1 mod X⊥.

Lemma 5.2. Let Y ∈ Lk(A) and X ∈ LY
k−1. Let (β1, . . . , βk) be a basis of

Y ⊥ with β1 6∈ X⊥, and CX = (γX
2 , . . . , γX

k ) be as in Lemma 5.1. Then for
every i, 2 ≤ i ≤ k, γX

i = βi − aX
i β1.

Proof. Note that
(
βi − aX

i β1

)
|V (β1) = βi|V (β1), and βi − aX

i β1 ∈ X⊥. The
result follows by Lemma 5.1(ii). �
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Let 1 ≤ k ≤ l, Y ∈ Lk, and µ ∈ Rk(AY ) be fixed. Let B = (β1, . . . , βk)
be a k-tuple of elements in Y ⊥. If B is linearly dependent or µ = 0, then
we define ωµ(B) = 0. In particular, if B = (0, . . . , 0), then ωµ(B) = 0.
Otherwise, ωµ(B) is defined recursively as follows.

Suppose k = 1. Then Y ∈ L1 = A, and, since µ ∈ R1(AY ), µ is of the
form ceY for some c ∈ K. Furthermore, B = (β1) is a 1-tuple. We let
ωµ(B) = c

β1
dαY .

Now suppose k ≥ 2. Assume for any X ∈ Lk−1, any (k − 1)-tuple C of
elements of X⊥, and any ν ∈ Rk−1(AX), we have a global rational 1-form
ων(C) on V .

Observe that if X ∈ LY
k−1 and β1 6∈ X⊥, then Lemma 5.1 gives us a basis

CX = (γX
2 , . . . , γX

k ) of X⊥ so that CX |V (β1) = (β2, . . . , βk)|V (β1). We may
extend the definition of CX to any X ∈ LY

k−1 via

CX =

{
(γX

2 , . . . , γX
k ) if β1 6∈ X⊥

(0, . . . , 0) otherwise.

Observe that µ ∈ Rk(AY ) ⊂
⊕

X∈LY
k−1

Rk−1(AX). Recall that, for X ∈
LY

k−1, the notation µX denotes the X coordinate of µ. Now we may define

ωµ(B) =
1
β1

∑
X∈LY

k−1

ωµX (CX).

If k = 2, there is a convenient alternative formula for ωµ. In this case, B =
(β1, β2) for some β1, β2 ∈ Y ⊥. Observe µ ∈ R2(AY ) ⊂

⊕
X∈LY

1
R1(AX).

We may write µ =
∑

X∈AY
cXeX , where cX ∈ K. For every X ∈ AY , write

αX = αX1β1 + αX2β2 with αX1, αX2 ∈ K. Then

(6) ωµ(B) =
1
β1

∑
X∈AY

cXαX2
dαX

αX
.

6. Properties.

We prove several properties of the forms constructed in the previous section,
including the property that these forms are logarithmic. In Theorem 6.7 it is
shown that these forms are, up to scalar multiple, independent of the tuple
B.

First we prove a technical lemma. Let 2 < k ≤ l, Y ∈ Lk, and µ ∈
Rk(AY ). Let B = (β1, . . . , βk) be a basis of Y ⊥. To simplify notation, for
any X ∈ Lk−1, Z ∈ Lk−2, write µZ

X = (µX)Z .
For any Z ∈ LY

k−2, if Z⊥ ∩ 〈β1, β2〉 = 0, then let CZ be the basis of Z

given by Lemma 5.1 so that CZ |V (β1,β2) = (β3, . . . , βk)|V (β1,β2).



98 SCOTT K. IMIG

Extend this definition to all Z ∈ LY
k−2 via

CZ =

{
CZ (as above) if Z⊥ ∩ 〈β1, β2〉 = 0
(0, . . . , 0) otherwise.

Lemma 6.1. We have the identity

β1β2ωµ(B) =
∑

X∈LY
k−1

β1 6∈X⊥

∑
Z∈LY

k−2

β2

γX
2

ωµZ
X

(CZ).

Proof. First, for any X ∈ LY
k−1, β1 6∈ X⊥, and Z ∈ LX

k−2 with γX
2 6∈ Z⊥,

Lemma 5.1 gives a unique basis CX,Z with CX,Z |V (γX
2 ) = (γX

3 , ..., γX
k )|V (γX

2 ).

Extend this definition to all X ∈ LY
k−1 with β1 6∈ X⊥ and Z ∈ LY

k−2 via

CX,Z =

{
CX,Z (as above) if Z ∈ LX

k−2 and γX
2 6∈ Z⊥

(0, . . . , 0) otherwise.

Observe that, for any X ∈ LX
k−2 with β1 6∈ X⊥, the definition of ωµX (CX)

gives us

ωµX (CX) =
1

γX
1

∑
Z∈LY

k−2

ωµZ
X

(CX,Z).

By definition of CZ and CX,Z , we have CX,Z = CZ for every X ∈ LY
k−1

with β1 6∈ X⊥, Z ∈ LX
k−2.

Now we are ready to prove the equation. By definition,

β1β2ωµ(B) = β2

∑
X∈LY

k−1

ωµX (CX)

= β2

∑
X∈LY

k−1

β1 6∈X⊥

1
γX

2

∑
Z∈LX

k−2

ωµZ
X

(CX,Z)

=
∑

X∈LY
k−1

β1 6∈X⊥

∑
Z∈LX

k−2

β2

γX
2

ωµZ
X

(CZ).

If Z ∈ LY
k−2\LX

k−2, then µZ
X = 0 and ωµZ

X
(CZ) = 0, so the last expression is∑

X∈LY
k−1

β1 6∈X⊥

∑
Z∈LY

k−2

β2

γX
2

ωµZ
X

(CZ).

�



CONSTRUCTION OF LOGARITHMIC 1-FORMS 99

The following lemma is well-known. It is needed in Lemma 6.3 to establish
a necessary and sufficient condition for certain rational differential 1-forms
to be logarithmic.

Lemma 6.2. Let ω be a global rational differential p-form on V such that
Qω ∈ Ωp[V ]. Then ω ∈ Ωp(A) if and only if Q(dαX/αX)∧ ω ∈ Ωp+1[V ] for
every X ∈ A.

Proof. See [OT, Proposition 4.78]. �

Lemma 6.3. Let ω ∈ Ω1(A) and X ∈ A. Let ρ denote restriction to X.
Assume that αX divides Qω in the S-module Ω1[V ]. Then 1

αX
ω ∈ Ω1(A) if

and only if ρ( Q
αX

ω) = 0.

Proof. Since αX divides Qω in Ω1[V ], we have Q 1
αX

ω ∈ Ω1[V ] and we may
apply Lemma 6.2.

Choose a basis (x1, x2, . . . , xl) of V ∗ with x1 = α1. For every i, 1 ≤ i ≤ l,
let pi

qi
represent the dxi coefficient of ω, where pi and qi are chosen to be

relatively prime elements of S = K[x1, . . . , xl], with qi monic.
Assume 1

x1
ω ∈ Ω1(A). Then by Lemma 6.2,

Q
dx1

x1
∧ 1

x1
ω =

l∑
i=2

Q
pi

qix2
1

dx1 ∧ dxi ∈ Ω2[V ].

Let i, 2 ≤ i ≤ l be arbitrary. Since Ω2[V ] is a free S-module with basis
{dxj ∧dxk|1 ≤ j < k ≤ l} we have Q pi

qix2
1
dx1∧dxi ∈ Ω2[V ]. Therefore Q pi

qix2
1

is polynomial. Thus x1 divides Q pi

qix1
in the ring S, and so ρ

(
Q pi

qix1

)
= 0.

Thus

ρ

(
Q

x1
ω

)
= ρ

(
Q

p1

q1x1
dx1

)
+ ρ

(
l∑

i=2

Q
pi

qix1
dxi

)
= 0.

Conversely, assume ρ( Q
x1

ω) = 0. We have

ρ

(
Q

x1
ω

)
=

l∑
i=2

ρ

(
Q

pi

qix1

)
dρ(xi).

Since Ω1[V (x1)] is a free K[ρ(x2), . . . , ρ(xl)] module with basis {dρ(x2), . . . ,

dρ(xl)}, ρ
(
Q pi

qix1

)
= 0 for i = 2, . . . , l. Therefore, x1 divides Q pi

qix1
in the

ring S. Thus Q pi

qix2
1
∈ S and so Q pi

qix2
1
dx1 ∧ dxi ∈ Ω[V ]. Therefore Qdx1

x1
∧

1
x1

ω =
∑l

i=2 Q pi

qix2
1
dx1 ∧ dxi is regular. By Lemma 6.2, 1

x1
ω is logarithmic.

�
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Lemma 6.4. For ν, υ ∈ Rk(AY ) and a, b ∈ K,

aων(B) + bωυ(B) = ωaν+bυ(B).

That is, the assignment µ → ωµ is K-linear.

Proof. This is obvious for k = 1, and follows immediately for arbitrary k by
induction. �

The following theorem is our main result. It is a list of properties of
ωµ(B), with property (iii) being the most important.

Notation. For Theorem 6.5 and its proof, we make the following notational
conventions. The symbol θ will represent an element of V ∗, ρ will denote
restriction of differential forms to V (θ), and A′′ will denote the restriction
of A to V (θ). For 1 ≤ i ≤ l, let hi be the linear map defined in Sections 3
and 4. For X ∈ L, α ∈ V ∗, and Z ∈ A′′, let X ′′, α′′, and ηZ be as in Section
3.

Theorem 6.5. Let k ≥ 2, Y ∈ Lk, and µ ∈ Rk(AY ). Write ωµ = ωµ(B).
(i) For any permutation σ of (1, . . . , k),

ωµ(βσ(1), . . . , βσ(k)) = (sgn σ)ωµ.

(ii) Let η = b1β1 + . . . + bkβk, where each bi ∈ K and b1 6= 0. Then

b1ωµ(η, β2, . . . , βk) = ωµ.

(iii) ωµ ∈ Ω(AY ).
(iv) Assume θ 6∈ Y ⊥. Then

ρ(ωµ) = ωhY
k−1µ(β′′1 , . . . , β′′k).

Proof. First we prove (i)-(iv) in the case k = 2. Write µ =
∑

X∈AY
cXeX ,

and use Equation (6) to write ωµ = 1
β1

∑
X∈AY

cXαX2
dαX
αX

.
(i) Since k = 2, σ is either the identity or the transposition (1, 2). If σ =

identity, the claim is obvious. If σ = (1, 2), the claim is ωµ = −ωµ(β2, β1).
By definition of R2(AY ), δY

1 µ = 0. However, δY
1 (µ) =

∑
X∈AY

cXαX , so∑
X∈AY

cXαX = 0.

Therefore

β1β2(ωµ(β2, β1) + ωµ) =
∑

X∈AY

cXαX1β1
dαX

αX
+
∑

X∈AY

cXαX2β2
dαX

αX

=
∑

X∈AY

cXdαX

= 0.
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There are no zero divisors in the S-module of global rational 1-forms on V .
Since β1β2 6= 0, we have ωµ(β2, β1) + ωµ = 0, proving the claim.

(ii) Since b1 6= 0, (η, β2) is a basis of Y ⊥. For any αX ∈ AY , write

αX = α′X1η + α′X2β2.

Then αX1 = b1α
′
X1. Therefore

b1ωµ(η, β2) = −b1ωµ(β2, η)

= − 1
β2

∑
X∈AY

cXαX1
dαX

αX

= −ωµ(β2, β1)

= ωµ(β1, β2)

which proves property (ii).
(iii) Without loss of generality we may assume that V (β1) ∈ AY . Indeed,

choose any X ∈ AY so that X 6= V (β2). Then, writing αX = αX1β1+αX2β2,
we have αX1 6= 0. By (ii), αX1ω(αX , β2) = ω(β1, β2). Since Ω1(A) is closed
under scalar multiplication, it suffices to show ω(αX , β2) ∈ Ω1(A). Thus we
may and shall assume V (β1) ∈ AY .

Since for every X ∈ AY , dαX
αX

∈ Ω(AY ), the sum
∑

X∈AY
cXαX2

dαX
αX

is in
the module Ω(AY ). We now check that β1 divides QY

∑
X∈AY

cXαX2
dαX
αX

in
the S-module Ω1[V ] so that we may apply Lemma 6.3. Since V (β1) ∈ AY ,
β1 divides QY . For any αX ∈ AY with αX 6= β1, αX is nonproportional to
β1, so αX and β1 are not associates in the unique factorization domain S.
Thus β1 divides QY

αX
in S, so β1 divides QY cXαX2

dαX
αX

in Ω1[V ]. Therefore,
β1 divides each summand of

QY

∑
X∈AY

cXαX2
dαX

αX
=
∑

X∈AY

QY cXαX2
dαX

αX

=
∑

X∈AY
αX 6=β1

QY cXαX2
dαX

αX

in Ω1[V ], and so β1 divides QY
∑

X∈AY
cXαX2

dαX
αX

.
Let ρ1 denote restriction to V (β1). By Lemma 6.3, it suffices to show

ρ1(QY ωµ) = ρ1

QY

β1

∑
X∈AY

cXαX2
dαX

αX


= 0.
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By definition, µ ∈ ker δY
1 . But

δY
1 µ =

∑
X∈AY

cXαX

=
∑

X∈AY

cX(αX1β1 + αX2β2)

=

 ∑
X∈AY

cXαX1

β1 +

 ∑
X∈AY

cXαX2

β2.

Since (β1, β2) is a basis of Y ⊥,
∑

X∈AY
cXαX2 = 0.

Thus

ρ1

QY

β1

∑
X∈AY

cXαX2
dαX

αX

 = ρ1

(
QY

β1

) ∑
X∈AY

X 6=V (β1)

cXαX2

 dρ1(β2)
ρ1(β2)

= 0.

Therefore, by Lemma 6.3, ωµ = 1
β1

∑
X∈A cXαX2

dαX
αX

∈ Ω(AY ).
(iv) For any Z ∈ (AY )′′, write

ηZ = ηZ1β
′′
1 + ηZ2β

′′
2 .

For X ∈ AY , write α′′X = αX1β
′′
1 + αX2β

′′
2 , and note that

αX2ηX′′ = ηX′′2α
′′
X

i.e.
α′′X
ηX′′

ηX′′2 = αX2.

Now recall that hY
1 µ =

∑
X∈AY

cX
α′′X
ηX′′

eX′′ , so

ωhY
1 µ(β′′1 , . . . , β′′k) =

1
β′′1

∑
X∈AY

cX
α′′X
ηX′′

ηX′′2
dηX′′

ηX′′

=
1
β′′1

∑
X∈AY

cXαX2
dα′′X
α′′X

= ρ(ωµ).

This proves property (iv).
Now we prove properties (i)-(iv) in the case when k > 2.
(i) Step 1. We claim ωµ(β2, β1, β3, . . . , βk) = −ωµ, i.e., the property holds

if σ is the transposition (1, 2).
For X ∈ LY

k−1, β1 6∈ X⊥, let aX
i be as in Lemma 5.2. Then CX =

(γX
2 , . . . , γX

k ) has γi = βi − aX
i β1 for each i. Now consider the basis

(β2, β1, β3, β4, . . . , βk) of Y ⊥. For any X ∈ LY
k−1 with β2 6∈ X⊥, let DX be
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the unique basis of X⊥ given by Lemma 5.1 with DX |V (β2) = (β1, β3, β4, . . . ,

βk)|V (β2). Then for each i, i = 1, 3, 4, . . . , k, let bX
i be the scalar with

bX
i β2 ≡ βi (mod X⊥). Lemma 5.2 applied in this situation shows

DX = (β1 − bX
1 β2 , β3 − bX

3 β2, β4 − bX
4 β2 , . . . , βk − bX

k β2).

Now apply Lemma 6.1, obtaining

β1β2ωµ(B) =
∑

X∈LY
k−1

β1 6∈X⊥

∑
Z∈LY

k−2

β2

β2 − aX
2 β1

ωµZ
X

(CZ).

Another application of the same lemma yields

β1β2ωµ(β2, β1, β3, . . . , βk) =
∑

X∈LY
k−1

β2 6∈X⊥

∑
Z∈Lk−2

β1

β1 − bX
1 β2

ωµZ
X

(CZ).

Now notice that for any X ∈ LY
k−1 with β1 6∈ X⊥, β2 6∈ X⊥, we have

bX
1 = 1

aX
2

by definition of these scalars. Also note that, for X with β1 6∈ X⊥,

aX
2 = 0 if and only if β2 ∈ X⊥ and for X with β2 6∈ X⊥, bX

1 = 0 if and only
if β1 ∈ X⊥. Together, these observations imply that

β1β2(ωµ(β2, β1, β3, . . . , βk) + ωµ) =
∑

Z∈LY
k−2

∑
X∈LY

k−1

ωµZ
X

(CZ).

By Lemma 6.4, the last expression is∑
Z∈LY

k−2

ω�(CZ),

where � =
∑

X∈LY
k−1

µZ
X . Now, by definition of δY

k−1, � = (δY
k−1µ)Z . However,

δY
k−1µ = 0. So by definition, each ω�(CZ) = 0. Therefore

β1β2(ωµ(β2, β1, β3, . . . , βk) + ωµ) = 0.

Since β1β2 is nonzero,

ωµ(β2, β1, β3, . . . , βk) + ωµ = 0

i.e., ωµ(β2, β1, β3, . . . , βk) = −ωµ. This proves the claim in Step 1.

Step 2. We now show, for any q > 1,

ωµ(β1, β2, . . . , βq−1, βq+1, βq, βq+2 . . . , βk) = −ωµ,

that is, the claim in (i) holds when σ is the transposition (q, q + 1).
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Proof of Step 2: Let CX = (γX
2 , . . . , γX

k ) be as in Lemma 5.1. Then by the
inductive hypothesis,

ωµ =
1
β1

∑
ωµX (CX)

= − 1
β1

∑
ωµX (γX

2 , . . . , γX
q+1, γ

X
q , . . . , γX

k )

= −ωµ(β1, β2, . . . , βq+1, βq, . . . , βk).

Step 3. We now show ωµ(βσ(1), . . . , βσ(k)) = sgn σωµ.
Write σ as a product σN ◦ σN−1 ◦ · · · ◦ σ1 of transpositions σi with the

following property.

Let τi = σi−1 ◦ · · · ◦ σ1 for i > 1 and τ1 be the identity. Then for every
i, 1 ≤ i ≤ N , σi switches the positions of two adjacent entries in the tuple
(τi(1), . . . , τi(k)).

By Steps 1 and 2,

ωµ(βσ(1), . . . , βσ(k)) = ωµ(βτN+1(1), . . . , βτN+1(k))

= −ωµ(βτN (1), . . . , βτN (k))
= · · ·
= (−1)Nωµ

= sgn σωµ.

(ii) By property (i), Lemma 5.2, and induction we have, for some sX
η , sX

1 ,

sX
3 , · · · sX

k ∈ K,

b1ωµ(η, β2, . . . , βk) = −b1ωµ(β2, η, β3 . . . , βk)

= − b1

β2

∑
X∈Lk−1

ωµ(η − sX
η β2, β3 − sX

3 β2, . . . , βk − sX
k β2)

= − 1
β2

∑
X∈Lk−1

ωµ(β1 − sX
1 β2, β3 − sX

3 β2 . . . , βk − sX
k β2)

= ωµ.

(iii) We may assume without loss of generality that V (β1) ∈ AY . In-
deed, take any X ∈ AY with αX1 6= 0, where αX = αX1β1 + αX2β2 +
· · · + αXkβk. Then by (ii), ωµ(αX , β2, . . . , βk)=̇ωµ. Thus it suffices to
show ωµ(αX , β2, . . . , βk) ∈ Ω(A). Thus we may and shall assume that
V (β1) ∈ AY .

By the inductive hypothesis (iii), QXωµX (CX) ∈ Ω1[V ] for each X ∈
LY

k−1. For any X ∈ LY
k−1 with β1 6∈ X⊥, we have β1 6∈ AX so β1 does not

divide QX in S. However, β1 divides QY so β1 divides QY
QX

. Thus β1 divides
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QY
QX

QXωµX (CX) = QY ωµX (CX) in Ω1[V ]. Any X with β1 ∈ X⊥ has µX = 0
so β1 divides

QY

∑
X∈LY

k−1

ωµX (CX) = QY

∑
X∈LY

k−1

β1 6∈X⊥

ωµX (CX) =
∑

X∈LY
k−1

β1 6∈X⊥

QY ωµX (CX)

in Ω1[V ]. Thus by Lemma 6.2 it suffices to check that the restriction of
QY ωµ = QY

β1

∑
X∈LY

k−1
ωµX (CX) to V (β1) is 0.

To see this, we apply the inductive hypothesis in the case θ = β1. Note
that for X ∈ LY

k−1 with β1 6∈ X⊥, and i ≥ 2, (γX
i )′′ = β′′i by definition. Also

note that for X ∈ LY
k−1 with β1 6∈ X⊥, X ′′ = Y .

By Lemma 6.4 we have

ρ1

(
QY

β1

∑
X∈LY

k−1

ωµX (CX)
)

= ρ1

(
QY

β1

∑
X∈LY

k−1

β 6∈X⊥

ωµX (CX)
)

= ρ1

(
QY

β1

) ∑
X∈LY

k−1

β6∈X⊥

ωhX
k−2µX

(β′′2 , . . . , β′′k)

= ρ1

(
QY

β1

)
ω�(β′′2 , . . . , β′′2 ).

Where � =
∑

X∈LY
k−1

β1 6∈X⊥

hX
k−2µX . This is 0 by Lemma 4.3.

Thus we have shown

ρ1(QY ωµ) = ω0(β′′2 , . . . , β′′2 ) = 0.

This proves (iii).
(iv) To simplify notation, we write γX

i
′′ to stand for (γX

i )′′. For any Z ∈
L′′, let Z⊥

V (θ) represent the orthogonal complement of Z in V (θ)∗. Observe
that since θ 6∈ Y ⊥, the codimension of Y ′′ in V (θ) is k, and β′′1 , . . . , β′′k form
a basis for (Y ′′)⊥V (θ).

Recall that (AY )′′ ⊂ A′′
Y ′′ , and in particular, L( (AY )′′ ) ⊂ L(A′′

Y ′′) .
Thus for Z ∈ Lk−1( (AY )′′ ) with β′′1 6∈ Z⊥

V (θ), Lemma 5.1 gives us a basis
EZ of elements in Z⊥

V (θ) with EZ |ker β′′1
= (β′′2 , . . . , β′′k)|ker β′′1

. For any X ∈
Lk−1 with X ′′ = Z, the tuple (γX

2
′′
, . . . , γX

k
′′) consists of elements of Z⊥

V (θ).

Furthermore, for any i, i = 2, . . . , k, γX
i
′′|ker β′′1

= β′′i |ker β′′1
. Thus by part (ii)

of Lemma 5.1, EZ = (γX
2
′′
, . . . , γX

k
′′).
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We have

ρ(ωµ(β1, . . . , βk)) = ρ

 1
β1

∑
X∈LY

k−1

ωµX (γX
2 , . . . , γX

k )


=

1
β′′1

∑
X∈LY

k−1

ρ(ωµX (γX
2 , . . . , γX

k ))

=
1
β′′1

∑
X∈LY

k−1

ωhX
k−2µX

(γX
2
′′
, . . . , γX

k
′′
)

=
1
β′′1

∑
X∈LY

k−1

ωhX
k−2µX

(EX′′
).

By Lemma 6.4, we obtain

ρ(ωµ(β1, . . . , βk)) =
1
β′′1

∑
Z∈Lk−1( (AY )′′ )

ω�(EZ).

Where � =
∑

X∈LY
k−1

X′′=Z

hX
k−2µX = (hY

k−1µ)Z . This proves (iv). �

To prove that the definition of ωµ(B) is, up to scalar multiple, independent
of the tuple B, we need the following well-known result.

Lemma 6.6. (Chio’s Pivotal Condensation Method.) Let ∆=
∣∣(ηij)1≤i,j≤k

∣∣
be a determinant. Let 1 ≤ m ≤ k.

Let

∆′ =

∣∣∣∣∣∣∣∣∣∣∣∣

χ12 · · · χ1k

· · · · · · · · ·
χm−12 · · · χm−1k

χm+12 · · · χm+1k

· · · · · · · · ·
χk2 · · · χkk

∣∣∣∣∣∣∣∣∣∣∣∣
where χij =

∣∣∣∣ηm1 ηmj

ηi1 ηij

∣∣∣∣ .

Then ∆′ = (−1)m−1ηk−2
m1 ∆.

Proof. This is an easy generalization of [Ev, Theorem 3.6.1]. �

The next theorem shows that the definition of ωµ(B) is, up to scalar
multiple, independent of the tuple B.

Theorem 6.7. Let Y ∈ Lk, and let B = (β1, . . . , βk) and E = (η1, . . . , ηk)
be bases of Y ⊥. Let µ ∈ Rk(AY ). For each i, 1 ≤ i ≤ k, let ηi =

∑k
j=1 ηijβj.

Let ∆ denote the determinant ∆ =
∣∣(ηij)1≤i,j≤k

∣∣. Then ωµ(B) = ∆ωµ(E).
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Proof. The proof proceeds by induction on k.
For k = 2, we give the argument in case η11 6= 0. The proof for the only

other case, η11 = 0 and η21 6= 0, is similar.
First observe

η2 =
η21

η11
η1 +

(
η22 −

η21η12

η11

)
β2.

Now

ω(β1, β2) = η11ω(η1, β2)

= −η11ω(β2, η1)

= −η11

(
η22 −

η21η12

η11

)
ω(η2, η1)

= (η11η22 − η12η21)ω(η1, η2).

This completes the proof for k = 2.
For k > 2, assume that the result holds for every k′, 2 ≤ k′ < k. Choose

m, 1 ≤ m ≤ k so that ηm1 6= 0. By Theorem 6.5

ωµ(β1, β2, . . . , βk) = ηm1ω(ηm, β2, . . . , βk)

=
ηm1

ηm

∑
X∈Lk−1

ωµX (ξX
2 , . . . , ξX

k ).

Where (ξX
2 , . . . , ξX

k ) is a basis of X⊥ with (ξX
2 , . . . , ξX

k )|V (ηm) = (β2, . . . ,
βk)|V (ηm).

Note that for i 6= m,

(7) ηi =
ηi1

ηm1
ηm +

k∑
j=2

(
ηij −

ηi1

ηm1
ηmj

)
βj .

Fix an i, 1 ≤ i ≤ k with i 6= m, and consider
∑k

j=2

(
ηij − ηi1

ηm1
ηmj

)
ξX
j . By

(7) and Lemma 5.2, this is a linear functional of the form ηi − aηm for some
a ∈ K. Thus this functional’s restriction to V (ηm) is exactly the functional
ηi|V (ηm). It is in X⊥, since each ξX

j is in X⊥. For 1 ≤ i ≤ m, i 6= m, let

ζX
i =

k∑
j=2

(
ηij −

ηi1

ηm1
ηmj

)
ξX
j .

Then

(ζX
1 , . . . , ζX

m−1, ζ
X
m+1, . . . , ζX

k )|V (ηm) = (η1, . . . , ηm−1, ηm+1, . . . , ηk)|V (ηm)

so, by definition,

ωµ(ηm, η1, η2, . . . , η̂m, . . . , ηk) =
1

ηm

∑
X∈LY

k−1

ωµX (ζX
1 , . . . , ζ̂X

m , . . . , ζX
k ).
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By the inductive hypothesis and the definition of ζX
i ,

ω(β1, β2, . . . , βk) =
ηm1

ηm

∑
X∈LY

k−1

ωµX (ξX
2 , . . . , ξX

k )

=
ηm1

ηm

∑
X∈LY

k−1

∆1ωµX (ζX
1 , . . . , ζX

m−1, ζ
X
m+1, . . . , ζX

k ).

Where

∆1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

A12 · · · A1k
...

...
Am−12 · · · Am−1k

Am+12 · · · Am+1k
...

...
Ak2 · · · Akk

∣∣∣∣∣∣∣∣∣∣∣∣∣
and Aij = 1

ηm1

∣∣∣∣ηm1 ηmj

ηi1 ηij

∣∣∣∣ .
Let

∆2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Â12 · · · Â1k
...

...
Âm−12 · · · Âm−1k

Âm+12 · · · Âm+1k
...

...
Âk2 · · · Âkk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
where Âij =

∣∣∣∣ηm1 ηmj

ηi1 ηij

∣∣∣∣ .
Then by elementary row operations, ∆1 =

(
1

ηm1

)k−1
∆2. Thus

ω(β1, β2, . . . , βk) =

(
1

ηm1

)k−2
∆2

ηm

∑
X∈LY

k−1

ωµX (ζX
1 , . . . , ζX

m−1, ζ
X
m+1, . . . , ζX

k ).

By applying Lemma 6.6,(
1

ηm1

)k−2

∆2 =
ηk−2

m1

ηk−2
m1

(−1)m−1∆ = (−1)m−1∆.
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So

ω(β1, β2, . . . , βk) =
ηm1

ηm

∑
X∈LY

k−1

∆1ωµX (ζX
1 , . . . , ζX

m−1, ζ
X
m+1, . . . , ζX

k )

= (−1)m−1 ∆
ηm

∑
Z∈Lk−1

ωµZ (ζ1, . . . , ζm−1, ζm+1, . . . , ζk)

= (−1)m−1∆ωµ(ηm, η1, . . . , ηm−1, ηm+1, . . . , ηk)

= (−1)m−1(−1)m−1∆ωµ(η1, . . . , ηk).

This proves the theorem. �

7. Type A arrangements.

Consider a vector space of dimension l+1 with basis u1, . . . , ul+1. The Cox-
eter arrangement of type Al consists of the planes perpendicular to ui − uj

for 1 ≤ i < j ≤ l + 1. This arrangement is the product of an empty
1-arrangement with an irreducible arrangement. We consider here the irre-
ducible factor A of the Coxeter arrangement of type Al. We compute certain
elements of the relation spaces associated to A, compute their correspond-
ing logarithmic 1-forms, and show that they generate the module Ω1(A). It
is an easy consequence that the logarithmic 1-forms described in Section 5
generate all logarithmic 1-forms for Coxeter arrangements of type Al. The
argument here is field-independent.

For the example in this section, we will need the following well-known
property.

Proposition 7.1. (Saito’s criterion.) Let ω1, . . . , ωl ∈ Ω1(A). Then Ω1(A)
is a free S-module with basis ω1, . . . , ωl if and only if ω1 ∧ · · · ∧ ωl is a
K-multiple of Q−1dx1 ∧ · · · ∧ dxl.

Proof. See [OT, Proposition 4.80]. �

Let x1, . . . , xl be a basis of V ∗. For 1 ≤ p ≤ l, let Xp = V (xp), and for
1 ≤ p < q ≤ l, let Ypq = V (xp−xq). Let A be the arrangement consisting of
all the hyperplanes Xp and Ypq. We choose linear functionals associated to
elements of A as follows. For 1 ≤ p ≤ l, let αXp = xp, and for 1 ≤ p < q ≤ l,
let αYpq = xp − xq.

For 1 ≤ p ≤ l, denote the basis element of
⊕

X∈L1
R1(AX) corresponding

to Xp by ep, and for 1 ≤ p < q ≤ l, denote the basis element corresponding
to Ypq by epq.

We now recursively compute certain elements of the spaces Rk(AX) for
k ≥ 2. For k ≥ 2 and 1 ≤ i1 < i2 < · · · < ik ≤ l, let Xi1···ik =
V (xi1 , . . . , xik) ∈ Lk, and let Yi1···ik = V (xi1 −xi2 , xi1 −xi3 , . . . , xi1 −xik) ∈
Lk−1. Observe that this is consistent with the definition of Ypq above.
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For every p and q with 1 ≤ p < q ≤ l we have a relation µpq = ep − eq −
epq ∈ R2(AXpq), and for every p, q, and r with 1 ≤ p < q < r ≤ l, we have a
relation νpqr = −epq + epr − eqr ∈ R2(AYpqr).

These relations generalize recursively as follows. For k ≥ 3 and 1 ≤ i1 <
· · · < ik ≤ l, let

µi1···ik =
k∑

j=1

(−1)jµi1···̂ij ···ik + νi1···ik ∈ Rk(AXi1···ik
),

and let

νi1···ik =
k∑

j=1

(−1)j+1νi1···̂ij ···ik ∈ Rk−1(AYi1···ik
).

It now follows by direct computation and recursion that, for any k ≥ 2
and 1 ≤ i1 < · · · < ik ≤ l, we have

ωµi1···ik
(xi1 , . . . , xik) =

k∑
j=1

(−1)j+1 dxij

xij

∏
1≤p<j(xip − xij )

∏
j<p≤k(xij − xip)

.

Proposition 7.1 now implies that the forms

ωi1(x1), ωi1i2(x1, x2), . . . , ωi1i2···il(x1, x2, . . . , xl)

constitute a basis for the free S-module Ω1(A).
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