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We prove a limit theorem for extension theory for met-
ric spaces. This theorem can be put in the following way.
Suppose that K is a simplicial complex, |K| is given the
weak topology, and a metrizable space X is the limit of an
inverse sequence of metrizable spaces Xi having the prop-
erty that Xiτ |K| for each i ∈ N. Then Xτ |K|. This latter
property means that for each closed subset A of X and map
f : A → |K|, there exists a map F : X → |K| which is an
extension of f .

As a corollary to this we get the result of Nagami that the
limit of an inverse sequence of metrizable spaces each having
dimension ≤ n has dimension ≤ n. But we get much more,
as this result extends to cohomological dimension modulo an
abelian group. Hence, if G is an abelian group and X is the
limit of an inverse sequence of metrizable spaces Xi where
dimG Xi ≤ n for each i ∈ N, then dimG X ≤ n.

1. Introduction.

In this paper we are going to prove a limit theorem for extension theory
in arbitrary metrizable spaces. The theorem goes as follows. Let K be a
simplicial complex and |K| have the weak topology. Suppose that X is the
limit of an inverse sequence of metrizable spaces Xi where for each i ∈ N,
Xiτ |K|. Then Xτ |K|. This latter notation means that for each closed
subset A of X and map f : A → |K|, there exists a map F : X → |K| which
is an extension of f .

If in place of |K| we put Sn, then Xτ |K|means that dim X ≤ n. Similarly,
for an abelian group G, XτK(G, n) means that dimG X ≤ n. This idea
of treating dimension theory as a branch of extension theory is not new,
although it recently has received a lot of play, particularly in the works
of Dranishnikov and Dydak, e.g., [DD]. Indeed, the paper [Wa] of John
Walsh in which the Edwards-Walsh theorem is proved could be considered
a forerunner of this line of thought; it certainly was a stimulus to these
authors in their way of thinking about dimension theory.

The preceding shows that as a corollary to this limit theorem, one has
the result of Nagami that if a space X is the limit of an inverse sequence of
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metrizable spaces Xi and if for each i ∈ N, dim Xi ≤ n, then dim X ≤ n.
But it goes even further. Suppose that G is an abelian group and for each
i ∈ N, dimG Xi ≤ n; then dimG X ≤ n. This is a new result which was
known previously only for the groups Z and Z/p where p is a prime number
(see [RS]). In [Ku] a somewhat similar result is stated (see page 39) for the
limit of an inverse system of metric spaces whenever the limit is strongly
paracompact, but no proof is given and it is not clear which coefficient
groups are meant. The limit theorem for separable metrizable spaces and
countable complexes K appears in [Ch] where the author was able to extract
the result from the proof of Proposition 2.1 of [Ol]. For the case of compact
(not necessarily metrizable spaces), the theory is completely developed in
[Ru] where it is proved that the extension property is always preserved in
the limit even when the systems are approximate inverse systems. Such a
result for standard inverse systems can be found as Theorem 2.2 of [DR].

Finally, the authors want to thank Ivan Ivanšić for many stimulating
discussions during the preparation of this material. His advice was extremely
critical in helping us clarify the presentation of our result.

2. Preliminaries.

The term map will always mean continuous function. Whenever K is a
simplicial complex, then we shall bestow its polyhedron |K| with the weak
(CW) topology. Good references for the basics of simplicial complexes and
their polyhedra with the weak topology are Appendix 1 of [MS] and Chapter
3 of [Sp].

The notation st(v,K) will refer to the open star of the vertex v of K.
If U = {Uv | v ∈ Γ} is an (indexed) open cover of a space X, then N(U)
will denote the nerve of U . Its vertex set consists of those Uv which are not
empty and hence the indexing set for the vertices of the nerve may well be
a proper subset of Γ. On the other hand, it is sometimes convenient just
to write {Uv | v ∈ Γ} for the vertex set; one then understands that for some
elements v ∈ Γ, Uv need not be a vertex of the nerve.

When such an open cover is given, then a map f : X → |N(U)| is called
U-canonical if for each vertex Uv of N(U), f−1(st(Uv, N(U))) ⊂ Uv. We
want to emphasize that an (indexed) open collection U = {Uv | v ∈ Γ} is
called locally finite if it is locally finite with respect to the indexing set Γ.
This means that for each x ∈ X, there exists a neighborhood V of x in X
having the property that V ∩ Uv 6= ∅ for at most finitely many v ∈ Γ.

For convenience to the reader, we are going to state here some results
which can readily be deduced from other sources. The first is III.10.2 of
[Hu]. (We shall use the notation K(n) to designate the n-skeleton of a given
simplicial complex K.)
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Lemma 2.1. Let X be a space satisfying the first countability axiom, K
be a simplicial complex, and f : X → |K| be a map. Then the (indexed)
collection {Qv = f−1(st(v,K)) | v ∈ K(0)} is a locally finite open cover of
X.

The next one can be deduced easily from II.18.3 of [Hu].

Lemma 2.2. Let P be a closed subset of a metrizable space B and D =
{Dv | v ∈ Γ} be a locally finite open cover of P (by sets open in P ). Then
there exists a locally finite collection D∗ = {D∗

v | v ∈ Γ} of open subsets of B
having the property that D∗

v ∩ P = Dv for each v ∈ Γ.

Notation 2.3. Let Q = {Qv | v ∈ Γ} be a collection of sets. For each v ∈ Γ,
let βQv : |N(Q)| → I denote the Qv-barycentric coordinate function. Note
of course that βQv is positive on st(Qv, N(Q)) and is zero elsewhere.

Lemma 2.4. Let P be a closed subset of a metrizable space B and U =
{Uv | v ∈ Γ} be an open cover of B. Put E = {Ev = Uv ∩ P | v ∈ Γ} and
let f : P → |N(E)| be an E-canonical map. Let θ : N(E) → N(U) be the
simplicial injection determined by the vertex map Ev 7→ Uv. Then there is
a U-canonical map g : B → |N(U)| such that g(P ) ⊂ θ(|N(E)|) and for all
x ∈ P , θ−1(g(x)) = f(x) (thus, θ(f(x)) = g(x)).

Proof. Let Γ0 ⊂ Γ consist of those v such that Ev 6= ∅. For v ∈ Γ0, let
Dv = f−1(st(Ev, N(E))) ⊂ Ev ⊂ Uv. By 2.1, {Dv | v ∈ Γ0} is a locally finite
open cover of P . Using 2.2, find a locally finite collection {D∗

v | v ∈ Γ0} of
open subsets of B such that D∗

v ∩ P = Dv and D∗
v ⊂ Uv for each v ∈ Γ0.

For v ∈ Γ0, select a map γv : B → I such that
(1) γv = βEv f on P , and
(2) γv is zero on B\D∗

v .
Choose a U-canonical map h : B → |N(U)|. Let Γ1 ⊂ Γ consist of all v

such that Uv 6= ∅. Note that Γ0 ⊂ Γ1 and that if v ∈ Γ1\Γ0, then Uv∩P = ∅.
Choose a map k : B → I with the property that k is zero on P and is positive
elsewhere. We define certain maps ρv : B → [0,∞), v ∈ Γ1, in the following
manner. Let x ∈ B; then,

(3) ρv(x) = k(x)βUv h(x) if v ∈ Γ1\Γ0, and
(4) ρv(x) = k(x)βUv h(x) + γv(x) if v ∈ Γ0.
We claim that each x ∈ B has a neighborhood Tx in B on which ρv is

different from zero for only finitely many v ∈ Γ1, and that ρv(x) > 0 for at
least one v ∈ Γ1. To see the truth of the latter, first consider x ∈ P . Then
for some v ∈ Γ0, f(x) ∈ st(Ev, N(E)); from (1) we see that γv(x) > 0. So
(4) shows that ρv(x) > 0. If x ∈ B\P , then there has to be v ∈ Γ1 such
that h(x) ∈ st(Uv, N(U)). Now k(x) > 0 and from the preceding one sees
that βUv h(x) > 0. So whichever of (3) or (4) applies, we again conclude that
ρv(x) > 0.
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To find Tx, proceed as follows. Lemma 2.1 shows that {h−1(st(Uv,
N(U))) | v ∈ Γ1} is locally finite. Choose Tx so that it intersects h−1(st(Uv,
N(U))) for only finitely many elements v of Γ1 and simultaneously that Tx

intersects D∗
v for only finitely many v ∈ Γ0. Let w be an element of Γ1

which is not one of these v and y ∈ Tx. Now y /∈ h−1(st(Uw, N(U))), so
h(y) /∈ st(Uw, N(U)). One sees from 2.2 that βUw(h(y)) = 0. Since y /∈ D∗

w,
then by (2), γw(y) = 0 if w ∈ Γ0. It follows from (3) and (4) that ρw(y) = 0.

We obtain a partition of unity {ρ∗v | v ∈ Γ1} on B from the preceding by
setting

ρ∗v =
ρv∑

{ρw |w ∈ Γ1}
.

The reader will not have difficulty (an argument similar to the one we
just employed) seeing that each ρv is zero outside Uv. Hence we may state
that

(5) for all v ∈ Γ1, ρ∗v is zero outside Uv.
From this it is seen that the formula

(6) g(x) =
∑
{ρ∗v(x)Uv | v ∈ Γ1}

determines a function g : B → |N(U)|. Since each x ∈ B has a neighborhood
on which ρv (and hence ρ∗v) is different from zero for only finitely many v, it
is clear that g is a map. For x ∈ B\Uv, βUv (g(x)) = 0 because of (5). Hence
g is a U-canonical map.

Now suppose that x ∈ P . Let us show that if v ∈ Γ1\Γ0, then βUv (g(x)) =
0. But the latter is just ρ∗v(x) which, by its definition, is a multiple of
ρv(x). The latter is zero because of (3) and the fact that k(x) = 0. If at
last we can show that for each v ∈ Γ0, ρ∗v(x) = βEv (f(x)), then the rest
of 2.4 will certainly be true. The denominator in the definition of ρ∗v(x)
is nothing but

∑
{ρw(x) |w ∈ Γ0}. But since k(x) = 0, this simplifies to∑

{γw(x) |w ∈ Γ0} = 1 (see (4) and (1)). The numerator is of course just
γv(x) = βEv (f(x)). Our proof is complete. �

Lemma 2.5. Let X be a metrizable space, K be a simplicial complex, and
f , g : X → |K| be maps such that for each x ∈ X, there is a simplex σ of
K such that f(x), g(x) ∈ σ. Then f ' g.

Proof. Let x ∈ X. Applying 2.1, there is a neighborhood V of x and a finite
subset F of K(0) such that V ∩ f−1(st(v,K)) = ∅ or V ∩ g−1(st(v,K)) = ∅
unless v ∈ F . Let L be the maximal finite subcomplex of K whose vertex set
is F . Then the straight line homotopy between f and g using simplexes σ
as indicated in the hypothesis and restricted to V has its image in |L|. Since
the barycentric coordinates of the straight line homotopy are continuous and
L is finite, then this homotopy is continuous on V . �

We need to develop some terminology.
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Definition 2.6. Let f : X → Y be a map and W be an open subset of X.
Then resp(W, f) is the maximal open subset U of Y such that f−1(U) ⊂ W .
We call U the W -response to f . Suppose that W = {Wv | v ∈ Γ} is an
indexed collection of open subsets of X. Then by resp(W, f) we mean the
(indexed) collection, {Uv = resp(Wv, f) | v ∈ Γ}.

We ask the reader to fill in a proof of the next lemma.

Lemma 2.7. Let W ⊂ W ′ be open subsets of a space X, and let f : X →
Y , g : Y → Z be maps. Write h = gf : X → Z. Then g−1(resp(W,h)) ⊂
resp(W, f) ⊂ resp(W ′, f).

3. The Limit Theorem.

This section contains our main result.

Theorem 3.1. Let K be a simplicial complex and X = limX where X =
(Xi, pi i+1, N) is an inverse sequence of metrizable spaces Xi with Xiτ |K| for
all i ∈ N. Then Xτ |K|.

Proof. Note first that X is a metrizable space. Let A ⊂ X be closed and f :
A → |K| be a map. We have to prove that there exists a map F : X → |K|
such that F |A = f : A → |K|. We assume without loss of generality that
A 6= ∅.

Extend f to a map f0 : W0 → |K| where W0 is an open neighborhood
of A in X. Let W ∗

0 be an open neighborhood of A in X whose closure W
∗
0

(relative to X) is contained in W0 and so that int W
∗
0 = W ∗

0 .
For each v ∈ K(0), let W 0

v = f−1
0 (st(v,K)). By Lemma 2.1, W0 =

{W 0
v | v ∈ K(0)} is a locally finite open cover of W0 in terms of indexing

by the set K(0). The identity function K(0) → K(0) induces a simplicial
injection, η0 : N(W0) → K by sending the vertex W 0

v to v.
We shall denote by Γ the subset of K(0) consisting of those v such that

W 0
v ∩ ∂W ∗

0 6= ∅. There is a collection W1 = {W 1
v | v ∈ Γ} of open subsets of

W0 which is locally finite in X and such that for each v ∈ Γ, W 1
v ⊂ W 0

v and
W 1

v ∩W
∗
0 = W 0

v ∩W
∗
0. This is easily accomplished by applying Lemma 2.2.

Let W1 =
⋃
W1; of course, W1 is an open cover of ∂W ∗

0 in W0. We define
(1) f1 = f0|W1 : W1 → |K|.

The inclusion Γ ↪→ K(0) induces a simplicial injection of nerves, η1 : N(W1)
→ N(W0) so that η1(W 1

v ) = W 0
v .

Let H = X\W ∗
0; then H is an open subset of X. Fix i ∈ N. We want to

name certain subsets and collections of subsets of Xi. First put
(2) Hi = resp(H, pi).

Then of course,
(3) Hi is open in Xi, p−1

i (Hi) ⊂ H, and H =
⋃
{p−1

i (Hi) | i ∈ N}.
Since pi i+1pi+1 = pi, then Lemma 2.7 shows that,
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(4) p−1
i i+1(Hi) ⊂ Hi+1.

Using a recursive construction on the index i, all the while applying (4),
choose sequences (Hj

i )∞j=1, each (Hj
i )∞j=1 being a sequence of closed subsets

of Xi, so that
(5) Hj

i ⊂ Hj+1
i ⊂ Hi for each j ∈ N,

(6)
⋃
{intHj

i | j ∈ N} = Hi, and
(7) p−1

k i+1(H
i+1
k ) ⊂ H1

i+1 whenever 1 ≤ k ≤ i.
For each v ∈ Γ, define Ui,v = resp(W 1

v , pi). We thus have a certain
indexed open collection in Xi: Ui = {Ui,v | v ∈ Γ}. This gives rise to an
open subset of Xi, namely, Ui =

⋃
Ui. Since p−1

i (Ui,v) ⊂ W 1
v ∈ W1, the

identity function Γ → Γ induces a simplicial injection βi : N(Ui) → N(W1)
where βi(Ui,v) = W 1

v . Taking into account Lemma 2.7 and the fact that
pi i+kpi+k = pi, one deduces that for all k ∈ N,

(8) p−1
i i+k(Ui,v) ⊂ Ui+k,v,

and, moreover,
(9) p−1

i i+k(Ui) ⊂ Ui+k.
We need to select some more closed sets in our space Xi. Let Zi =

clXi(pi(∂XH)). Consider the open subset Ki = Ui ∩ Zi of Zi. Choose a
sequence (Kj

i ) of closed subsets of Xi such that
(10) Kj

i ⊂ Kj+1
i ⊂ Ki for each j ∈ N,

(11)
⋃
{Kj

i | j ∈ N} = Ki, and
(12) p−1

k i+1(K
i
k) ∩ Zi+1 ⊂ K1

i+1 whenever 1 ≤ k ≤ i.
The latter is possible because of (9).

From (3), p−1
i (Hi) ⊂ H, so Zi ∩Hi = ∅ and therefore K1

i ∩H1
i = ∅. We

choose a closed neighborhood Di of K1
i in such a manner that

(13) Di ∩H1
i = ∅, and

(14) Di ⊂ Ui.
Let us put

(15) D∗
i =

⋃
{p−1

j i (Dj) | 1 ≤ j ≤ i}.
Then D∗

i is a closed subset of Xi. Further, (15), (14) and (9) show that,
(16) D∗

i ⊂ Ui and D∗
i+1 = p−1

i i+1(D
∗
i ) ∪Di+1.

There is an indexed open cover designated Ei = {Ei,v = Ui,v ∩ D∗
i | v ∈ Γ}

of D∗
i . The vertex map Ei,v 7→ Ui,v determines a simplicial injection τi :

N(Ei) → N(Ui).
We define,

(17) αi = η0η1βiτi : N(Ei) → K,
and note that αi is a simplicial injection.

On the other hand, suppose that Ei,v is a vertex of N(Ei), i.e., Ei,v 6=
∅. Using (8) and (16), one can see that Ei+1,v 6= ∅ and that, indeed,
p−1

i i+1(Ei,v) ⊂ Ei+1,v. Hence the vertex map, Ei,v 7→ Ei+1,v determines a
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simplicial injection θi : N(Ei) → N(Ei+1). Of course (8) shows that the ver-
tex map Ui,v 7→ Ui+1,v (whenever Ui,v 6= ∅) determines a simplicial injection
θ∗i : N(Ui) → N(Ui+1), and one can see from the definitions that,

(18) θ∗i τi = τi+1θi and βi+1θ
∗
i = βi.

Now for the first step of an inductive procedure. Choose an E1-canonical
map g1 : D∗

1 → |N(E1)|. Since X1τ |K|, α1g1 : D∗
1 → |K| is a map, and D∗

1 is
closed in X1, then there is a map g∗1 : D∗

1 ∪H1
1 → |K| which is an extension

of α1g1.
Let k ∈ N. Assume that for each 1 ≤ i ≤ k we have defined:

(I1) an Ei-canonical map gi : D∗
i → |N(Ei)|, and

(I2) a map g∗i : D∗
i ∪H1

i → |K| which is an extension of αigi : D∗
i →

|K|.
We assume that this has been done so that if 1 < i ≤ k, then

(I3) g∗i (x) = g∗i−1pi−1 i(x) for all x ∈ p−1
i−1 i(D

∗
i−1 ∪H1

i−1).

Let P = p−1
k k+1(D

∗
k) and put E = {Ev = Ek+1,v ∩ P | v ∈ Γ}. (Use (16)

and the fact that Ek+1 is an open cover of D∗
k+1.) For each vertex Ek,v of

N(Ek), we know that p−1
k k+1(Ek,v) ⊂ Ek+1,v. From its definition, Ek,v ⊂ D∗

k.
Using (16),

(19) p−1
k k+1(Ek,v) ⊂ Ek+1,v ∩ P = Ev;

so the vertex map Ek,v 7→ Ev determines a simplicial injection φ : N(Ek) →
N(E). Define f̂ : P → |N(E)| by

(20) f̂(x) = φgkpk k+1(x), x ∈ P = p−1
k k+1(D

∗
k).

We wish to show that
(21) f̂ is an E-canonical map.

Surely φ−1(st(Ev, N(E))) ⊂ st(Ek,v, N(Ek)) for each vertex Ev of N(E).
From (I1) we get that g−1

k (st(Ek,v, N(Ek))) ⊂ Ek,v. We conclude from this,
(20), and (19) that (21) is true.

Next define θ : N(E) → N(Ek+1) to be the simplicial injection determined
by the vertex map Ev 7→ Ek+1,v. Let B = D∗

k+1. Then with f̂ in place of
f and Ek+1 in place of U , we may apply Lemma 2.4. This yields an Ek+1-
canonical map gk+1 : D∗

k+1 → |N(Ek+1)| as requested in (I1), having the
property that for x ∈ p−1

k k+1(D
∗
k), θf̂(x) = gk+1(x). So (20) shows that

gk+1(x) = θφgkpk k+1(x). One readily checks that θφ = θk, so
(22) gk+1(x) = θkgkpk k+1(x), x ∈ p−1

k k+1(D
∗
k).

Now αk+1gk+1(x) ∈ |K| and by the definition of αk+1 and (18), αk+1θk =
η0η1βk+1τk+1θk = η0η1βk+1θ

∗
kτk = η0η1βkτk. From this and (22),

αk+1gk+1(x) = η0η1βkτkgkpk k+1(x) = αkgkpk k+1(x). Since pk k+1(x) ∈ D∗
k,

then (I2) shows that αk+1gk+1(x) = g∗kpk k+1(x). Therefore we may extend
αk+1gk+1 : p−1

k k+1(D
∗
k) → |K| to a map ĝk+1 : p−1

k k+1(D
∗
k ∪ H1

k) → |K| by
setting

(23) ĝk+1(x) = g∗kpk k+1(x), x ∈ p−1
k k+1(D

∗
k ∪H1

k).
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Since Xk+1τ |K|, we may extend ĝk+1 to a map g̃k+1 : p−1
k k+1(D

∗
k ∪H1

k) ∪
H1

k+1 → |K|. From (16) one sees that D∗
k+1 = p−1

k k+1(D
∗
k) ∪ Dk+1, and

from (13) that Dk+1 ∩ H1
k+1 = ∅. Moreover, (7) shows that p−1

k k+1(H
1
k) ⊂

H1
k+1. So C = Dk+1 ∩ (p−1

k k+1(D
∗
k ∪ H1

k) ∪ H1
k+1) = Dk+1 ∩ (p−1

k k+1(D
∗
k) ∪

H1
k+1) ⊂ p−1

k k+1(D
∗
k). On C the map g̃k+1 is defined by g̃k+1(x) = ĝk+1(x) =

αk+1gk+1(x). We therefore extend g̃k+1 to a map g∗k+1 : p−1
k k+1(D

∗
k ∪H1

k) ∪
H1

k+1 ∪ Dk+1 = D∗
k+1 ∪ H1

k+1 → |K| by setting g∗k+1(x) = αk+1gk+1(x),
x ∈ Dk+1.

To check that (I2) is satisfied, consider x ∈ D∗
k+1. If x ∈ Dk+1, then

we have just seen that g∗k+1(x) = αk+1gk+1(x). If x ∈ p−1
k k+1(D

∗
k), then

g∗k+1(x) = g̃k+1(x) which equals ĝk+1(x) from (23), since g̃k+1 is an extension
of ĝk+1. But, ĝk+1 is an extension of αk+1gk+1 on p−1

k k+1(D
∗
k). Finally, (I3)

is manifest from (23). Our inductive construction is complete.

Claim. The preceding data uniquely determines a map G : H → |K| such
that G|∂XH ' f0|∂XH.

Here is our justification of this claim. Let x ∈ H. We shall define a
neighborhood Mx of x in H and a map Gx : Mx → |K|. Then we will observe
that these maps Gx agree on overlaps, and will put G =

⋃
{Gx |x ∈ H}.

We shall also see that G has the desired property with regard to ∂XH.
Consider first the case that x ∈ H. By (3), there exists a first i such

that x ∈ p−1
i (Hi). Subsequently (6) yields that there is a first j with

xi ∈ intXi Hj
i . Using (5), (7), there is a first k = k(x) ≥ i such that

p−1
i k(x)(H

j
i ) ⊂ H1

k(x). Now xk(x) ∈ intXk(x)
p−1

i k(x)(H
j
i ), so x ∈ intH Mx where

Mx = p−1
k(x)(p

−1
i k(x)(H

j
i )) = p−1

i (Hj
i ) ⊂ H by (3). Define Gx : Mx → |K| by

Gx(y) = g∗k(x)(pk(x)(y)) = g∗k(x)(yk(x)).
Now look at the other case, x ∈ ∂XH. (Note that ∂XH = ∂XW ∗

0 .) There
exists a neighborhood Vx of x in W1 and a finite subset Fx ⊂ Γ such that
Vx ∩W 1

v = ∅ unless v ∈ Fx. We may as well assume that Vx ⊂ W 1
v when

v ∈ Fx. There exists a first i and a neighborhood Vxi of xi in Xi such that
x ∈ p−1

i (Vxi) ⊂ Vx. Choose v ∈ Fx; then xi ∈ Vxi ⊂ Ui,v = resp(W 1
v , pi) ⊂

Ui.
Hence, xi ∈ Ki = Ui ∩ Zi. So there exists a first j with xi ∈ Kj

i . Apply
(12) and see that there exists a first k = k(x) ≥ i with xk(x) ∈ K1

k(x). Recall
that Dk(x) is a neighborhood of K1

k(x) in Xk(x) and that Dk(x) ⊂ D∗
k(x).

Define Mx = p−1
k(x)(D

∗
k(x)) ∩ H and note that x ∈ intH Mx. Define Gx :

Mx → |K| by Gx(y) = g∗k(x)pk(x)(y) = g∗k(x)(yk(x)).
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Each Gx is a map, and {intHMx |x ∈ H} is an open cover of H. If we
can show that whenever x, z ∈ H and y ∈ Mx ∩Mz, then Gx(y) = Gz(y),
then these maps uniquely define a map of H to |K|.

To see this, assume without loss of generality that k(x) ≤ k(z). Indeed,
we may as well assume that k(x) < k(z), for if they were equal, then Gx

and Gz would have been defined at y by the same formula. Note that
Gz(y) = g∗k(z)(yk(z)).

First suppose that Mx = p−1
k(x)(D

∗
k(x)) ∩H, i.e., x ∈ ∂H. Then

(24) yk(z) ∈ p−1
k(x) k(z)(D

∗
k(x)).

An application of (24) and (I3) shows that

Gz(y) = g∗k(z)(yk(z)) = g∗k(x)pk(x) k(z)(yk(z)) = g∗k(x)(yk(x)) = Gx(y).

Alternatively, Mx = p−1
i (Hj

i ) where k(x) ≥ i and xi ∈ intXi Hj
i . More-

over, p−1
i k(x)(H

j
i ) ⊂ H1

k(x). This shows that

(25) yk(z) ∈ p−1
k(x) k(z)(H

1
k(x)).

Just apply (25) and (I3) to see that Gz(y) = Gx(y) as in the previous
situation.

We are now assured that G is a well-defined map. To complete the proof
of the claim, suppose that x ∈ ∂XH. Then x ∈ Mx ⊂ p−1

k(x)(D
∗
k(x)) and

we have defined G(x) = Gx(x) = g∗k(x)pk(x)(x). Now pk(x)(x) ∈ D∗
k(x); by

applying (I2), we see that G(x) = αk(x)gk(x)pk(x)(x) = αk(x)gk(x)(xk(x)).
Let us note that if xk(x) ∈ Uk(x),v, then it has to be true that v ∈ Fx.

To see this, note that xk(x) ∈ p−1
i k(x)(Vxi), and hence x ∈ p−1

k(x)p
−1
i k(x)(Vxi) =

p−1
i (Vxi) ⊂ Vx. Moreover, xk(x) ∈ p−1

i k(x)(Vxi) ∩ Uk(x),v, and since Uk(x),v =

resp(W 1
v , pk(x)), then x ∈ p−1

k(x)(Uk(x),v) ⊂ W 1
v . Therefore x ∈ Vx ∩W 1

v , so
v ∈ Fx as stated.

By (I1), gk(x) is an Ek(x)-canonical map. So for some subset Fk(x) ⊂ Fx,
gk(x)(xk(x)) lies in the simplex whose vertices are {Uk(x),v | v ∈ Fk(x)}. The
map αk(x) sends gk(x)(xk(x)) into the simplex of K having vertices {W 1

v | v ∈
Fk(x)} ⊂ {W 1

v | v ∈ Fx}.
But the map f0 sends x into the simplex of K having vertices {W 1

v | v ∈
Fx}. Hence by Lemma 2.5, G|∂XH ' f0|∂XH. Our proof of Theorem 3.1
is completed by an application of the homotopy extension theorem.

Corollary 3.2. Let X = limX where X = (Xi, pi i+1, N) is an inverse
sequence of metrizable spaces Xi. Suppose that dim Xi ≤ n (G is an abelian
group and dimG Xi ≤ n) for all i ∈ N. Then dim X ≤ n (dimG X ≤ n).

Let us remark that a proof of this result for dim can be found in [Na].
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