In this paper, it is proven that a conjecture of Zassenhaus is valid for all finite simple groups of Lie type of rank 1 and of rank 2 which are not of type $2A_3$ or $2A_4$. In particular, this conjecture holds for all finite simple groups with abelian Sylow 2–subgroups.

1. Introduction.

One of the key problems in the representation theory of finite groups is to represent a given finite group G in a suitable way. To do so, invariants which classify G up to isomorphisms are determined. One of the questions derived in this context is the so-called Isomorphism Problem (IP), which asks whether the existence of an isomorphism between the integral group algebras $\mathbb{Z}G$ and $\mathbb{Z}H$ implies that G and H are isomorphic. In the seventies, Zassenhaus conjectured a stronger version of (IP) describing the structure of the group of units $V(\mathbb{Z}G)$ of $\mathbb{Z}G$ with augmentation 1:

(ZC). Any two subgroups X, Y of $V(\mathbb{Z}G)$ which have the same order as G are conjugate by a unit of $\mathbb{Q}G$.

The conjecture (ZC) is not true in general, as was shown by Roggenkamp and Scott who constructed a metabelian counter-example [38, IX §1]. Note that since this counter-example is a metabelian group, (IP) is still valid for this group. Recently, Hertweck also found a counter-example to the general validity of (IP) which is a soluble group [18].

Nevertheless, it still remains an interesting question for which classes of finite groups (ZC) is valid. Roggenkamp and Scott showed that (ZC) is valid for groups whose generalized Fitting subgroup is a p-group [37]. Moreover, Weiss was able to show that for nilpotent groups each finite subgroup of $V(\mathbb{Z}G)$ is conjugate to a subgroup of G by a unit of $\mathbb{Q}G$ [45, 46]. In case G is soluble, Čech style cohomology sets can be used to get obstructions for (ZC) to be true [30].

For finite simple groups however, new methods have to be developed to examine (ZC). In [4] it is proven that (ZC) is valid for all minimal simple groups and for all simple Zassenhaus groups. But it is still an open question whether the conjecture (ZC) is valid for all finite simple groups.
If G is finite simple, then (IP) has always a positive solution [29, Thm. 2.3]. Furthermore, from [5, Thm. 1] it follows that (IP) is valid for all finite groups of Lie type G^F, where G is a simply connected simple algebraic group over an algebraically closed field of finite characteristic and F is a Frobenius map in the sense of [8, §1.17]. Note that these groups G^F are certain central extensions of the finite simple groups of Lie type. In general, if (IP) holds for G, (ZC) is equivalent to the following description of the group $\text{Aut}_n(\mathbb{Z}G)$ of augmentation preserving ring automorphisms of $\mathbb{Z}G$:

(ZCAut). Every $\sigma \in \text{Aut}_n(\mathbb{Z}G)$ can be written as $\sigma = \tau \circ \alpha$, where α is the \mathbb{Z}–linear extension of a group automorphism of G and $\tau \in \text{Aut}_n(\mathbb{Z}G)$ fixes the class sums of G.

Thus, if (IP) is valid for G, the structure of certain ring automorphisms of $\mathbb{Z}G$ can be used to study the group of units $V(\mathbb{Z}G)$. Since (IP) has a positive solution for all groups considered in this paper, we will always examine (ZCAut) to verify (ZC).

The main results of this paper are the following two theorems:

Theorem 1. The conjecture (ZC) is valid for all finite simple groups with abelian Sylow 2-subgroups.

Theorem 2. The conjecture (ZC) is valid for all finite simple groups of Lie type of rank 1 and of rank 2, which are not isomorphic to the unitary groups $\text{PSU}(4,q^2)$ and $\text{PSU}(5,q^2)$.

Note that because of the close relationship of the ordinary and modular representation theory of linear and unitary groups (see [26] and [43]), $\text{PSU}(4,q^2)$ and $\text{PSU}(5,q^2)$ should be examined together with the groups $\text{PSL}(4,q)$ and $\text{PSL}(5,q)$.

To prove these statements we use ordinary and modular representation theory. In particular, modular representations in the defining characteristic as described by Steinberg’s tensor product theorem [43] play an important role. Here the knowledge of the action of $\sigma \in \text{Aut}_n(\mathbb{Z}G)$ on tensor products as given in [4, Prop. 2.1] is essential. Furthermore, we need to examine the generic ordinary character tables of the considered groups. Except for the groups $^2F_4(q^2)$, these character tables can be found in [9], [13], [14], [15], [16], [34], [41], [42], or [44]. All character tables are also given in the computer algebra program CHEVIE [17] which provides generic ordinary character tables for several series of finite groups of Lie type of small rank. Furthermore, in CHEVIE known character tables have been verified, mistakes have been corrected and the data has been completed.

The article is organized as follows: In Section 2, we state basic results and techniques which are needed to prove the theorems. In particular, we show that if G is a finite simple group of Lie type with defining characteristic p, or a certain central extension, then the action of $\sigma \in \text{Aut}_n(\mathbb{Z}G)$ on the
p-modular character table commutes with the operation induced by field automorphisms. In Section 3, the validity of (ZC) for the finite Ree groups of type F_4 and G_2 is proved. This establishes, together with the results of [4], Theorem 1. Section 4 is then dedicated to the proof of Theorem 2. Note that in [4] it is already shown that (ZC) is valid for the groups $\text{SL}(2, q)$, $\text{PSL}(2, q)$ and $^2\text{B}_2(q^2)$ for all possible prime powers q.

The notations used are mainly standard, see for example [11]. The set of the conjugacy classes of G is denoted by $\text{Cl}(G)$, $\text{Cl}(g)$ is the conjugacy class of $g \in G$, and $\text{Cl}(G_{p'})$ denotes the set of the conjugacy classes of p-regular elements of G. Suppose (K, R, k) is a p-modular system with K sufficiently large relative to G and $\text{char}(K) = 0$. Thus both K and k are splitting fields for G. Then the set of the ordinary irreducible characters $\text{Irr}(G)$ is identified with the set of the characters afforded by simple KG-modules. The irreducible Brauer characters $\text{IBr}(G)$ are the irreducible Brauer characters with respect to (K, R, k).

2. Preliminaries.

In this section, we want to provide basic results and techniques needed to prove the Theorems 1 and 2.

Suppose G is an arbitrary finite group and (K, R, k) is a p-modular system with K sufficiently large relative to G. Given $\sigma \in \text{Aut}_n(\mathbb{Z}G)$, σ induces augmentation preserving algebra automorphisms $\sigma \in \text{Aut}_n(KG)$, respectively $\sigma \in \text{Aut}_n(kG)$, because there are ring homomorphisms from \mathbb{Z} to K, respectively k. Then σ defines an autoequivalence of the category of finitely generated KG-modules, respectively kG-modules, by mapping a module M to M^σ. The twisted module M^σ is defined to be equal to M as vector space, but $g \in G$ operates on M^σ as $\sigma(g)$. Thus σ induces an operation on the ordinary characters, respectively Brauer characters, of G. Because σ also induces a class sum correspondence [38, IV], i.e. σ maps class sums to class sums, σ defines also an action on the conjugacy classes of G. These two actions are compatible in the sense that σ induces a character table automorphism of the ordinary, respectively p-modular, character table of G. This means that for all $\chi \in \text{Irr}(G)$, $\varphi \in \text{IBr}(G)$, $C \in \text{Cl}(G)$ and $C' \in \text{Cl}(G_{p'})$

$$
\chi^\sigma(C) = \chi(C^\sigma) \\
\varphi^\sigma(C') = \varphi(C'^\sigma).
$$

Furthermore, the operation of σ on characters commutes with tensor products:

Proposition 2.1 ([4, Prop. 2.1]). Let ξ and ζ be two ordinary characters, respectively Brauer characters, then

$$(\xi \otimes \zeta)^\sigma = \xi^\sigma \otimes \zeta^\sigma.$$
By [28, Thm. V.1(c)], it follows that σ preserves also the power map in the sense that

$$(C^n)^\sigma = (C^n)^n$$

for all positive integers n. Note that if $C = \text{Cl}(g)$, then $C^n = \text{Cl}(g^n)$.

The operation on the ordinary character table induced by $\sigma \in \text{Aut}_n(ZG)$ yields a statement which is equivalent to (ZCAut):}

Lemma 2.2. The conjecture (ZCAut) is valid for G if and only if for every $\sigma \in \text{Aut}_n(ZG)$ there exists $\alpha \in \text{Aut}(G)$ such that σ and α induce the same character table automorphism on the ordinary character table of G.

Thus Lemma 2.2 provides a necessary and sufficient criterion for the validity of (ZCAut) which uses only the ordinary character table and its automorphisms.

For the remainder of the paper, we want to concentrate on finite groups which are associated to Chevalley groups of universal type over an algebraically closed field.

Let G_C be a simple Lie algebra over C with Cartan-subalgebra \mathcal{H}_C. Let Φ be the root system of G_C with respect to \mathcal{H}_C, and let $\Delta = \{s_1, \ldots, s_l\}$ be the corresponding system of fundamental roots.

Suppose \bar{k} is an algebraically closed field of characteristic $p > 0$. The simply connected simple algebraic group, i.e. the Chevalley group of universal type, G of type Φ over \bar{k} is generated by $\{x_t(t) \mid r \in \Phi, t \in \bar{k}\}$ with relations as in [7, Thm. 12.1.1]. If $h_s(t) = x_s(t)x_{-s}(-t^{-1})x_s(t)x_{-s}(1)x_{s}(1)x_{-s}(1)$, then $T = \langle h_s(t) \mid s \in \Delta, t \in \bar{k} \rangle$ is a maximal torus of G.

Since G is simply connected, the group $X = X(\mathbb{T})$ of rational characters of \mathbb{T} is the full lattice of weights, with a basis consisting of the fundamental weights $\{\lambda_1, \ldots, \lambda_l\}$. Denote by X^+ the set $\sum \mathbb{Z}_{\geq 0} \lambda_i$ of all dominant weights. There exists a natural partial ordering of X given by $\mu \leq \lambda$ if $\lambda - \mu$ is a sum of positive roots. The group X/pX of restricted weights with respect to p is identified with $X_p = \{\sum c_i \lambda_i \mid 0 \leq c_i \leq p - 1\}$. Given $\lambda \in X^+$, λ can be written uniquely as $\lambda = \mu_0 + p\mu_1 + \cdots + p^{m-1}\mu_{m-1}$ for a suitable $m \geq 1$ with $\mu_i \in X_p$. If $X_q = \{\sum c_i \lambda_i \mid 0 \leq c_i \leq q - 1\}$, $q = p^m$, then it follows that $\lambda \in X_q$.

Since G_C has a Chevalley basis $\{e_r, h_s \mid r \in \Phi, s \in \Delta\}$ as \mathbb{C}-basis whose structure constants all lie in \mathbb{Z}, we can define $G_{\bar{k}}$ to be the \mathbb{Z}-lattice spanned by the Chevalley basis, and $G_{\bar{k}} = \bar{k} \otimes_{\mathbb{Z}} G_{\mathbb{Z}}$. Then $G_{\bar{k}}$ is a Lie algebra over \bar{k}, and we denote $1 \otimes e_r$ and $1 \otimes h_s$ again by e_r and h_s. A $G_{\bar{k}}$-module M is called restricted, if $e_r^p \cdot m = 0$ and $h_s^p \cdot m = h_s \cdot m$ for all $r \in \Phi, s \in \Delta$ and $m \in M$.

The non-isomorphic irreducible restricted $G_{\bar{k}}$-modules, which were described by Curtis (see [43, (2.7)]), correspond bijectively to the restricted weights in X_p. Let \mathcal{M} be a full set of representatives of these modules, and
let M_{λ} denote the irreducible restricted G_k-module in \mathcal{M} which corresponds to $\lambda \in X_p$.

According to [43, §4] the G_k-module M_{λ} can be lifted to a simple $\bar{k}G$-module M_{λ} which is generated by a maximal vector v^+ of highest weight λ. This means that if we look at the weight spaces $M_{\lambda}(\mu) = \{ m \in M_{\lambda} \mid x \cdot m = \mu(x) \cdot m \text{ for all } x \in T \}$, $\mu \in X$, then $v^+ \in M_{\lambda}(\lambda)$ and $x_r(t) \cdot v^+ = v^+$ for all $r \in \Phi^+$. For all $\mu \in X$ with $M_{\lambda}(\mu) \neq 0$, it follows that $\mu \leq \lambda$.

Note that each field automorphism α of \bar{k} induces a group automorphism α of G by defining $\alpha(x_r(t)) = x_r(\alpha(t))$, $r \in \Phi$, $t \in \bar{k}$.

The isomorphism classes of simple $\bar{k}G$-modules can now be described as follows:

Theorem 2.3 (Chevalley, Kostant, Steinberg, see [23, §2.1]). Let α_i be the field automorphism of \bar{k} which is defined by $\alpha_i(t) = t^{p^i}$. Let $\lambda \in X^+$, such that $\lambda \in X_q$ for a suitable $q = p^m$, $\lambda = \mu_0 + p\mu_1 + \cdots + p^{m-1}\mu_{m-1}$ with $\mu_i \in X_{p^i}$. Then

$$M_{\lambda} = M_{\mu_0}^{\alpha_0} \otimes_{\bar{k}} M_{\mu_1}^{\alpha_1} \otimes_{\bar{k}} \cdots \otimes_{\bar{k}} M_{\mu_{m-1}}^{\alpha_{m-1}}$$

is a simple $\bar{k}G$-module. All M_{λ} ($\lambda \in X^+$) are pairwise non-isomorphic and exhaust the isomorphism classes of simple $\bar{k}G$-modules.

Let $q = p^n$ and let $F = GF(q)$ be the finite subfield of \bar{k} with q elements. Then the finite Chevalley group $G = G(F)$ over F is generated by $\{x_r(t) \mid r \in \Phi, t \in F\}$ with the same relations as G. Note: $G = G/\text{center}(G)$ is a simple group except for the cases $\text{SL}(2,2)$, $\text{PSL}(2,3)$, $\text{Sp}(4,2)$ and $G_2(2)$ [7, Thm. 11.1.2].

The twisted groups are certain subgroups of finite Chevalley groups:

Suppose G is a finite Chevalley group of type A_l, $l \geq 2$, D_l, $l \geq 4$, E_6, or D_4, respectively, over a finite field F. Let ω be a nontrivial symmetry of order e of the Dynkin diagram and let γ be the corresponding graph automorphism. Let α be a nontrivial field automorphism such that $\Omega = \gamma \alpha$ satisfies $\Omega^e = 1$, and let F_0 be the subfield of F fixed by α. Note that F is of the form $F = GF(p^{ne})$ and $F_0 = GF(p^n)$. If G^1 is defined to be the group of all elements of G fixed by Ω, then G^1 is a twisted group of type 2A_l, $l \geq 2$, 2D_l, $l \geq 4$, 2E_6, or 3D_4, respectively. $\bar{G}^1 = G^1/\text{center}(G^1)$ is simple except for $\text{PSU}(3,2^2)$ [7, Thm. 14.4.1].

The definition of the finite Suzuki and Ree groups is slightly different:

Suppose G is a finite Chevalley group of type B_2, G_2, or F_4, respectively, over a finite field F which has characteristic 2 for B_2 and F_4, and characteristic 3 for G_2. Let ω be the nontrivial symmetry of the Dynkin diagram with corresponding graph automorphism γ. Let α be a nontrivial field automorphism such that $\Omega^2 = 1$ for $\Omega = \gamma \alpha$. Note that F is of the form $F = GF(p^{2m+1})$, $p = 2$ or 3. If G^1 is the group of all elements of G fixed by
Ω, then G^1 is a Suzuki group if G has type B_2, and a Ree group if G has type G_2 or F_4. G^1 is simple for all positive m [7, Thm. 14.4.1].

Since the $\bar{k}G$-modules M_λ, $\lambda \in X_q$, define by restriction $\bar{k}G$-modules, respectively $\bar{k}G^1$-modules, we get the following theorem:

Theorem 2.4 ([43, Thm. 7.4, Thm. 9.3 and Thm. 12.2]). Let G be a finite Chevalley group over $GF(p^n)$, or a twisted group of type $2A_l$, $l \geq 2$, $2D_l$, $l \geq 4$, $2E_6$, or $3D_4$ over $GF(p^{ne})$ where e is the order of the symmetry of the corresponding Dynkin diagram. Then every simple $\bar{k}G$-module can be expressed uniquely as a tensor product

$$M_0^\alpha \otimes_{\bar{k}} M_1^\alpha \otimes_{\bar{k}} \cdots \otimes_{\bar{k}} M_{n-1}^\alpha$$

with $M_i \in \mathcal{M}$.

In case that G is a Suzuki or Ree group of type $2B_2$, $2G_2$, or $2F_4$ over $GF(p^n)$, $p = 2$ or 3, set $X'_p = \{ \lambda = \sum c_i \lambda_i \in X_p \mid c_i = 0 \text{ for all long roots } s_i \in \Delta \}$ and $\mathcal{M}' = \{ M_\lambda \mid \lambda \in X'_p \}$. Then every simple $\bar{k}G$-module can be expressed uniquely as a tensor product

$$M_0^\alpha \otimes_{\bar{k}} M_1^\alpha \otimes_{\bar{k}} \cdots \otimes_{\bar{k}} M_{n-1}^\alpha$$

with $M_i \in \mathcal{M}'$.

Remark 2.5. Let G be a finite Chevalley group, a twisted group or a finite Suzuki or Ree group.

(i) Since the simple $\bar{k}G$-modules are given as restrictions of certain simple modules of the corresponding Chevalley group G of universal type, we can attach weights $\lambda \in X^+$ to the simple $\bar{k}G$-modules. If we choose $\lambda \in X_{p^n}$, n as in Theorem 2.4, then these weights determine the simple $\bar{k}G$-modules uniquely up to isomorphisms. In this sense we will write the simple kG-modules also as M_λ for suitable weights $\lambda \in X_{p^n}$. Furthermore, the Brauer character corresponding to M_λ will be denoted by β_λ.

(ii) We will also use M_λ to denote the simple kG-module obtained by restriction of the $\bar{k}G$-module M_λ in case $\lambda \in X^+ \setminus X_q$. Note that then this restriction is not necessarily a simple kG-module. Again the corresponding Brauer character is denoted by β_λ.

(iii) The simple modules for the groups $\tilde{G} = G/\text{center}(G)$ are exactly those simple $\bar{k}G$-modules on which the center acts trivially.

(iv) For the finite groups the algebraically closed field \bar{k} can be replaced by any splitting field of the same characteristic.

We want now to describe some general properties of the considered finite groups of Lie type which are also important for the proofs of the Theorems 1 and 2.

For the remainder of the paper, we fix the following notation:

Let G be a finite Chevalley group over $GF(p^n)$, a twisted group over $GF(p^{ne})$, or a finite Suzuki or Ree group over $GF(p^n)$ as in Theorem 2.4, and let $q = p^n$. Let $Z = \text{center}(G)$ and let $\tilde{G} = G/Z$. The group automorphism
of G induced by the field automorphism $t \mapsto t^p$ will be denoted by α_i. Then $\tilde{\alpha}_i$ with $\tilde{\alpha}_i(gZ) = \alpha_i(g)Z$ is the corresponding group automorphism of \tilde{G}. Let $\sigma \in \text{Aut}_n(\mathbb{Z}G)$ and $\tilde{\sigma} \in \text{Aut}_n(\mathbb{Z}G)$ be arbitrary elements.

Let (K, R, k) be a p-modular system with K sufficiently large relative to G such that k is an algebraic closure of k. Since k is a splitting field for G, the isomorphism classes of simple kG-modules can be identified with those of simple $\bar{k}G$-modules. Let \mathbb{G} be the Chevalley group of universal type over k corresponding to G.

Lemma 2.6. The action of σ on the simple kG-modules S commutes with the action of α_i for all i, i.e. $S^{\sigma \alpha_i} \cong S^{\alpha_i \sigma}$ for all i. The action of α_i on the p-regular conjugacy classes of G is given by $\text{Cl}(g) \mapsto \text{Cl}(g^\rho)$.

Proof. Because of Proposition 2.1 and Theorem 2.4, it suffices to show this for the simple modules $M \in \mathcal{M}$ or \mathcal{M}', respectively. Consider M as a $\bar{k}G$-module. Thus we have to show $M^{\alpha_i \sigma} \cong M^{\sigma \alpha_i}$ as kG-modules.

Suppose $\rho : G \to \text{GL}(m, \bar{k})$ is the representation corresponding to M as a $\bar{k}G$-module. Let ν_i be the automorphism of $\text{GL}(m, \bar{k})$, which maps a matrix (a_{rs}) to $(a_{rs}^{\nu_i})$. Then, if $M^{(i)}$ denotes the module corresponding to the representation $\nu_i \circ \rho$, we get $M^{\alpha_i} \cong M^{(i)}$ as kG-modules (see for example [31, Prop. 5.4.2.(i)]). A simple matrix calculation shows that, if ξ_1, \ldots, ξ_m are the eigenvalues of $\rho(g)$, then $\xi_1^\nu_i, \ldots, \xi_m^\nu_i$ are the eigenvalues of $\nu_i(\rho(g))$ and of $\rho(g^\rho)$.

If φ is the Brauer character corresponding to ρ, and $\varphi^{(i)}$ is the Brauer character corresponding to $\nu_i \circ \rho$, then it follows that

$$\varphi^{\alpha_i}(g) = \varphi^{(i)}(g) = \varphi(g^\rho)$$

for all p-regular elements $g \in G$.

Since Equation (2.1) is valid for all Brauer characters of G by Proposition 2.1, and since $g \mapsto g^\rho$ is a permutation of the p-regular elements, the permutation of the p-regular conjugacy classes of G corresponding to α_i is given by $\text{Cl}(g) \mapsto \text{Cl}(g^\rho)$.

Since σ preserves the power map, i.e. $(C^a)^\sigma = (C^\sigma)^a$ for all conjugacy classes $C = \text{Cl}(g)$ and $C^a = \text{Cl}(g^a)$, it follows that $\varphi^{\alpha_i \sigma} = \varphi^{\sigma \alpha_i}$ and therefore, $M^{\alpha_i \sigma} \cong M^{\sigma \alpha_i}$ for all $M \in \mathcal{M}$ or \mathcal{M}', respectively. \hfill \square

Corollary 2.7. The operation of $\tilde{\alpha}_i$ on the p-regular conjugacy classes of \tilde{G} is given by $\text{Cl}(\tilde{g}) \mapsto \text{Cl}(\tilde{g}^\rho)$. In particular, it follows that $S^{\tilde{\alpha}_i \tilde{\alpha}_i} \cong S^{\tilde{\alpha}_i \tilde{\alpha}_i}$ for all simple kG-modules S.

Proof. By Lemma 2.6, $\alpha_i(\text{Cl}(g)) = \text{Cl}(g^\rho)$, i.e. $\alpha_i(g)$ is conjugate to g^ρ in G for all p-regular elements $g \in G$. Therefore, $\tilde{\alpha}_i(gZ)$ is conjugate to $(gZ)^\rho$ in \tilde{G}, i.e. $\tilde{\alpha}_i(g)$ is conjugate to g^ρ for all p-regular elements $g \in \tilde{G}$. Thus we have that $\tilde{\alpha}_i(\text{Cl}(\tilde{g})) = \text{Cl}(\tilde{g}^\rho)$. Because $\tilde{g} \mapsto \tilde{g}^\rho$ is a permutation
of the p-regular elements of \bar{G} and because $\bar{\sigma}$ preserves the power map, the corollary follows. \hfill \square

With respect to the weights of tensor products we have the following result.

Lemma 2.8. Let $\lambda, \mu \in X^+$, and let M_λ and M_μ be the two (not necessarily simple) kG-modules which are restrictions of the corresponding simple \bar{kG}-modules. Then $M_{\lambda+\mu}$ is a factor module of $M_\lambda \otimes M_\mu$ as kG-modules. Furthermore, as \bar{kG}-modules, $\lambda + \mu$ is the highest weight occurring in $M_\lambda \otimes M_\mu$.

Suppose now that M_λ and M_μ are simple kG-modules with $\lambda, \mu \in X_q$. If $M_\lambda \otimes M_\mu$ is also a simple kG-module then $M_\lambda \otimes M_\mu \cong M_{\lambda+\mu}$ as kG-modules. Since $\lambda + \mu \in X_{pq}$, it follows that $\lambda + \mu = \nu_0 + q\nu_1$ for appropriate $\nu_0 \in X_q$ and $\nu_1 \in X_p$. Thus

$$M_{\lambda+\mu} \cong M_{\nu_0} \otimes M_{\nu_1}^{\alpha_n}$$

as kG-modules. Note that $M_{\nu_0}^{\alpha_n} \cong M_{\nu_1}$ if G is a finite Chevalley group or a Suzuki or Ree group. Otherwise $M_{\nu_1}^{\alpha_n} \cong M^{-1}(\nu_1)$, where ω is the symmetry of the Dynkin diagram in the definition of the twisted groups.

Proof. Let $\lambda, \mu \in X^+$. Then there exist maximal vectors v, respectively w, of highest weight λ, respectively μ, in the \bar{kG}-module M_λ, respectively M_μ. By [22, §31.4], $v \otimes w$ is then a maximal vector of the \bar{kG}-module $M_\lambda \otimes M_\mu$ of weight $\lambda + \mu$, which is the highest weight occurring in $M_\lambda \otimes M_\mu$. So $M_{\lambda+\mu}$ is a factor module of $M_\lambda \otimes M_\mu$ as \bar{kG}-modules and thus as kG-modules.

Let now $\lambda, \mu \in X_q$. If $M_\lambda \otimes M_\mu$ is simple as a kG-module then $M_\lambda \otimes M_\mu$ is also simple as a \bar{kG}-module. Thus $M_\lambda \otimes M_\mu$ is simple with weight $\lambda + \mu$. Since $\lambda, \mu \in X_q$ and $2(q-1) \leq pq - 1$, it follows that $\lambda + \mu = \nu_0 + q\nu_1$ for appropriate $\nu_0 \in X_q$ and $\nu_1 \in X_p$. Thus $M_{\lambda+\mu} \cong M_{\nu_0} \otimes_k M_{\nu_1}^{\alpha_n}$ as kG-modules. \hfill \square

We want now to outline the strategy to prove the conjecture (ZC) for certain G and \bar{G}.

Definition 2.9. Denote by \bar{X}^+ all dominant weights $\lambda \in X^+$ such that M_λ is a \bar{kG}-module. In case that G is a Suzuki or a Ree group, let $X^{+'} = \{ \lambda = \sum c_i \lambda_i \in X^+ \mid c_i = 0 \text{ for all long roots } s_i \in \Delta \}$. Let Y^+ be either X^+, $X^{+'}$, or \bar{X}^+.

(i) A relation \prec on Y^+ is called a weak order if \prec is reflexive and transitive.

(ii) An allowable system on Y^+ is a subset $R \subseteq Y^+$ such that all $\lambda \in Y^+$ can be written as

$$\lambda = \sum_{\rho \in R}^{} d_\rho \rho$$

for a unique choice of integers $d_\rho \geq 0$.
Proposition 2.1, it follows that $\beta_a \in \rho$ such that

\[\tau \in \rho \in \rho \]

Then $\tau \in \rho \in \rho$.

Proof. We have to show that $\lambda \sim \mu$ such that $\lambda \prec \mu$ and $\mu \prec \lambda$.

Then $\lambda \prec \mu$ defines a partial ordering of Y^+ with respect to \sim.

(ii) For $Y^+ = X^+$ (respectively X^+) we can and will always choose the fundamental weights $\lambda_1 \in X_\rho$ (respectively X'_ρ) as allowable system.

(iii) Definition 2.9 is written in this generality since we want to prove (ZC) for groups G and \bar{G}.

(iv) The order relation \leq on X^+ does not always fulfill property (c). For example, for $\text{SL}(3, q)$, $\lambda_1 \not\leq \lambda_1 + \lambda_2$ and $\lambda_2 \not\leq \lambda_1 + \lambda_2$.

The following proposition plays an important role in the examination of (ZC).

Proposition 2.11. Let (H, Y^+) be either (G, X^+), (G, X^+), or (\bar{G}, X^+), let τ be either σ or $\bar{\sigma}$, and let R be an allowable system of Y^+. Suppose

(i) there exists a group automorphism $\alpha \in \text{Aut}(H)$ with $M_\rho^\tau = M_\rho^\alpha$ for all $\rho \in R$, and

(ii) there exists an allowable weak order \prec on Y^+.

Then τ and α induce the same operation on the p-modular character table of H.

Proof. We have to show that $\beta^\tau_\lambda = \beta^\alpha_\lambda$ for all $\lambda \in Y^+ \cap X_q$.

By (i) there exists a group automorphism α such that $\beta^\tau_\rho = \beta^\alpha_\rho$ for all $\rho \in R$. Thus, by property (a) of \prec, the statement is valid for the smallest weights with respect to \prec.

Let now $\lambda \in Y^+$, $\lambda \not\in \{0\} \cup R$. Suppose $\beta^\tau_\mu = \beta^\alpha_\mu$ for all $\mu \in Y^+$ with $\mu \prec \lambda$ and $\lambda \not\prec \mu$, which means, by property (b) of \prec, in particular for all $\mu \in Y^+$ with $\mu \leq \lambda$, $\mu \not\prec \lambda$. By property (c), there exists $\rho_0 \in R$ such that $\mu_1 = \rho_0 \prec \lambda$, and $\mu_2 = \lambda - \rho_0 \prec \lambda$, but $\lambda \not\prec \mu_2$. Thus $\beta^\tau_{\mu_s} = \beta^\alpha_{\mu_s}$ for $s \in \{1, 2\}$. By Lemma 2.8, $\beta^\mu_{\mu_1} \otimes \beta^\mu_{\mu_2}$ can be written as

\[\beta^\mu_{\mu_1} \otimes \beta^\mu_{\mu_2} = \sum_{\nu \in Y^+} a_\nu \beta^\nu \quad \text{with } a_\nu \geq 0 \]

such that $a_\lambda \neq 0$ and $\nu \leq \lambda$ for all other $\nu \in Y^+$ with $a_\nu \neq 0$. Using Proposition 2.1, it follows that $\beta^\tau_\lambda = \beta^\alpha_\lambda$. \square
Remark 2.12. (i) Proposition 2.11 implies that \(\tau \) operates as \(\alpha \) on all ordinary irreducible characters which are not \(p \)-exceptional. Note that a character \(\chi \in \text{Irr}(H) \) is called \(p \)-exceptional, if there exists another character \(\chi' \in \text{Irr}(H) \) such that \(\chi \) and \(\chi' \) have the same values on the \(p \)-regular classes of \(H \).

(ii) All group automorphisms of \(G \), respectively \(\overline{G} \), are given as the composition of an inner, a diagonal, a graph and a field automorphism [7, Thm. 12.5.1]. Since the inner and diagonal automorphisms operate trivially on the \(p \)-regular classes, \(\alpha \) can be chosen as the composition of a graph and a field automorphism.

Let \(H, \tau \) and \(\alpha \) be as in Proposition 2.11. Then \(\tau \alpha^{-1} \) operates trivially on all ordinary irreducible characters which are not \(p \)-exceptional. We will use ad-hoc techniques to refine \(\alpha \) to a group automorphism \(\beta \) of \(H \) such that \(\tau \beta^{-1} \) fixes also all \(p \)-exceptional characters. Using Lemma 2.2 this then implies that (ZC) is valid for \(H \).

In this context, \(l \)-blocks of \(H \) which have cyclic defect groups and their corresponding Brauer trees are important. Note that usually the prime \(l \) is different from \(p \).

There are two interpretations of the Brauer tree corresponding to a block \(B \) with cyclic defect groups. One approach is to define the Brauer tree by only using the category of finitely generated \(B \)-modules. This is described in [1, Chapter V]. The other possibility is to define the Brauer tree using the decomposition map. This follows from Brauer’s and Dade’s theory of blocks with cyclic defect groups (see [12]). By [12, Thm. 1] it follows that these two definitions coincide. As a reference for both interpretations of the Brauer tree of \(B \) use for example [6].

With respect to the operation of \(\tau \) on the Brauer trees corresponding to \(l \)-blocks with cyclic defect groups, we need the following two results. Note that \(\tau \) permutes the \(l \)-blocks of \(H \).

Lemma 2.13. Let \(B \) be an \(l \)-block of \(H \) with cyclic defect groups such that \(\tau \) fixes \(B \). Then \(\tau \) induces a graph automorphism of the Brauer tree of \(B \) which is either trivial or a rotation.

Proof. This follows from [6, Prop. 3.7] and the proof of [6, Cor. 3.9]. \(\square \)

Lemma 2.14 ([6, Cor. 3.10]). Let \(H \) have cyclic Sylow \(l \)-subgroups and let \(B \) be the principal \(l \)-block. If \(\chi \in \text{Irr}(H) \) belongs to \(B \) and if \(\chi \) is not \(l \)-exceptional, then \(\tau \) fixes \(\chi \).

We use these two lemmas in the following way. To refine \(\alpha \) of Proposition 2.11, we want to show that \(\tau \alpha^{-1} \) operates on the \(p \)-exceptional characters as the power of a diagonal automorphism. In case all diagonal automorphisms of \(H \) are inner, we use Lemma 2.14 for certain \(l \) to show that \(\tau \alpha^{-1} \) fixes all \(p \)-exceptional characters. In the case of the Ree groups of type \(F_4 \), Lemma
2.13 is used to eliminate operations on characters which are not induced by group automorphisms.

In case that \(H \) has a nontrivial diagonal automorphism \(\delta \), the characters permuted by \(\delta \) have to be examined separately. Here we use, if necessary, Lemma 2.13 to study all possible operations on Brauer trees which contain such characters.

Remark 2.15.

(i) To determine the \(p \)-exceptional characters we use mostly the generic character tables provided in CHEVIE [17]. As outlined in the introduction there are literature references for most of the considered tables, which are either verified or corrected in CHEVIE.

(ii) In the examination of the \(p \)-exceptional characters, these characters are decomposed into a union of pairwise disjoint subsets such that all characters which have the same values on the \(p \)-regular classes are in one such subset.

(iii) When Brauer trees are given, a black circle \(\bullet \) denotes the exceptional vertex.

According to the above described strategy, the proofs of the validity of (ZC) for certain \(G \) (respectively \(\bar{G} \)) will always be divided into two parts:

(A) Operation of \(\sigma \) (respectively \(\bar{\sigma} \)) on the \(p \)-modular character table. Here we only have to check the hypotheses of Proposition 2.11.

(B) Operation of \(\sigma \) (respectively \(\bar{\sigma} \)) on the \(p \)-exceptional characters. Here we use ad-hoc arguments together with Lemmas 2.13 and 2.14.

The proofs involve the following Dynkin diagrams: \(A_2, B_2, G_2, D_4, F_4 \).
The arrow always points to the shorter roots.

A weight $\lambda = \sum c_i \lambda_i$ will be denoted by $\lambda = c_1 \cdots c_l$.

3. The Ree groups $^2G_2(q^2)$ and $^2F_4(q^2)$.

In this section, we want to prove that (ZC) is valid for the finite Ree groups of type G_2 and F_4, and thus establish Theorem 1.

The Ree groups $^2G_2(q^2)$ and $^2F_4(q^2)$ are simple except for $^2G_2(3)$ and $^2F_4(2)$; their automorphisms are given by inner and field automorphisms. The generic ordinary character table of $^2G_2(3^{2m+1})$ was mostly determined by Ward in [44]. Shinoda described the conjugacy classes of $^2F_4(2^{2m+1})$ in [40]. The complete ordinary character table of $^2G_2(3^{2m+1})$ can be found in CHEVIE; most of the character table of $^2F_4(2^{2m+1})$ and all Green functions are also listed there.

Proposition 3.1.

(i) The conjecture (ZC) is valid for $^2G_2(q^2)$ for all $q^2 = 3^{2m+1}$, $m \geq 1$.

(ii) The conjecture (ZC) is valid for $^2F_4(q^2)$ for all $q^2 = 2^{2m+1}$, $m \geq 1$.

Proof. Let $G = ^2G_2(q^2)$ or $G = ^2F_4(q^2)$, respectively.
Part (A).

(i) $X'_p = \{00, 01, 02\}$ with $\dim(M_{01}) = 7$ and $\dim(M_{02}) = 27$. Because of dimensions, there exists $0 \leq i \leq 2m$ with $M'_{01} \cong M_{01}^\sigma$ and $M'_{02} \cong M_{02}^\sigma$. Since \leq defines an allowable weak order \prec on X^+, the hypotheses of Proposition 2.11 are satisfied.

(ii) $X'_p = \{0000, 0010, 0001, 0011\}$ with $\dim(M_{0001}) = 26$, $\dim(M_{0010}) = 246$, and $\dim(M_{0011}) = 4096$. Because of dimensions, there exist $0 \leq i, j \leq 2m$ with $M_{0001}^\sigma \cong M_{0001}^{\alpha_i}$ and $M_{0010}^\sigma \cong M_{0010}^{\alpha_j}$. We have to show that $i = j$. If $i \neq j$ then σ maps the simple module $M_{0001}^{\alpha_{2m+1-i}} \otimes M_{0010}^{\alpha_{2m+1-j}}$ to $M_{0001} \otimes M_{0010}$. This implies that $M_{0001} \otimes M_{0010}$ must be simple, thus by Lemma 2.8 of weight 0011. A comparison of the dimensions shows that this is impossible. Thus it follows that $i = j$ which yields hypothesis (i) of Proposition 2.11. \leq defines again an allowable weak order \prec on X^+, which is hypothesis (ii).

Part (B).

(i) G does not have any nontrivial diagonal automorphisms, thus we have to show that $\sigma \alpha_i^{-1}$, α_i from Part (A), fixes all ordinary characters which are p-exceptional. The generic character table given in CHEVIE shows that there are exactly 6 unipotent characters which are p-exceptional: Using the notation of [20], these characters correspond to $\{\xi_3, \xi_4\}$, $\{\xi_5, \xi_6\}$ and $\{\xi_7, \xi_8\}$. If $l > 3$ is a rational prime which divides $|G|$, then G has cyclic Sylow l-subgroups [25, XI Thm. 13.2]. By [20, Thm. 4.2], ξ_5, ξ_6 and ξ_7, ξ_8 lie in the principal l-block for $l|(q^2 + 1)$ and are not l-exceptional. By [20, Thm. 4.3], ξ_3, ξ_4 and ξ_5, ξ_6 lie in the principal l-block for $l|(q^2 + \sqrt{3}q + 1)$ and are not l-exceptional. Thus, by Lemma 2.14, $\sigma \alpha_i^{-1}$ fixes all ordinary characters, which proves Proposition 3.1(i).

(ii) Since the generic character table of G given in CHEVIE is not complete, we have to look at this case more carefully. Again we have to show that $\sigma \alpha_i^{-1}$ operates trivially on the characters which are p-exceptional.

Let G be the Chevalley group of universal type of type F_4 over \bar{k}, and let F be the Frobenius map (notation used as in [8, §1.17]) with $G^F = G$. Using the Jordan decomposition for characters, the ordinary irreducible characters of G can be described as follows (cf. [8, §12.9]): Since the Ree groups are self-dual, the characters of G are parametrized by G-conjugacy classes of pairs (s, λ) where s is a semisimple element of G and λ is a unipotent character of $C_G(s)$. This character is then denoted by $\chi_{s, \lambda}$. Since G is self-dual, the G-conjugacy classes of semisimple elements of G correspond to geometric conjugacy classes.
We use the notation in [40] for the 11 conjugacy classes of the maximal tori and the representatives of the semisimple conjugacy classes, i.e. of the semisimple class types. Note that the G-conjugacy classes of the maximal tori T of G are uniquely determined by the isomorphism type of T^F.

In CHEVIE, all ordinary irreducible characters of G can be found except for those corresponding to the semisimple representatives t_7, t_9, t_{12} and t_{13}. From the part of the character table given in CHEVIE we can read off the following:

Exactly 10 of the unipotent characters are p-exceptional. These are, using the notation of [20], $\{\xi_5, \xi_6\}$, $\{\xi_7, \xi_8\}$, $\{\xi_{15}, \xi_{16}\}$ and $\{\xi_{17}, \xi_{18}\}$ and $\{\xi_{19}, \xi_{20}\}$. By [20, Thm. 4.6 and Thm. 4.7] and Lemma 2.14, $\sigma \alpha_i^{-1}$ operates trivially on these 10 unipotent characters.

Looking at the other characters listed in CHEVIE, $\{\chi_{23}(k), \chi_{24}(k)\}$ are p-exceptional for all parameters k. According to the Jordan decomposition, the characters $\chi_{22}(k)$ through $\chi_{25}(k)$ belong to the semisimple class type t_1. If s is the representative of the G-conjugacy class of type t_1 corresponding to k, then $C_G(s) \cong \mathbb{Z}_{q^{2^1}} \times 2^2 B_2(q^2)$. Thus there are four possibilities for λ, namely the unipotent characters of $2^2 B_2(q^2)$: 1, μ, $\bar{\mu}$ and St. Therefore we have the correspondence $\chi_{22}(k) \leftrightarrow \chi_{s,1}$, $\chi_{23}(k) \leftrightarrow \chi_{s,\mu}$, $\chi_{24}(k) \leftrightarrow \chi_{s,\bar{\mu}}$ and $\chi_{25}(k) \leftrightarrow \chi_{s,\text{St}}$.

For a rational prime $l|q^2 - \sqrt{2} q + 1$, we have the following Brauer trees for such s [19, Satz D.3.9]:

Thus, by Lemma 2.13, $\sigma \alpha_i^{-1}$ cannot induce the permutation $(\chi_{s,\mu}, \chi_{s,\bar{\mu}})$ which means that $\sigma \alpha_i^{-1}$ cannot permute $\chi_{23}(k)$ and $\chi_{24}(k)$.

There are similar Brauer trees for the semisimple class types t_7 and t_9. We have $C_G(t_7) \cong \mathbb{Z}_{q^{2^1}} \times 2^2 B_2(q^2)$ and $C_G(t_9) \cong \mathbb{Z}_{q^{2^1}} \times 2^2 B_2(q^2)$. For each G-conjugacy class of s of type t_7 or t_9, there are again 4 characters $\chi_{s,1}$, $\chi_{s,\mu}$, $\chi_{s,\bar{\mu}}$ and $\chi_{s,\text{St}}$. The Brauer trees are then as follows:

For s of type t_9 and $l|q^2 - \sqrt{2} q + 1$, we get a tree analogous to the one for s of type t_1 [19, Satz D.3.9].

For s of type t_7 and $l|q^2 + \sqrt{2} q + 1$, the Brauer trees look like [19, Satz D.3.10]:

Thus, by Lemma 2.13, $\sigma \alpha_i^{-1}$ cannot induce the permutation $(\chi_{s,\mu}, \chi_{s,\bar{\mu}})$ which means that $\sigma \alpha_i^{-1}$ cannot permute $\chi_{23}(k)$ and $\chi_{24}(k)$.

There are similar Brauer trees for the semisimple class types t_7 and t_9. We have $C_G(t_7) \cong \mathbb{Z}_{q^{2^1}} \times 2^2 B_2(q^2)$ and $C_G(t_9) \cong \mathbb{Z}_{q^{2^1}} \times 2^2 B_2(q^2)$. For each G-conjugacy class of s of type t_7 or t_9, there are again 4 characters $\chi_{s,1}$, $\chi_{s,\mu}$, $\chi_{s,\bar{\mu}}$ and $\chi_{s,\text{St}}$. The Brauer trees are then as follows:

For s of type t_9 and $l|q^2 - \sqrt{2} q + 1$, we get a tree analogous to the one for s of type t_1 [19, Satz D.3.9].

For s of type t_7 and $l|q^2 + \sqrt{2} q + 1$, the Brauer trees look like [19, Satz D.3.10]:

Thus, by Lemma 2.13, $\sigma \alpha_i^{-1}$ cannot induce the permutation $(\chi_{s,\mu}, \chi_{s,\bar{\mu}})$ which means that $\sigma \alpha_i^{-1}$ cannot permute $\chi_{23}(k)$ and $\chi_{24}(k)$.

There are similar Brauer trees for the semisimple class types t_7 and t_9. We have $C_G(t_7) \cong \mathbb{Z}_{q^{2^1}} \times 2^2 B_2(q^2)$ and $C_G(t_9) \cong \mathbb{Z}_{q^{2^1}} \times 2^2 B_2(q^2)$. For each G-conjugacy class of s of type t_7 or t_9, there are again 4 characters $\chi_{s,1}$, $\chi_{s,\mu}$, $\chi_{s,\bar{\mu}}$ and $\chi_{s,\text{St}}$. The Brauer trees are then as follows:

For s of type t_9 and $l|q^2 - \sqrt{2} q + 1$, we get a tree analogous to the one for s of type t_1 [19, Satz D.3.9].

For s of type t_7 and $l|q^2 + \sqrt{2} q + 1$, the Brauer trees look like [19, Satz D.3.10]:

Thus, by Lemma 2.13, $\sigma \alpha_i^{-1}$ cannot induce the permutation $(\chi_{s,\mu}, \chi_{s,\bar{\mu}})$ which means that $\sigma \alpha_i^{-1}$ cannot permute $\chi_{23}(k)$ and $\chi_{24}(k)$.
Thus, by Lemma 2.13, $\sigma_{\alpha_i}^{-1}$ cannot permute $\chi_{s,\mu}$ and $\chi_{s,\bar{\mu}}$ for s of type t_7 or t_9.

It remains to show that $\sigma_{\alpha_i}^{-1}$ operates trivially within each row of the ordinary generic character table.

This is clear for all the characters listed in CHEVIE except for those corresponding to the semisimple class type t_{17} or t_{19}.

It remains to show that $\sigma_{\alpha_i}^{-1}$ operates trivially within each row of the ordinary generic character table.

This is clear for all the characters listed in CHEVIE except for those corresponding to the semisimple class type t_{17} or t_{19}.

Thus we have to look at the characters corresponding to the semisimple types t_{17}, t_{11}, t_{19} and t_{12}, t_{13}.

Since t_{12} and t_{13} are regular, i.e. the corresponding characters are of the form $\pm R_{T,\theta}$ with T of type $T(6)$ for t_{12} and of type $T(7)$ for t_{13} and suitable θ in general position, the claim follows almost immediately.

For s of type $t = t_{17}, t_{11}, t_{19}$, respectively, we look at $\chi_{s,1} + \chi_{s,St}$.

If s and s' belong to different G-conjugacy classes of type t, it follows that

$\left. (\chi_{s,1} + \chi_{s,St}) \right|_{G_{p'}} \neq \left. (\chi_{s',1} + \chi_{s',St}) \right|_{G_{p'}}$.

Thus it follows that either

$\left. (\chi_{s,1}) \right|_{G_{p'}} \neq \left. (\chi_{s',1}) \right|_{G_{p'}}$ or $\left. (\chi_{s,St}) \right|_{G_{p'}} \neq \left. (\chi_{s',St}) \right|_{G_{p'}}$.

Therefore $\sigma_{\alpha_i}^{-1}$

either does not permute $\chi_{s,1}$ and $\chi_{s',1}$ or it does not permute $\chi_{s,St}$ and $\chi_{s',St}$.

Using the above Brauer trees, $\chi_{s,1}, \chi_{s,\mu}, \chi_{s,\bar{\mu}}$ and $\chi_{s,St}$ lie in the same Brauer tree of an l-block and are not l-exceptional. Thus $\sigma_{\alpha_i}^{-1}$

operates trivially on the rows of the generic ordinary character table corresponding to the semisimple class type t.

This proves Proposition 3.1(ii).

Remark 3.2. The conjecture (ZC) is also valid for the simple Tits group $2F_4(2)'$, which is the normal subgroup of $2F_4(2)$ of index 2. Since the proof uses different methods from those described here, we state this result without proof.

Proof of Theorem 1. The simple groups with abelian Sylow 2-subgroups have been classified by Walter [25, XI Thm. 13.7]. These are $\text{PSL}(2, q^f)$ for $f \geq 1$, $\text{PSL}(2, q)$ for $q = p^f$, $q \neq 3$, with $q \equiv 3 \pmod{8}$ or $q \equiv 5 \pmod{8}$, the Janko group J_1 and the finite Ree groups of type G_2.

The validity of (ZC) for $\text{PSL}(2, p^f)$ for arbitrary rational primes p has been proved in [4, Prop. 3.2 and Prop. 4.1]. The theory of principal blocks with cyclic defect groups together with Lemma 2.14 shows that (ZC) holds for J_1. Thus, together with Proposition 3.1(i), Theorem 1 follows.

4. Finite groups of Lie type of rank 2.

In this section we want to deal with finite Chevalley groups and twisted groups of rank 2. This will especially prove Theorem 2.

4.1. The linear and unitary groups $\text{SL}(3, q)$, $\text{PSL}(3, q)$, $\text{SU}(3, q^2)$ and $\text{PSU}(3, q^2)$. The groups $\text{SL}(3, q)$ are simple for $q \neq 1(3)$, and $\text{SU}(3, q^2)$ are
simple for \(q \neq -1 \) (3). In these cases, the group automorphisms are generated by inner, graph and field automorphisms. In all other cases, there also exist diagonal automorphisms. The ordinary generic character tables have been determined in [41] and can also be found in CHEVIE. We first prove the following:

Proposition 4.1. The conjecture (ZC) is valid for \(\text{SL}(3, q) \) and \(\text{SU}(3, q^2) \) for all \(q = p^m \), where \(p \) is a rational prime and \(m \geq 1 \).

Proof. Let \(G = \text{SL}(3, q) \) or \(G = \text{SU}(3, q^2) \), respectively.

Part (A).

By [33, Thm. 1.1], all simple \(kG \)-modules with dimension smaller than or equal to 5 are of the form \(M_{10}^{\alpha_j} \) or \(M_{01}^{\alpha_j} \) for some \(j \). Note that if \(\gamma \) is the nontrivial graph automorphism for \(G = \text{SL}(3, q) \), and if \(\gamma \) is the field automorphism \(\alpha_m \) for \(G = \text{SU}(3, q^2) \), then \(M_{10}^{\alpha_j} \cong M_{01}^{\alpha_j} \). Furthermore, since in case \(G = \text{SL}(3, q) \), \(\gamma \) operates on the conjugacy classes as \((\text{Cl}(g))^\gamma = \text{Cl}(g^{-1}) \) and since \(\sigma \) preserves the power map, the action of \(\sigma \) on the \(p \)-modular Brauer characters commutes with the action of \(\gamma \). This implies hypothesis (i) of Proposition 2.11. The weak order \(\prec \) on \(X^+ \) for hypothesis (ii) is defined as follows:

Let \(\mu_1 = b_1b_2 \) and \(\mu_2 = c_1c_2 \) be two dominant weights. Then \(\mu_1 \prec \mu_2 \) if and only if \(b_1 + b_2 \leq c_1 + c_2 \). To show that \(\prec \) is allowable, we only have to show that \(\mu_1 \leq \mu_2 \) implies \(\mu_1 \prec \mu_2 \) and \(\mu_2 \not\prec \mu_1 \). If \(s_1 \) and \(s_2 \) are the fundamental roots corresponding to 10 and 01, then we have

\[
\begin{align*}
10 &= \frac{1}{3} (2 \cdot s_1 + s_2), \\
01 &= \frac{1}{3} (s_1 + 2 \cdot s_2).
\end{align*}
\]

Thus it follows that \(\mu_1 \leq \mu_2 \) if and only if

\[
\begin{align*}
2b_1 + b_2 &\leq 2c_1 + c_2, \\
b_1 + 2b_2 &\leq c_1 + 2c_2,
\end{align*}
\]

and \(2(c_1 - b_1) + (c_2 - b_2) \) and \((c_1 - b_1) + 2(c_2 - b_2) \) are multiples of 3. This implies that \(b_1 + b_2 \leq c_1 + c_2 \). If \(b_1 + b_2 = c_1 + c_2 \) and \(\mu_1 \not\equiv \mu_2 \), then \(\mu_1 \not\leq \mu_2 \).

Thus \(\mu_1 \leq \mu_2 \), \(\mu_1 \not\equiv \mu_2 \) implies \(\mu_1 \prec \mu_2 \) and \(\mu_2 \not\prec \mu_1 \).

Part (B).

\(G \) has only \(p \)-exceptional characters if \(q \equiv 1 \) (3) and \(G = \text{SL}(3, q) \) or if \(q \equiv -1 \) (3) and \(G = \text{SU}(3, q^2) \).

Let now \(G = \text{SL}(3, q) \) and \(q \equiv 1 \) (3). In the notation of CHEVIE, there are 9 characters which are \(p \)-exceptional: \(\{\chi_6, \chi_7, \chi_8\} \), \(\{\chi_{11}, \chi_{12}, \chi_{13}\} \) and \(\{\chi_{14}, \chi_{15}, \chi_{16}\} \). The following actions on these characters are induced by group automorphisms: There exists a diagonal automorphism \(\delta \) with operation \(\delta = (\chi_6, \chi_7, \chi_8)(\chi_{11}, \chi_{12}, \chi_{13})(\chi_{14}, \chi_{15}, \chi_{16}) \). Note that we use here cycle notation. For the graph automorphism \(\gamma \) we get as operation
Thus we only have to show that all operations on these 9 characters in-
classes. On the other hand, if \(\gamma \in \sigma \) the same operation as for \(\gamma \). We want to show that the operations
on the 9 \(p \)-exceptional characters generated by group automorphisms of \(G \)
are the only operations that can be induced by \(\sigma \). Note that if \(\chi_{11} \) and \(\chi_{14} \) are permuted then this induces a nontrivial operation on the \(p \)-regular classes.
On the other hand \(\delta \) operates trivially on the \(p \)-regular classes.
Thus we only have to show that all operations on these 9 characters induced
by \(\sigma \) are generated by \(\pi_1 = (\chi_6, \chi_7, \chi_8)\)(\(\chi_{11}, \chi_{12}, \chi_{13}\))(\(\chi_{14}, \chi_{15}, \chi_{16}\))
and \(\pi_2 = (\chi_{11}, \chi_{14})(\chi_{12}, \chi_{15})(\chi_{13}, \chi_{16}) \).
Note that \(|G| = q^3(q - 1)^2(q + 1)(q^2 + q + 1) \). By [24, II Satz 7.3], \(G \)
has a cyclic subgroup of order \(q^2 + q + 1 \). If \(l \neq 3 \) is a rational prime
which divides \(q^2 + q + 1 \), then all Sylow \(l \)-subgroups are cyclic because
\((q^2 + q + 1, q - 1) = 1 \) and \((q^2 + q + 1, q + 1) = 1 \). The characters \(\chi_{11} \) through \(\chi_{16} \) are not \(l \)-exceptional and lie in the following Brauer trees:

\[
\begin{align*}
\chi_{11} & \quad \chi_{13} \\
\chi_{12} & \\
\chi_{14} & \quad \chi_{16} \\
\chi_{15} &
\end{align*}
\]

By Lemma 2.13, it follows that all operations on the characters \(\chi_{11}, \chi_{12}, \chi_{13}, \chi_{14}, \chi_{15}, \chi_{16} \) induced by \(\sigma \) are generated by \(\pi_1 \) and \(\pi_2 \). Because of the corresponding operations of \(\pi_1 \) and \(\pi_2 \) on the conjugacy classes, this also follows for the characters \(\chi_6, \chi_7, \chi_8 \).

For \(G = SU(3, q^3) \) and \(q \equiv -1 \pmod{3} \), the argumentation is similar. Here we use that \(SU(3, q^3) \) has a cyclic subgroup of order \(q^2 - q + 1 \) [32, Satz 4.2].

This proves Proposition 4.1.

For the groups \(PSL(3, q) \) and \(PSU(3, q^2) \) we get a similar result. Note that \(PSL(3, q) \) and \(PSU(3, q^2) \) are simple except for \(PSU(3, 2^3) \cong (\mathbb{Z}_3 \times \mathbb{Z}_3).Q_8 \).

Proposition 4.2. The conjecture (ZC) is valid for \(PSL(3, q) \) and \(PSU(3, q^2) \)
for all \(q = p^m \), where \(p \) is a rational prime and \(m \geq 1 \).

Proof. Let \(G = PSL(3, q) \) or \(G = PSU(3, q^2) \), respectively. Let \(\tilde{\gamma} \) be the non-
trivial graph automorphism if \(G = PSL(3, q) \), and \(\tilde{\gamma} = \bar{a}_m \) if \(G = PSU(3, q^2) \).
Since we can use the same argumentation as in Proposition 4.1 to deal with
the characters which are \(p \)-exceptional, we only have to look at:

Part (A).

The modules \(M_\lambda, \lambda = a_1a_2 \in X_q \), are simple \(k\tilde{G} \)-modules if and only if \(a_1 + 2a_2 \equiv 0 \pmod{3} \). This follows by looking at the center of \(SL(3, q) \) or \(SU(3, q^2) \)
as described in [7, §12.1].

Let now \(\lambda = a_1a_2 \) with \(a_1 + 2a_2 \equiv 0 \pmod{3} \). Then \(\lambda = a_1 \cdot 11 + \frac{1}{3} (a_2 - a_1) \cdot 03 \)
if \(a_1 \leq a_2 \) and \(\lambda = a_2 \cdot 11 + \frac{1}{3} (a_1 - a_2) \cdot 30 \) if \(a_2 \leq a_1 \). Note that \(|a_2 - a_1| = \frac{1}{3} |a_1 + 2a_2 - 3a_1| \) is divisible by 3. We have to show that there exists \(\alpha \in \text{Aut}(\tilde{G}) \) with \(M_{11}^\alpha \cong M_{11}^0 \) and \(M_{03}^\alpha \cong M_{03}^0 \). This then implies hypothesis
(i) of Proposition 2.11. For hypothesis (ii) we can use the same weak order \prec as for \SL(3, q) and \SU(3, q^2).

By [2, Thm. 1], all modules of dimension 8 are of the form $M_{11}^{\bar{\alpha}_i}$ for some $0 \leq i \leq m - 1$ and, for $p > 3$, all modules of dimension 10 are of the form $M_{03}^{\bar{\alpha}_j}$ for some $\nu \in \{0, 1\}$ and some $0 \leq j \leq m - 1$.

Let now $p > 3$. Then we get that $M_{11}^\sigma \cong M_{11}^{\bar{\alpha}_i}$ and $M_{03}^\eta \cong M_{03}^{\bar{\alpha}_j}$. Note that $M_{11}^{\bar{\alpha}_i} \cong M_{11}^{\bar{\alpha}_i}$. Thus we have to show that $i = j$. This follows, similarly as in the case of $2F_4(q^2)$, from the fact that $M_{11} \otimes M_{03}$ and $M_{11} \otimes M_{30}$ are not simple. Note that they have both dimension 80 whereas M_{11} and M_{41} have both dimension ≤ 35 by Weyl’s formula (see [21, §24.3]). Thus we get the desired operation of $\bar{\sigma}$ on these modules.

For $p = 2$, the situation is slightly more complicated. Again $M_{11}^\sigma \cong M_{11}^{\bar{\alpha}_i}$ for some i. But in this case $M_{03}^\eta \cong M_{03}^{\bar{\alpha}_i}$ and has dimension 9. We have only to show that $M_{03}^\eta \cong M_{03}^{\bar{\alpha}_j}$ for some ν and some j. The argumentation that $i = j$ is then similar to the case $p > 3$.

The modules of dimension 9 have the form $M_{01}^{\nu 1_1 \bar{\alpha}_i} \otimes M_{01}^{\nu 2_1 \bar{\alpha}_i} + 1$ with $\nu_1, \nu_2 \in \{0, 1\}$, and $0 \leq i_1 < i_2 \leq m - 1$. This is a $k\bar{G}$-module in case that $i_2 - i_1$ is odd for ν_2 and $i_2 - i_1$ is even for $\nu_1 \neq \nu_2$. For the twist of M_{03} under $\bar{\sigma}$ we have to show that either $i_2 = i_1 + 1$ and $\nu_1 = \nu_2$ or $(i_1, i_2) = (0, m - 1)$ and $(\nu_1 = \nu_2)$ if $\bar{G} = \PSL(3, q)$ and $(\nu_1 \neq \nu_2)$ if $\bar{G} = \PSU(3, q^2)$. Note that for $m = 2$, M_{03} and M_{30} are the only $k\bar{G}$-modules of dimension 9. So let $m \geq 3$.

Suppose first that $\nu_1 \neq \nu_2$ and, if $\bar{G} = \PSL(3, q^2)$, that $(i_1, i_2) \neq (0, m - 1)$. If $i_2 = i_1 + 1$ then $i_2 - i_1$ is odd, thus the module is not a $k\bar{G}$-module. So $i_2 \neq i_1 + 1$. Then there exists $s \in \{i_1 - i, i_2 - i\}$ such that $s \neq 0 (m)$ and $s \neq 1 (m)$. Thus $M_{03} \otimes M_{11}^{\bar{\alpha}_i}$ is a simple module which would be mapped by $\bar{\sigma}$ to $M_{01}^{\nu 1_1 \bar{\alpha}_i} \otimes M_{01}^{\nu 2_1 \bar{\alpha}_i} \otimes M_{11}^{\bar{\alpha}_i}$. But this module is not simple, because neither $M_{01} \otimes M_{11}$ nor $M_{10} \otimes M_{11}$ are simple.

Suppose now that $\nu_1 = \nu_2$ and $i_2 \neq i_1 + 1$ and, if $\bar{G} = \PSL(3, q^2)$, that $(i_1, i_2) \neq (0, m - 1)$. Again there exists $s \in \{i_2 - i, i_1 - i\}$ such that $s \neq 0 (m)$ and $s \neq 1 (m)$. So we can argue in the same way as in the first case.

Therefore we get for $M_{03}^\eta \cong M_{01}^{\nu 1_1 \bar{\alpha}_i} \otimes M_{01}^{\nu 2_1 \bar{\alpha}_i}$ that either $i_2 = i_1 + 1$ and $\nu_1 = \nu_2$ or $(i_1, i_2) = (0, m - 1)$ and $(\nu_1 = \nu_2$ if $\bar{G} = \PSL(3, q)$ or $\nu_1 \neq \nu_2$ if $\bar{G} = \PSU(3, q^2)$).

This proves Proposition 4.2. \hfill \Box

4.2. The symplectic groups $\Sp(4, q)$ and $\PSp(4, q)$. After the linear and unitary groups of type A_2, we consider now the symplectic groups $\Sp(4, q)$ and $\PSp(4, q)$. Note that $\Sp(4, 2^n)$ is simple for $m \geq 2$, and $\Sp(4, 2)$ is isomorphic to the symmetric group on 6 elements. For even q, the group automorphisms are generated by inner, graph and field automorphisms. In all other cases, there exist also diagonal automorphisms, but no nontrivial
graph automorphisms. The ordinary generic character table for even \(q \) has been determined in [14] and appears also in CHEVIE. For odd \(q \), the generic character table was first established by Srinivasan [42], Przygocki [34] found some small mistakes; a preliminary version computed by Lübeck in CHEVIE shows that the following corrections to Przygocki’s version have to be made: For the characters \(\xi_{41} \), \((1 - q)^2 \) must be replaced by \((1 - q^2) \) on the classes \(D_1 \), for \(\phi_3 \) the sign must be changed on \(C_{21} \), and for \(\phi_7 \) the sign has to be changed on \(B_3 \).

We first prove the following proposition:

Proposition 4.3. The conjecture (ZC) is valid for \(\text{Sp}(4, q) \) for all \(q = p^m \) with \(p \) a rational prime and \(m \geq 1 \).

Proof. Let \(G = \text{Sp}(4, q) \).

Part (A).

If \(p = 2 \), then \(X_p = \{00, 01, 10, 11\} \) with \(\dim(M_{01}) = 4 = \dim(M_{10}) \) and \(M_{11} \cong M_{01} \otimes M_{10} \). If \(\gamma \) denotes the nontrivial graph automorphism of \(G \), then \(M_{10} \cong M_{01}^\gamma \). By [10, Thm. (3.4)] it follows that

\[
\beta_{01} \otimes \beta_{01} = 4 \cdot 1 + 2 \cdot \beta_{10} + \beta_{01}^{\sigma_1}.
\]

Because of dimensions, \(\beta^\nu_{01} = \beta^\nu_{01}^{\alpha_i} \) for some \(\nu \in \{0, 1\} \), \(0 \leq i \leq m - 1 \).

Thus we get with Equation (4.1)

\[
4 \cdot 1 + 2 \cdot \beta_{10}^{\nu_{01}^{\alpha_i}} + \beta_{01}^{\nu_{01}^{\alpha_{i+1}}} = 4 \cdot 1 + 2 \cdot \beta_{10}^\nu + \beta_{01}^{\sigma_1}
\]

and thus \(\beta_{10}^\nu = \beta_{10}^{\nu_{01}^{\alpha_i}} \). So hypothesis (i) of Proposition 2.11 follows for the case \(p = 2 \).

Now let \(p \neq 2 \). Then \(\dim(M_{01}) = 4 \) and \(\dim(M_{10}) = 5 \). If \(M \) is a simple \(kG \)-module with \(1 < \dim(M) < 8 \) then there exists an automorphism \(\alpha \) of \(G \), such that either \(M \cong M_{01}^\alpha \) or \(M \cong M_{10}^\alpha [33, \text{Thm. 1.1}] \). This implies hypothesis (i) in case \(p \neq 2 \).

The weak order \(\prec \) for hypothesis (ii) is defined as follows:

Let \(\mu_1 = b_1c_2 \) and \(\mu_2 = b_2c_1 \) be two different dominant weights. Then \(\mu_1 \prec \mu_2 \) if and only if \(b_1 + b_2 < c_1 + c_2 \), or \(b_1 + b_2 = c_1 + c_2 \) and \(b_1 < c_1 \). Similarly to \(\text{SL}(3, q) \), it follows that \(\mu_1 \leq \mu_2 \), \(\mu_1 \neq \mu_2 \) implies \(\mu_1 \prec \mu_2 \) and \(\mu_2 \prec \mu_1 \).

Part (B).

When \(p = 2 \), \(G \) has no \(p \)-exceptional characters. Therefore let \(p \neq 2 \).

We use here the notation given in [42] and [34]. The characters which are \(p \)-exceptional are exactly the following pairs: \(\{\xi_{21}(k), \xi_{22}(k)\} \) for each \(k \), \(\{\xi_{21}'(k), \xi_{22}'(k)\} \) for each \(k \), \(\{\xi_{41}(k), \xi_{42}(k)\} \) for each \(k \), \(\{\xi_{41}'(k), \xi_{42}'(k)\} \) for each \(k \), \(\{\Phi_1, \Phi_2\}, \{\Phi_3, \Phi_4\}, \{\Phi_5, \Phi_6\}, \{\Phi_7, \Phi_8\}, \{\theta_1, \theta_2\}, \{\theta_3, \theta_4\}, \{\theta_5, \theta_6\} \) and \(\{\theta_7, \theta_8\} \). The nontrivial diagonal automorphism \(\delta \) of \(G \) permutes simultaneously the two characters of each such pair. Looking at the corresponding
conjugacy classes it follows that the only possible nontrivial operation induced by \(\sigma \) on these pairs is the simultaneous permutation of each pair.

This proves Proposition 4.3.

For the groups \(\text{PSp}(4,q) \) we get a similar result:

Proposition 4.4. The conjecture \((\text{ZC}) \) is valid for \(\text{PSp}(4,q) \) for all \(q = p^m \) with \(p \) a rational prime and \(m \geq 1 \).

Proof. Let \(\bar{G} = \text{PSp}(4,q) \). Because of Proposition 4.3, we only have to show Proposition 4.4 for \(p \geq 3 \). So let \(p \geq 3 \). Since we can use the same argumentation as in Proposition 4.3 to deal with the characters which are exceptional for \(p \), we only have to look at:

Part (A).

The modules \(M_\lambda, \lambda = a_1a_2 \in X_q \), are simple \(k\bar{G} \)-modules if and only if \(a_2 \equiv 0 \pmod{2} \). This follows by looking at the center of \(\text{Sp}(4,q) \) as described in [7, §12.1].

Let now \(\lambda = a_1\lambda_1 + a_2\lambda_2 = a_1a_2 \) with \(a_2 \equiv 0 \pmod{2} \). Then \(\lambda = a_1 \cdot 10 + \frac{1}{2}a_2 \cdot 02 \).

We have to show that there exists \(\alpha \in \text{Aut}(\bar{G}) \) with \(M_{10} \sim M_{\alpha 10} \), \(M_{20} \sim M_{\alpha 20} \) and \(M_{12} \sim M_{\alpha 12} \). This then implies hypothesis (i) of Proposition 2.11. For hypothesis (ii) we can use the same weak order \(\prec \) as for \(\text{Sp}(4,q) \).

By [2, Thm. 1], all modules of dimension 5 are of the form \(M_{10}^i \) for some \(i \), and all modules of dimension 10 are of the form \(M_{20}^j \) for some \(j \). Thus we get the desired operation of \(\sigma \) on these modules.

This proves Proposition 4.4. \(\square \)

4.3. The finite Chevalley groups \(G_2(q) \). After the classical groups of type \(A_2 \) and \(B_2 \), we want now to examine the exceptional groups of type \(G_2 \). The ordinary generic character tables of these groups can be found in [15] and in [9, 16] and have also been determined in CHEVIE.

\(G_2(q) \) is simple except for \(G_2(2) \cong \text{SU}(3,3^2) \cdot 2 = \text{Aut}(\text{SU}(3,3^2)) \). For 3 \(\nmid q \), the group automorphisms of \(G_2(q) \) are generated by inner and field automorphisms. For \(q = 3^m \) there exists also a nontrivial graph automorphism of order 2.

We want to prove the following proposition:

Proposition 4.5. The conjecture \((\text{ZC}) \) is valid for \(G_2(q) \) for all \(q = p^m \) with \(p \) a rational prime and \(m \geq 1 \).

Proof. Let \(G = G_2(q) \).

Part (A).

If \(p = 3 \), then \(X_p = \{00, 01, 10, 02, 20, 11, 12, 21, 22\} \) with \(\dim(M_{01}) = 7 = \dim(M_{10}) \), \(\dim(M_{02}) = 27 = \dim(M_{20}) \), \(M_{11} \cong M_{01} \otimes M_{10} \), \(M_{22} \cong M_{02} \otimes M_{20} \), \(M_{12} \cong M_{02} \otimes M_{10} \) and \(M_{21} \cong M_{01} \otimes M_{20} \). If \(\gamma \) denotes the nontrivial graph automorphism of \(G \), then \(M_{10} \cong M_{01}^\gamma \), \(M_{20} \cong M_{02}^\gamma \) and
\(M_{12} \cong M^3_{21} \). Using the 3-modular character table of \(G_2(3) \) listed in GAP [39], it follows that for \(q = 3 \) the tensor product \(\beta_{01} \otimes \beta_{01} \) decomposes as

\[
\beta_{01} \otimes \beta_{01} = 1 \cdot 1 + 2 \cdot \beta_{01} + \beta_{10} + \beta_{02}.
\]

This is valid for arbitrary \(q = 3^m \), since the weights \(\lambda \in X^+ \) with \(\lambda \leq 2 \) are exactly \(\lambda \in \{00,01,10,02\} \).

Because of dimensions, \(\beta_{01}^\varphi = \beta_{01}^{\nu \alpha} \) for some \(\nu \in \{0,1\} \), \(0 \leq i \leq m - 1 \). Thus we get with Equation (4.2)

\[
1 \cdot 1 + 2 \cdot \beta_{01}^{\nu \alpha} + \beta_{10}^{\nu \alpha} + \beta_{02}^{\nu \alpha} = 1 \cdot 1 + 2 \cdot \beta_{01}^\varphi + \beta_{10}^\varphi + \beta_{02}^\varphi
\]

and therefore

\[
\beta_{10}^{\nu \alpha} + \beta_{02}^{\nu \alpha} = \beta_{10}^\varphi + \beta_{02}^\varphi.
\]

Since the Brauer characters are linearly independent, it follows because of different dimensions that \(\beta_{10} = \beta_{10}^{\nu \alpha} \) and \(\beta_{02} = \beta_{02}^{\nu \alpha} \). Thus hypothesis (i) of Proposition 2.11 follows for the case \(p = 3 \).

Now let \(p \neq 3 \). Then \(\dim(M_{01}) = 7 - \delta_{p,2} \) and \(\dim(M_{10}) = 14 \). If \(M \) is a simple \(kG \)-module with \(1 < \dim(M) < 18 \) then there exists an automorphism \(\alpha \) of \(G \), such that either \(M \cong M_{01}^\alpha \) or \(M \cong M_{10}^\alpha \). This follows from [31, Prop. 5.4.12], since the center of \(G_2(q) \) is trivial and thus every simple \(kG \)-module is also a simple projective \(kG \)-module. Therefore, hypothesis (i) follows for \(p \neq 3 \).

For the weak order \(\prec \) in hypothesis (ii) we take the natural order relation \(\leq \).

Part (B).

We have to show that if \(\alpha \) is the group automorphism from Part (A), then \(\sigma \alpha^{-1} \) operates trivially on the characters which are \(p \)-exceptional.

In CHEVIE, the ordinary generic character tables of \(G_2(q) \) are divided into five cases. In all five cases, only the characters \(\chi_8 \) and \(\chi_9 \) are \(p \)-exceptional.

Note that \(|G| = q^6(q-1)^2(q+1)^2(q^2-q+1)(q^2+q+1) \), and that \(G \) has maximal tori \(H_3 \cong \mathbb{Z}_{q^2+q+1} \) and \(H_6 \cong \mathbb{Z}_{q^2-q+1} \).

\(q \equiv 1(3) \):

Let \(l \) be a rational prime dividing \(q^2-q+1 \). Because of \((q^2-q+1, q-1) = 1 \), \((q^2-q+1, q+1) = 1 \) and \((q^2-q+1, q^2+q+1) = 1 \), a Sylow \(l \)-subgroup of \(H_6 \) is also a Sylow \(l \)-subgroup of \(G \), i.e. all Sylow \(l \)-subgroups of \(G \) are cyclic. Since \(\chi_8 \) and \(\chi_9 \) belong to the principal \(l \)-block and are not \(l \)-exceptional, \(\sigma \alpha^{-1} \) fixes \(\chi_8 \) and \(\chi_9 \) by Lemma 2.14.

\(q \equiv -1(3) \) or \(q \equiv 0(3) \):

Let \(l \) be a rational prime dividing \(q^2 + q + 1 \). Similarly to \(q \equiv 1(3) \) it follows that all Sylow \(l \)-subgroups of \(G \) are cyclic. \(\chi_8 \) and \(\chi_9 \) belong to the principal \(l \)-block and are not \(l \)-exceptional. Thus by Lemma 2.14, \(\sigma \alpha^{-1} \) fixes \(\chi_8 \) and \(\chi_9 \).
This proves Proposition 4.5.

4.4. The finite twisted groups $^3D_4(q^3)$. The finite groups of type 3D_4 are the only missing simple exceptional groups of rank 2. $^3D_4(q^3)$ is simple for all q, and all group automorphisms are generated by inner and field automorphisms.

The generic character tables of $^3D_4(q^3)$ have been determined in [13] and can also be found in CHEVIE.

Proposition 4.6. The conjecture (ZC) is valid for $^3D_4(q^3)$ for all $q=p^m$, p a rational prime and $m \geq 1$.

Proof. Let $G = ^3D_4(q^3)$. Since there exist no ordinary irreducible characters of G which are p-exceptional, it suffices to look at:

Part (A).

The simple modules M_{λ_i} satisfy $\dim(M_{\lambda_1}) = 8$ and $\dim(M_{\lambda_2}) = 28 - 2\delta_{p,2}$, $M_{\lambda_3} \cong M_{\lambda_1}^{\alpha}$ and $M_{\lambda_4} \cong M_{\lambda_1}^{\alpha m}$. By [33, Thm. 1.1], for every simple kG-module M with $1 < \dim(M) < 32$ there exists a group automorphism α of G such that either $M \cong M_{\lambda_1}^{\alpha}$ or $M \cong M_{\lambda_2}^{\alpha}$. Note that [33, Thm. 1.1] shows this for the finite Chevalley groups of type D_4, but by Theorem 2.4, this must also be valid for G. This implies hypothesis (i) of Proposition 2.11.

The weak order \prec for hypothesis (ii) is defined as follows:

Let $\mu_1 = b_1b_2b_3b_4$ and $\mu_2 = c_1c_2c_3c_4$ be two different dominant weights. Then $\mu_1 \prec \mu_2$ if and only if $b_1 + \frac{3}{2}b_2 + b_3 + b_4 < c_1 + \frac{3}{2}c_2 + c_3 + c_4$, or $b_1 + \frac{3}{2}b_2 + b_3 + b_4 = c_1 + \frac{3}{2}c_2 + c_3 + c_4$ and $b_2 < c_2$. Similarly to the case $\text{SL}(3,q)$, it follows that $\mu_1 \leq \mu_2$, $\mu_1 \neq \mu_2$ implies $\mu_1 \prec \mu_2$ and $\mu_2 \neq \mu_1$.

This proves Proposition 4.6.

The Propositions 3.1, 4.2, 4.4, 4.5 and 4.6 together with the results of [4] prove Theorem 2.

Altogether the conjecture (ZC) is valid for the following finite groups of Lie type:

- $\text{SL}(2,p^m)$, p a rational prime
- $^2B_2(2^{2m+1})$, $^2G_2(3^{2m+1})$, $^2F_4(2^{2m+1})$
- $\text{SL}(3,p^m)$, p a rational prime
- $\text{SU}(3,p^{2m})$, p a rational prime
- $\text{PSL}(3,p^m)$, p a rational prime
- $G_2(p^m)$, p a rational prime
- $^3D_4(p^{3m})$, p a rational prime.
Acknowledgments. The results of this paper except for the results concerning the series of type A_2, 2A_2 and B_2 originate in my Ph.D. thesis [3]. I would like to express my thanks to Prof. Dr. W. Kimmerle and Prof. Dr. K.W. Roggenkamp for their continuous support.

References

Received August 21, 1997 and revised February 9, 1998.

SOUTHERN ILLINOIS UNIVERSITY
CARBONDALE, IL 62901-4408
E-mail address: fbleher@math.siu.edu