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In this paper, it is proven that a conjecture of Zassenhaus
is valid for all finite simple groups of Lie type of rank 1 and
of rank 2 which are not of type 2A3 or 2A4. In particular,
this conjecture holds for all finite simple groups with abelian
Sylow 2–subgroups.

1. Introduction.

One of the key problems in the representation theory of finite groups is to
represent a given finite group G in a suitable way. To do so, invariants
which classify G up to isomorphisms are determined. One of the questions
derived in this context is the so-called Isomorphism Problem (IP), which
asks whether the existence of an isomorphism between the integral group
algebras ZG and ZH implies that G and H are isomorphic. In the seventies,
Zassenhaus conjectured a stronger version of (IP) describing the structure
of the group of units V (ZG) of ZG with augmentation 1:

(ZC). Any two subgroups X, Y of V (ZG) which have the same order as
G are conjugate by a unit of QG.

The conjecture (ZC) is not true in general, as was shown by Roggenkamp
and Scott who constructed a metabelian counter-example [38, IX §1]. Note
that since this counter-example is a metabelian group, (IP) is still valid for
this group. Recently, Hertweck also found a counter-example to the general
validity of (IP) which is a soluble group [18].

Nevertheless, it still remains an interesting question for which classes of
finite groups (ZC) is valid. Roggenkamp and Scott showed that (ZC) is valid
for groups whose generalized Fitting subgroup is a p-group [37]. Moreover,
Weiss was able to show that for nilpotent groups each finite subgroup of
V (ZG) is conjugate to a subgroup of G by a unit of QG [45, 46]. In case
G is soluble, Čech style cohomology sets can be used to get obstructions for
(ZC) to be true [30].

For finite simple groups however, new methods have to be developed to
examine (ZC). In [4] it is proven that (ZC) is valid for all minimal simple
groups and for all simple Zassenhaus groups. But it is still an open question
whether the conjecture (ZC) is valid for all finite simple groups.
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If G is finite simple, then (IP) has always a positive solution [29, Thm.
2.3]. Furthermore, from [5, Thm. 1] it follows that (IP) is valid for all finite
groups of Lie type GF , where G is a simply connected simple algebraic group
over an algebraically closed field of finite characteristic and F is a Frobenius
map in the sense of [8, §1.17]. Note that these groups GF are certain central
extensions of the finite simple groups of Lie type. In general, if (IP) holds
for G, (ZC) is equivalent to the following description of the group Autn(ZG)
of augmentation preserving ring automorphisms of ZG:

(ZCAut). Every σ ∈ Autn(ZG) can be written as σ = τ ◦ α, where α
is the Z–linear extension of a group automorphism of G and τ ∈ Autn(ZG)
fixes the class sums of G.

Thus, if (IP) is valid for G, the structure of certain ring automorphisms
of ZG can be used to study the group of units V (ZG). Since (IP) has
a positive solution for all groups considered in this paper, we will always
examine (ZCAut) to verify (ZC).

The main results of this paper are the following two theorems:

Theorem 1. The conjecture (ZC) is valid for all finite simple groups with
abelian Sylow 2-subgroups.

Theorem 2. The conjecture (ZC) is valid for all finite simple groups of Lie
type of rank 1 and of rank 2, which are not isomorphic to the unitary groups
PSU(4, q2) and PSU(5, q2).

Note that because of the close relationship of the ordinary and modu-
lar representation theory of linear and unitary groups (see [26] and [43]),
PSU(4, q2) and PSU(5, q2) should be examined together with the groups
PSL(4, q) and PSL(5, q).

To prove these statements we use ordinary and modular representation
theory. In particular, modular representations in the defining characteristic
as described by Steinberg’s tensor product theorem [43] play an important
role. Here the knowledge of the action of σ ∈ Autn(ZG) on tensor products
as given in [4, Prop. 2.1] is essential. Furthermore, we need to examine
the generic ordinary character tables of the considered groups. Except for
the groups 2F4(q2), these character tables can be found in [9], [13], [14],
[15], [16], [34] ,[41], [42], or [44]. All character tables are also given in
the computer algebra program CHEVIE [17] which provides generic ordi-
nary character tables for several series of finite groups of Lie type of small
rank. Furthermore, in CHEVIE known character tables have been verified,
mistakes have been corrected and the data has been completed.

The article is organized as follows: In Section 2, we state basic results and
techniques which are needed to prove the theorems. In particular, we show
that if G is a finite simple group of Lie type with defining characteristic
p, or a certain central extension, then the action of σ ∈ Autn(ZG) on the
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p-modular character table commutes with the operation induced by field
automorphisms. In Section 3, the validity of (ZC) for the finite Ree groups
of type F4 and G2 is proved. This establishes, together with the results of
[4], Theorem 1. Section 4 is then dedicated to the proof of Theorem 2. Note
that in [4] it is already shown that (ZC) is valid for the groups SL(2, q),
PSL(2, q) and 2B2(q2) for all possible prime powers q.

The notations used are mainly standard, see for example [11]. The set of
the conjugacy classes of G is denoted by Cl(G), Cl(g) is the conjugacy class
of g ∈ G, and Cl(Gp′) denotes the set of the conjugacy classes of p-regular
elements of G. Suppose (K, R, k) is a p-modular system with K sufficiently
large relative to G and char(K) = 0. Thus both K and k are splitting
fields for G. Then the set of the ordinary irreducible characters Irr(G) is
identified with the set of the characters afforded by simple KG-modules. The
irreducible Brauer characters IBr(G) are the irreducible Brauer characters
with respect to (K, R, k).

2. Preliminaries.

In this section, we want to provide basic results and techniques needed to
prove the Theorems 1 and 2.

Suppose G is an arbitrary finite group and (K, R, k) is a p-modular sys-
tem with K sufficiently large relative to G. Given σ ∈ Autn(ZG), σ induces
augmentation preserving algebra automorphisms σ ∈ Autn(KG), respec-
tively σ ∈ Autn(kG), because there are ring homomorphisms from Z to K,
respectively k. Then σ defines an autoequivalence of the category of finitely
generated KG-modules, respectively kG-modules, by mapping a module M
to Mσ. The twisted module Mσ is defined to be equal to M as vector
space, but g ∈ G operates on Mσ as σ(g). Thus σ induces an operation
on the ordinary characters, respectively Brauer characters, of G. Because σ
also induces a class sum correspondence [38, IV], i.e. σ maps class sums to
class sums, σ defines also an action on the conjugacy classes of G. These
two actions are compatible in the sense that σ induces a character table
automorphism of the ordinary, respectively p-modular, character table of G.
This means that for all χ ∈ Irr(G), ϕ ∈ IBr(G), C ∈ Cl(G) and C ′ ∈ Cl(Gp′)

χσ(C) = χ(Cσ)
ϕσ(C ′) = ϕ(C ′σ).

Furthermore, the operation of σ on characters commutes with tensor prod-
ucts:

Proposition 2.1 ([4, Prop. 2.1]). Let ξ and ζ be two ordinary characters,
respectively Brauer characters, then

(ξ ⊗ ζ)σ = ξσ ⊗ ζσ.
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By [28, Thm. V.1(c)], it follows that σ preserves also the power map in
the sense that

(Cn)σ = (Cσ)n

for all positive integers n. Note that if C = Cl(g), then Cn = Cl(gn).
The operation on the ordinary character table induced by σ ∈ Autn(ZG)

yields a statement which is equivalent to (ZCAut):

Lemma 2.2. The conjecture (ZCAut) is valid for G if and only if for every
σ ∈ Autn(ZG) there exists α ∈ Aut(G) such that σ and α induce the same
character table automorphism on the ordinary character table of G.

Thus Lemma 2.2 provides a necessary and sufficient criterion for the va-
lidity of (ZCAut) which uses only the ordinary character table and its au-
tomorphisms.

For the remainder of the paper, we want to concentrate on finite groups
which are associated to Chevalley groups of universal type over an alge-
braically closed field.

Let GC be a simple Lie algebra over C with Cartan-subalgebra HC. Let
Φ be the root system of GC with respect to HC, and let ∆ = {s1, . . . , sl} be
the corresponding system of fundamental roots.

Suppose k̄ is an algebraically closed field of characteristic p > 0. The sim-
ply connected simple algebraic group, i.e. the Chevalley group of universal
type, G of type Φ over k̄ is generated by {xr(t) | r ∈ Φ, t ∈ k̄} with relations
as in [7, Thm. 12.1.1]. If hs(t) = xs(t)x−s(−t−1)xs(t)xs(−1)x−s(1)xs(−1),
then T = 〈hs(t) | s ∈ ∆, t ∈ k̄〉 is a maximal torus of G.

Since G is simply connected, the group X = X(T) of rational characters
of T is the full lattice of weights, with a basis consisting of the fundamental
weights {λ1, · · · , λl}. Denote by X+ the set

∑
Z+

0 λi of all dominant weights.
There exists a natural partial ordering of X given by µ ≤ λ if λ − µ is a
sum of positive roots. The group X/pX of restricted weights with respect
to p is identified with Xp = {

∑
ciλi | 0 ≤ ci ≤ p− 1}. Given λ ∈ X+, λ can

be written uniquely as λ = µ0 + pµ1 + · · ·+ pm−1µm−1 for a suitable m ≥ 1
with µi ∈ Xp. If Xq = {

∑
ciλi | 0 ≤ ci ≤ q − 1}, q = pm, then it follows

that λ ∈ Xq.
Since GC has a Chevalley basis {er, hs | r ∈ Φ, s ∈ ∆} as C–basis whose

structure constants all lie in Z, we can define GZ to be the Z–lattice spanned
by the Chevalley basis, and Gk̄ = k̄ ⊗Z GZ. Then Gk̄ is a Lie algebra over
k̄, and we denote 1⊗ er and 1⊗ hs again by er and hs. A Gk̄-module M is
called restricted, if ep

r ·m = 0 and hp
s ·m = hs ·m for all r ∈ Φ, s ∈ ∆ and

m ∈ M .
The non-isomorphic irreducible restricted Gk̄-modules, which were de-

scribed by Curtis (see [43, (2.7)]), correspond bijectively to the restricted
weights in Xp. Let M be a full set of representatives of these modules, and
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let Mλ denote the irreducible restricted Gk̄-module in M which corresponds
to λ ∈ Xp.

According to [43, §4] the Gk̄-module Mλ can be lifted to a simple k̄G–
module Mλ which is generated by a maximal vector v+ of highest weight λ.
This means that if we look at the weight spaces Mλ(µ) = {m ∈ Mλ | x ·m =
µ(x) ·m for all x ∈ T}, µ ∈ X, then v+ ∈ Mλ(λ) and xr(t) · v+ = v+ for all
r ∈ Φ+. For all µ ∈ X with Mλ(µ) 6= 0, it follows that µ ≤ λ.

Note that each field automorphism α of k̄ induces a group automorphism
α of G by defining α(xr(t)) = xr(α(t)), r ∈ Φ, t ∈ k̄.

The isomorphism classes of simple k̄G-modules can now be described as
follows:

Theorem 2.3 (Chevalley, Kostant, Steinberg, see [23, §2.1]). Let αi be the
field automorphism of k̄ which is defined by αi(t) = tp

i
. Let λ ∈ X+, such

that λ ∈ Xq for a suitable q = pm, λ = µ0 + pµ1 + · · · + pm−1µm−1 with
µi ∈ Xp. Then

Mλ = Mα0
µ0
⊗k̄ Mα1

µ1
⊗k̄ · · · ⊗k̄ Mαm−1

µm−1

is a simple k̄G–module. All Mλ (λ ∈ X+) are pairwise non-isomorphic and
exhaust the isomorphism classes of simple k̄G-modules.

Let q = pn and let F = GF(q) be the finite subfield of k̄ with q ele-
ments. Then the finite Chevalley group G = G(F ) over F is generated by
{xr(t) | r ∈ Φ, t ∈ F} with the same relations as G. Note: Ḡ = G/center(G)
is a simple group except for the cases SL(2, 2), PSL(2, 3), Sp(4, 2) and G2(2)
[7, Thm. 11.1.2].

The twisted groups are certain subgroups of finite Chevalley groups:
Suppose G is a finite Chevalley group of type Al, l ≥ 2, Dl, l ≥ 4, E6,

or D4, respectively, over a finite field F . Let ω be a nontrivial symmetry
of order e of the Dynkin diagram and let γ be the corresponding graph
automorphism. Let α be a nontrivial field automorphism such that Ω = γα
satisfies Ωe = 1, and let F0 be the subfield of F fixed by α. Note that F is of
the form F = GF(pne) and F0 = GF(pn). If G1 is defined to be the group of
all elements of G fixed by Ω, then G1 is a twisted group of type 2Al, l ≥ 2,
2Dl, l ≥ 4, 2E6, or 3D4, respectively. Ḡ1 = G1/center(G1) is simple except
for PSU(3, 22) [7, Thm. 14.4.1].

The definition of the finite Suzuki and Ree groups is slightly different:
Suppose G is a finite Chevalley group of type B2, G2, or F4, respectively,

over a finite field F which has characteristic 2 for B2 and F4, and charac-
teristic 3 for G2. Let ω be the nontrivial symmetry of the Dynkin diagram
with corresponding graph automorphism γ. Let α be a nontrivial field au-
tomorphism such that Ω2 = 1 for Ω = γα. Note that F is of the form
F = GF(p2m+1), p = 2 or 3. If G1 is the group of all elements of G fixed by
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Ω, then G1 is a Suzuki group if G has type B2, and a Ree group if G has
type G2 or F4. G1 is simple for all positive m [7, Thm. 14.4.1].

Since the k̄G-modules Mλ, λ ∈ Xq, define by restriction k̄G-modules,
respectively k̄G1-modules, we get the following theorem:

Theorem 2.4 ([43, Thm. 7.4, Thm. 9.3 and Thm. 12.2]). Let G be a fi-
nite Chevalley group over GF(pn), or a twisted group of type 2Al, l ≥ 2,
2Dl, l ≥ 4, 2E6, or 3D4 over GF(pne) where e is the order of the symmetry
of the corresponding Dynkin diagram. Then every simple k̄G–module can be
expressed uniquely as a tensor product

Mα0
0 ⊗k̄ Mα1

1 ⊗k̄ · · · ⊗k̄ M
αn−1

n−1 with Mi ∈M.

In case that G is a Suzuki or Ree group of type 2B2, 2G2, or 2F4 over GF(pn),
p = 2 or 3, set X ′

p = {λ =
∑

ciλi ∈ Xp | ci = 0 for all long roots si ∈ ∆}
and M′ = {Mλ | λ ∈ X ′

p}. Then every simple k̄G–module can be expressed
uniquely as a tensor product

Mα0
0 ⊗k̄ Mα1

1 ⊗k̄ · · · ⊗k̄ M
αn−1

n−1 with Mi ∈M′.

Remark 2.5. Let G be a finite Chevalley group, a twisted group or a finite
Suzuki or Ree group.

(i) Since the simple k̄G-modules are given as restrictions of certain simple
modules of the corresponding Chevalley group G of universal type, we
can attach weights λ ∈ X+ to the simple k̄G-modules. If we choose
λ ∈ Xpn , n as in Theorem 2.4, then these weights determine the simple
k̄G-modules uniquely up to isomorphisms. In this sense we will write
the simple k̄G-modules also as Mλ for suitable weights λ ∈ Xpn . Fur-
thermore, the Brauer character corresponding to Mλ will be denoted
by βλ.

(ii) We will also use Mλ to denote the k̄G–module obtained by restriction
of the k̄G–module Mλ in case λ ∈ X+\Xq. Note that then this restric-
tion is not necessarily a simple k̄G–module. Again the corresponding
Brauer character is denoted by βλ.

(iii) The simple modules for the groups Ḡ = G/center(G) are exactly those
simple k̄G–modules on which the center acts trivially.

(iv) For the finite groups the algebraically closed field k̄ can be replaced
by any splitting field of the same characteristic.

We want now to describe some general properties of the considered finite
groups of Lie type which are also important for the proofs of the Theorems
1 and 2.

For the remainder of the paper, we fix the following notation:
Let G be a finite Chevalley group over GF(pn), a twisted group over

GF(pne), or a finite Suzuki or Ree group over GF(pn) as in Theorem 2.4, and
let q = pn. Let Z = center(G) and let Ḡ = G/Z. The group automorphism
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of G induced by the field automorphism t 7→ tp
i
will be denoted by αi. Then

ᾱi with ᾱi(gZ) = αi(g)Z is the corresponding group automorphism of Ḡ.
Let σ ∈ Autn(ZG) and σ̄ ∈ Autn(ZḠ) be arbitrary elements.

Let (K, R, k) be a p-modular system with K sufficiently large relative to
G such that k̄ is an algebraic closure of k. Since k is a splitting field for G,
the isomorphism classes of simple kG-modules can be identified with those
of simple k̄G-modules. Let G be the Chevalley group of universal type over
k̄ corresponding to G.

Lemma 2.6. The action of σ on the simple kG-modules S commutes with
the action of αi for all i, i.e. Sσαi ∼= Sαiσ for all i. The action of αi on the
p-regular conjugacy classes of G is given by Cl(g) 7→ Cl(gpi

).

Proof. Because of Proposition 2.1 and Theorem 2.4, it suffices to show this
for the simple modules M ∈ M or M′, respectively. Consider M as a
k̄G-module. Thus we have to show Mαiσ ∼= Mσαi as k̄G-modules.

Suppose ρ : G → GL(m, k̄) is the representation corresponding to M
as a k̄G-module. Let νi be the automorphism of GL(m, k̄), which maps a
matrix (ars) to (api

rs). Then, if M (i) denotes the module corresponding to
the representation νi◦ρ, we get Mαi ∼= M (i) as k̄G-modules (see for example
[31, Prop. 5.4.2.(i)]). A simple matrix calculation shows that, if ξ1, . . . , ξm

are the eigenvalues of ρ(g), then ξpi

1 , . . . , ξpi

m are the eigenvalues of νi(ρ(g))
and of ρ(gpi

).
If ϕ is the Brauer character corresponding to ρ, and ϕ(i) is the Brauer

character corresponding to νi ◦ ρ, then it follows that

ϕαi(g) = ϕ(i)(g) = ϕ(gpi
)(2.1)

for all p-regular elements g ∈ G.
Since Equation (2.1) is valid for all Brauer characters of G by Proposi-

tion 2.1, and since g 7→ gpi
is a permutation of the p-regular elements, the

permutation of the p-regular conjugacy classes of G corresponding to αi is
given by Cl(g) 7→ Cl(gpi

).
Since σ preserves the power map, i.e. (Ca)σ = (Cσ)a for all conjugacy

classes C = Cl(g) and Ca = Cl(ga), it follows that ϕαiσ = ϕσαi and there-
fore, Mαiσ ∼= Mσαi for all M ∈M or M′, respectively. �

Corollary 2.7. The operation of ᾱi on the p-regular conjugacy classes of
Ḡ is given by Cl(ḡ) 7→ Cl(ḡpi

). In particular, it follows that Sσ̄ᾱi ∼= Sᾱiσ̄ for
all simple kḠ-modules S.

Proof. By Lemma 2.6, αi(Cl(g)) = Cl(gpi
), i.e. αi(g) is conjugate to gpi

in G for all p-regular elements g ∈ G. Therefore, ᾱi(gZ) is conjugate to
(gZ)pi

in Ḡ, i.e. ᾱi(ḡ) is conjugate to ḡpi
for all p-regular elements ḡ ∈ Ḡ.

Thus we have that ᾱi(Cl(ḡ)) = Cl(ḡpi
). Because ḡ 7→ ḡpi

is a permutation
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of the p-regular elements of Ḡ and because σ̄ preserves the power map, the
corollary follows. �

With respect to the weights of tensor products we have the following
result.

Lemma 2.8. Let λ, µ ∈ X+, and let Mλ and Mµ be the two (not necessarily
simple) kG-modules which are restrictions of the corresponding simple k̄G-
modules. Then Mλ+µ is a factor module of Mλ ⊗Mµ as kG-modules. Fur-
thermore, as k̄G-modules, λ+µ is the highest weight occurring in Mλ⊗Mµ.

Suppose now that Mλ and Mµ are simple kG-modules with λ, µ ∈ Xq. If
Mλ⊗Mµ is also a simple kG-module then Mλ⊗Mµ

∼= Mλ+µ as kG-modules.
Since λ + µ ∈ Xpq, it follows that λ + µ = ν0 + qν1 for appropriate ν0 ∈ Xq

and ν1 ∈ Xp. Thus

Mλ+µ
∼= Mν0 ⊗Mαn

ν1

as kG-modules. Note that Mαn
ν1

∼= Mν1 if G is a finite Chevalley group or a
Suzuki or Ree group. Otherwise Mαn

ν1
∼= Mω−1(ν1) where ω is the symmetry

of the Dynkin diagram in the definition of the twisted groups.

Proof. Let λ, µ ∈ X+. Then there exist maximal vectors v, respectively w,
of highest weight λ, respectively µ, in the k̄G-module Mλ, respectively Mµ.
By [22, §31.4], v ⊗w is then a maximal vector of the k̄G-module Mλ ⊗Mµ

of weight λ+µ, which is the highest weight occurring in Mλ⊗Mµ. So Mλ+µ

is a factor module of Mλ ⊗Mµ as k̄G-modules and thus as kG-modules.
Let now λ, µ ∈ Xq. If Mλ ⊗Mµ is simple as a kG-module then Mλ ⊗Mµ

is also simple as a k̄G-module. Thus Mλ ⊗Mµ is simple with weight λ + µ.
Since λ, µ ∈ Xq and 2(q − 1) ≤ pq − 1, it follows that λ + µ = ν0 + qν1

for appropriate ν0 ∈ Xq and ν1 ∈ Xp. Thus Mλ+µ
∼= Mν0 ⊗k Mαn

ν1
as

kG-modules. �

We want now to outline the strategy to prove the conjecture (ZC) for
certain G and Ḡ.

Definition 2.9. Denote by X̄+ all dominant weights λ ∈ X+ such that
Mλ is a kḠ-module. In case that G is a Suzuki or a Ree group, let X+′ =
{λ =

∑
ciλi ∈ X+ | ci = 0 for all long roots si ∈ ∆}. Let Y + be either

X+, X+′, or X̄+.
(i) A relation ≺ on Y + is called a weak order if ≺ is reflexive and transi-

tive.
(ii) An allowable system on Y + is a subset R ⊆ Y + such that all λ ∈ Y +

can be written as

λ =
∑
ρ∈R

dρρ

for a unique choice of integers dρ ≥ 0.
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(iii) Let R be an allowable system and ≺ a weak order on Y +. Then ≺ is
called an allowable weak order if the following properties are fulfilled:

(a) If λ ∈ {0} ∪R and µ ∈ Y + with µ ≺ λ, then µ ∈ {0} ∪R.
(b) If µ1 ≤ µ2 and µ1 6= µ2, it follows that µ1 ≺ µ2 and µ2 6≺ µ1.
(c) If λ =

∑
dρρ is a dominant weight with λ 6∈ {0} ∪ R, then there

exists ρ0 ∈ R with ρ0 ≺ λ and λ− ρ0 ≺ λ, but λ 6≺ λ− ρ0.

Remark 2.10. (i) If ≺ is a weak order on Y + then we can define an
equivalence relation ∼ on Y + by

λ ∼ µ ⇔ λ ≺ µ and µ ≺ λ.

Then ≺ defines a partial ordering of Y +/ ∼, the equivalence classes of
Y + with respect to ∼.

(ii) For Y + = X+ (respectively X+′) we can and will always choose the
fundamental weights λi ∈ Xp (respectively X ′

p) as allowable system.
(iii) Definition 2.9 is written in this generality since we want to prove (ZC)

for groups G and Ḡ.
(iv) The order relation ≤ on X+ does not always fulfill property (c). For

example, for SL(3, q), λ1 6≤ λ1 + λ2 and λ2 6≤ λ1 + λ2.

The following proposition plays an important role in the examination of
(ZC).

Proposition 2.11. Let (H,Y +) be either (G, X+), (G, X+′), or (Ḡ, X̄+),
let τ be either σ or σ̄, and let R be an allowable system of Y +. Suppose

(i) there exists a group automorphism α ∈ Aut(H) with M τ
ρ
∼= Mα

ρ for all
ρ ∈ R, and

(ii) there exists an allowable weak order ≺ on Y +.
Then τ and α induce the same operation on the p-modular character table
of H.

Proof. We have to show that βτ
λ = βα

λ for all λ ∈ Y + ∩Xq.
By (i) there exists a group automorphism α such that βτ

ρ = βα
ρ for all

ρ ∈ R. Thus, by property (a) of ≺, the statement is valid for the smallest
weights with respect to ≺.

Let now λ ∈ Y +, λ 6∈ {0} ∪ R. Suppose βτ
µ = βα

µ for all µ ∈ Y + with
µ ≺ λ and λ 6≺ µ, which means, by property (b) of ≺, in particular for all
µ ∈ Y + with µ ≤ λ, µ 6= λ. By property (c), there exists ρ0 ∈ R such
that µ1 = ρ0 ≺ λ, and µ2 = λ − ρ0 ≺ λ, but λ 6≺ µ2. Thus βτ

µs
= βα

µs
for

s ∈ {1, 2}. By Lemma 2.8, βµ1 ⊗ βµ2 can be written as

βµ1 ⊗ βµ2 =
∑

ν∈Y +

aνβν with aν ≥ 0

such that aλ 6= 0 and ν ≤ λ for all other ν ∈ Y + with aν 6= 0. Using
Proposition 2.1, it follows that βτ

λ = βα
λ . �
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Remark 2.12. (i) Proposition 2.11 implies that τ operates as α on all
ordinary irreducible characters which are not p-exceptional. Note that
a character χ ∈ Irr(H) is called p-exceptional, if there exists another
character χ′ ∈ Irr(H) such that χ and χ′ have the same values on the
p-regular classes of H.

(ii) All group automorphisms of G, respectively Ḡ, are given as the com-
position of an inner, a diagonal, a graph and a field automorphism [7,
Thm. 12.5.1]. Since the inner and diagonal automorphisms operate
trivially on the p-regular classes, α can be chosen as the composition
of a graph and a field automorphism.

Let H, τ and α be as in Proposition 2.11. Then τα−1 operates trivially on
all ordinary irreducible characters which are not p-exceptional. We will use
ad-hoc techniques to refine α to a group automorphism β of H such that
τβ−1 fixes also all p-exceptional characters. Using Lemma 2.2 this then
implies that (ZC) is valid for H.

In this context, l-blocks of H which have cyclic defect groups and their
corresponding Brauer trees are important. Note that usually the prime l is
different from p.

There are two interpretations of the Brauer tree corresponding to a block
B with cyclic defect groups. One approach is to define the Brauer tree by
only using the category of finitely generated B-modules. This is described
in [1, Chapter V]. The other possibility is to define the Brauer tree using
the decomposition map. This follows from Brauer’s and Dade’s theory of
blocks with cyclic defect groups (see [12]). By [12, Thm. 1] it follows that
these two definitions coincide. As a reference for both interpretations of the
Brauer tree of B use for example [6].

With respect to the operation of τ on the Brauer trees corresponding to
l-blocks with cyclic defect groups, we need the following two results. Note
that τ permutes the l-blocks of H.

Lemma 2.13. Let B be an l-block of H with cyclic defect groups such that
τ fixes B. Then τ induces a graph automorphism of the Brauer tree of B
which is either trivial or a rotation.

Proof. This follows from [6, Prop. 3.7] and the proof of [6, Cor. 3.9]. �

Lemma 2.14 ([6, Cor. 3.10]). Let H have cyclic Sylow l-subgroups and let
B be the principal l-block. If χ ∈ Irr(H) belongs to B and if χ is not l-
exceptional, then τ fixes χ.

We use these two lemmas in the following way. To refine α of Proposition
2.11, we want to show that τα−1 operates on the p-exceptional characters as
the power of a diagonal automorphism. In case all diagonal automorphisms
of H are inner, we use Lemma 2.14 for certain l to show that τα−1 fixes all
p-exceptional characters. In the case of the Ree groups of type F4, Lemma
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2.13 is used to eliminate operations on characters which are not induced by
group automorphisms.

In case that H has a nontrivial diagonal automorphism δ, the characters
permuted by δ have to be examined separately. Here we use, if necessary,
Lemma 2.13 to study all possible operations on Brauer trees which contain
such characters.

Remark 2.15. (i) To determine the p-exceptional characters we use
mostly the generic character tables provided in CHEVIE [17]. As out-
lined in the introduction there are literature references for most of the
considered tables, which are either verified or corrected in CHEVIE.

(ii) In the examination of the p-exceptional characters, these characters
are decomposed into a union of pairwise disjoint subsets such that all
characters which have the same values on the p-regular classes are in
one such subset.

(iii) When Brauer trees are given, a black circle • denotes the exceptional
vertex.

According to the above described strategy, the proofs of the validity of
(ZC) for certain G (respectively Ḡ) will always be divided into two parts:

(A) Operation of σ (respectively σ̄) on the p-modular character table.
Here we only have to check the hypotheses of Proposition 2.11.

(B) Operation of σ (respectively σ̄) on the p-exceptional characters.
Here we use ad-hoc arguments together with Lemmas 2.13 and 2.14.

The proofs involve the following Dynkin diagrams: A2, B2, G2, D4, F4.
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A2: d d
λ1 λ2

B2: d d>
λ1 λ2

G2: d d>
λ1 λ2

D4: d d
d
d

��
��

H
HHH

λ1 λ2

λ4

λ3

F4: d d d d>
λ1 λ2 λ3 λ4

The arrow always points to the shorter roots.
A weight λ =

∑
ciλi will be denoted by λ = c1 · · · cl.

3. The Ree groups 2G2(q2) and 2F4(q2).

In this section, we want to prove that (ZC) is valid for the finite Ree groups
of type G2 and F4, and thus establish Theorem 1.

The Ree groups 2G2(q2) and 2F4(q2) are simple except for 2G2(3) and
2F4(2); their automorphisms are given by inner and field automorphisms.
The generic ordinary character table of 2G2(32m+1) was mostly determined
by Ward in [44]. Shinoda described the conjugacy classes of 2F4(22m+1) in
[40]. The complete ordinary character table of 2G2(32m+1) can be found in
CHEVIE; most of the character table of 2F4(22m+1) and all Green functions
are also listed there.

Proposition 3.1. (i) The conjecture (ZC) is valid for 2G2(q2) for all
q2 = 32m+1, m ≥ 1.

(ii) The conjecture (ZC) is valid for 2F4(q2) for all q2 = 22m+1, m ≥ 1.

Proof. Let G = 2G2(q2) or G = 2F4(q2), respectively.
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Part (A).

(i) X ′
p = {00, 01, 02} with dim(M01) = 7 and dim(M02) = 27. Because of

dimensions, there exists 0 ≤ i ≤ 2m with Mσ
01
∼= Mαi

01 . Since ≤ defines
an allowable weak order ≺ on X+, the hypotheses of Proposition 2.11
are satisfied.

(ii) X ′
p = {0000, 0010, 0001, 0011} with dim(M0001) = 26, dim(M0010) =

246 and dim(M0011) = 4096. Because of dimensions, there exist 0 ≤
i, j ≤ 2m with Mσ

0001
∼= Mαi

0001 and Mσ
0010

∼= M
αj

0010. We have to show
that i = j. If i 6= j then σ maps the simple module M

α2m+1−i

0001 ⊗
M

α2m+1−j

0010 to M0001 ⊗ M0010. This implies that M0001 ⊗ M0010 must
be simple, thus by Lemma 2.8 of weight 0011. A comparison of the
dimensions shows that this is impossible. Thus it follows that i = j
which yields hypothesis (i) of Proposition 2.11. ≤ defines again an
allowable weak order ≺ on X+, which is hypothesis (ii).

Part (B).

(i) G does not have any nontrivial diagonal automorphisms, thus we
have to show that σα−1

i , αi from Part (A), fixes all ordinary char-
acters which are p-exceptional. The generic character table given in
CHEVIE shows that there are exactly 6 unipotent characters which
are p-exceptional: Using the notation of [20], these characters corre-
spond to {ξ3, ξ4}, {ξ5, ξ6} and {ξ7, ξ8}. If l > 3 is a rational prime
which divides |G|, then G has cyclic Sylow l-subgroups [25, XI Thm.
13.2]. By [20, Thm. 4.2], ξ5, ξ6 and ξ7, ξ8 lie in the principal l-block
for l|(q2 + 1) and are not l-exceptional. By [20, Thm. 4.3], ξ3, ξ4 and
ξ5, ξ6 lie in the principal l-block for l|(q2 +

√
3q + 1) and are not l-

exceptional. Thus, by Lemma 2.14, σα−1
i fixes all ordinary characters,

which proves Proposition 3.1(i).
(ii) Since the generic character table of G given in CHEVIE is not com-

plete, we have to look at this case more carefully. Again we have
to show that σα−1

i operates trivially on the characters which are p-
exceptional.

Let G be the Chevalley group of universal type of type F4 over
k̄, and let F be the Frobenius map (notation used as in [8, §1.17])
with GF = G. Using the Jordan decomposition for characters, the
ordinary irreducible characters of G can be described as follows (cf.
[8, §12.9]): Since the Ree groups are self-dual, the characters of G
are parametrized by G-conjugacy classes of pairs (s, λ) where s is a
semisimple element of G and λ is a unipotent character of CG(s). This
character is then denoted by χs,λ. Since G is self-dual, the G-conjugacy
classes of semisimple elements of G correspond to geometric conjugacy
classes.
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We use the notation in [40] for the 11 conjugacy classes of the max-
imal tori and the representatives of the semisimple conjugacy classes,
i.e. of the semisimple class types. Note that the G-conjugacy classes of
the maximal tori T of G are uniquely determined by the isomorphism
type of TF .

In CHEVIE, all ordinary irreducible characters of G can be found
except for those corresponding to the semisimple representatives t7, t9,
t12 and t13. From the part of the character table given in CHEVIE we
can read off the following:

Exactly 10 of the unipotent characters are p-exceptional. These are,
using the notation of [20], {ξ5, ξ6}, {ξ7, ξ8}, {ξ15, ξ16}, {ξ17, ξ18} and
{ξ19, ξ20}. By [20, Thm. 4.6 and Thm. 4.7] and Lemma 2.14, σα−1

i
operates trivially on these 10 unipotent characters.

Looking at the other characters listed in CHEVIE, {χ23(k), χ24(k)}
are p-exceptional for all parameters k. According to the Jordan decom-
position, the characters χ22(k) through χ25(k) belong to the semisim-
ple class type t1. If s is the representative of the G-conjugacy class of
type t1 corresponding to k, then CG(s) ∼= Zq2−1× 2B2(q2). Thus there
are four possibilities for λ, namely the unipotent characters of 2B2(q2):
1, µ, µ̄ and St. Therefore we have the correspondence χ22(k) ↔ χs,1,
χ23(k) ↔ χs,µ, χ24(k) ↔ χs,µ̄ and χ25(k) ↔ χs,St.

For a rational prime l|(q2 −
√

2q + 1), we have the following Brauer
trees for such s [19, Satz D.3.9]:

b b s b
b

��

@@

χs,1 χs,St

χs,µ

χs,µ̄

Thus, by Lemma 2.13, σα−1
i cannot induce the permutation (χs,µ, χs,µ̄)

which means that σα−1
i cannot permute χ23(k) and χ24(k).

There are similar Brauer trees for the semisimple class types t7 and
t9. We have CG(t7) ∼= Zq2−

√
2q+1 ×

2B2(q2), CG(t9) ∼= Zq2+
√

2q+1 ×
2B2(q2). For each G-conjugacy class of s of type t7 or t9, there are
again 4 characters χs,1, χs,µ, χs,µ̄ and χs,St. The Brauer trees are then
as follows:

For s of type t9 and l|(q2−
√

2q +1), we get a tree analogous to the
one for s of type t1 [19, Satz D.3.9].

For s of type t7 and l|(q2 +
√

2q + 1), the Brauer trees look like [19,
Satz D.3.10]:

b b s
b

b
χs,1 χs,St

χs,µ

χs,µ̄
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Thus, by Lemma 2.13, σα−1
i cannot permute χs,µ and χs,µ̄ for s of

type t7 or t9.
It remains to show that σα−1

i operates trivially within each row of
the ordinary generic character table.

This is clear for all the characters listed in CHEVIE except for those
corresponding to the semisimple class type t1. Thus we have to look
at the characters corresponding to the semisimple types t1, t7, t9 and
t12, t13.

Since t12 and t13 are regular, i.e. the corresponding characters are of
the form ±RT,θ with T of type T (6) for t12 and of type T (7) for t13 and
suitable θ in general position, the claim follows almost immediately.

For s of type t = t1, t7 or t9, respectively, we look at χs,1 + χs,St.
If s and s′ belong to different G-conjugacy classes of type t, it follows
that (χs,1 + χs,St)

∣∣∣
Gp′

6= (χs′,1 + χs′,St)
∣∣∣
Gp′

. Thus it follows that either

(χs,1)
∣∣∣
Gp′

6= (χs′,1)
∣∣∣
Gp′

or (χs,St)
∣∣∣
Gp′

6= (χs′,St)
∣∣∣
Gp′

. Therefore σα−1
i

either does not permute χs,1 and χs′,1 or it does not permute χs,St and
χs′,St. Using the above Brauer trees, χs,1, χs,µ, χs,µ̄ and χs,St lie in the
same Brauer tree of an l-block and are not l-exceptional. Thus σα−1

i
operates trivially on the rows of the generic ordinary character table
corresponding to the semisimple class type t.

This proves Proposition 3.1(ii).
�

Remark 3.2. The conjecture (ZC) is also valid for the simple Tits group
2F4(2)′, which is the normal subgroup of 2F4(2) of index 2. Since the proof
uses different methods from those described here, we state this result without
proof.
Proof of Theorem 1. The simple groups with abelian Sylow 2-subgroups
have been classified by Walter [25, XI Thm. 13.7]. These are PSL(2, 2f ) for
f ≥ 1, PSL(2, q) for q = pf , q 6= 3, with q ≡ 3 (8) or q ≡ 5 (8), the Janko
group J1 and the finite Ree groups of type G2.

The validity of (ZC) for PSL(2, pf ) for arbitrary rational primes p has
been proved in [4, Prop. 3.2 and Prop. 4.1]. The theory of principal blocks
with cyclic defect groups together with Lemma 2.14 shows that (ZC) holds
for J1. Thus, together with Proposition 3.1(i), Theorem 1 follows.

4. Finite groups of Lie type of rank 2.

In this section we want to deal with finite Chevalley groups and twisted
groups of rank 2. This will especially prove Theorem 2.
4.1. The linear and unitary groups SL(3, q), PSL(3, q), SU(3, q2) and
PSU(3, q2). The groups SL(3, q) are simple for q 6≡ 1 (3), and SU(3, q2) are
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simple for q 6≡ −1 (3). In these cases, the group automorphisms are gener-
ated by inner, graph and field automorphisms. In all other cases, there also
exist diagonal automorphisms. The ordinary generic character tables have
been determined in [41] and can also be found in CHEVIE. We first prove
the following:

Proposition 4.1. The conjecture (ZC) is valid for SL(3, q) and SU(3, q2)
for all q = pm, where p is a rational prime and m ≥ 1.

Proof. Let G = SL(3, q) or G = SU(3, q2), respectively.
Part (A).
By [33, Thm. 1.1], all simple kG-modules with dimension smaller than

or equal to 5 are of the form M
αj

10 or M
αj

01 for some j. Note that if γ is
the nontrivial graph automorphism for G = SL(3, q), and if γ is the field
automorphism αm for G = SU(3, q2), then Mγ

10
∼= M01. Furthermore, since

in case G = SL(3, q), γ operates on the conjugacy classes as (Cl(g))γ =
Cl(g−1) and since σ preserves the power map, the action of σ on the p-
modular Brauer characters commutes with the action of γ. This implies
hypothesis (i) of Proposition 2.11. The weak order ≺ on X+ for hypothesis
(ii) is defined as follows:

Let µ1 = b1b2 and µ2 = c1c2 be two dominant weights. Then µ1 ≺ µ2 if
and only if b1 + b2 ≤ c1 + c2. To show that ≺ is allowable, we only have to
show that µ1 ≤ µ2, µ1 6= µ2 implies µ1 ≺ µ2 and µ2 6≺ µ1. If s1 and s2 are
the fundamental roots corresponding to 10 and 01, then we have

10 = 1
3 (2 · s1 + s2),

01 = 1
3 ( s1 + 2 · s2).

Thus it follows that µ1 ≤ µ2 if and only if

2b1 + b2 ≤ 2c1 + c2,

b1 + 2b2 ≤ c1 + 2c2,

and 2(c1 − b1) + (c2 − b2) and (c1 − b1) + 2(c2 − b2) are multiples of 3. This
implies that b1 +b2 ≤ c1 +c2. If b1 +b2 = c1 +c2 and µ1 6= µ2, then µ1 6≤ µ2.
Thus µ1 ≤ µ2, µ1 6= µ2 implies µ1 ≺ µ2 and µ2 6≺ µ1.

Part (B).
G has only p-exceptional characters if q ≡ 1 (3) and G = SL(3, q) or if

q ≡ −1 (3) and G = SU(3, q2).
Let now G = SL(3, q) and q ≡ 1 (3). In the notation of CHEVIE,

there are 9 characters which are p-exceptional: {χ6, χ7, χ8}, {χ11, χ12, χ13}
and {χ14, χ15, χ16}. The following actions on these characters are induced
by group automorphisms: There exists a diagonal automorphism δ with
operation δ̃ = (χ6, χ7, χ8)(χ11, χ12, χ13)(χ14, χ15, χ16). Note that we use
here cycle notation. For the graph automorphism γ we get as operation
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γ̃ = (χ11, χ14)(χ12, χ15)(χ13, χ16). If p ≡ 1 (3), we get for the field automor-
phism α1 the same operation as for γ. We want to show that the operations
on the 9 p-exceptional characters generated by group automorphisms of G
are the only operations that can be induced by σ. Note that if χ11 and
χ14 are permuted then this induces a nontrivial operation on the p-regular
classes. On the other hand δ operates trivially on the p-regular classes.
Thus we only have to show that all operations on these 9 characters in-
duced by σ are generated by π1 = (χ6, χ7, χ8)(χ11, χ12, χ13)(χ14, χ15, χ16)
and π2 = (χ11, χ14)(χ12, χ15)(χ13, χ16).

Note that |G| = q3(q − 1)2(q + 1)(q2 + q + 1). By [24, II Satz 7.3], G
has a cyclic subgroup of order q2 + q + 1. If l 6= 3 is a rational prime
which divides q2 + q + 1, then all Sylow l-subgroups are cyclic because
(q2 +q+1, q−1) = 1 and (q2 +q+1, q+1) = 1. The characters χ11 through
χ16 are not l-exceptional and lie in the following Brauer trees:

b s b
b

��

@@

χ11

χ13

χ12

b s b
b

��

@@

χ14

χ16

χ15

By Lemma 2.13, it follows that all operations on the characters χ11, χ12,
χ13, χ14, χ15, χ16 induced by σ are generated by π1 and π2. Because of the
corresponding operations of π1 and π2 on the conjugacy classes, this also
follows for the characters χ6, χ7, χ8.

For G = SU(3, q2) and q ≡ −1 (3), the argumentation is similar. Here we
use that SU(3, q2) has a cyclic subgroup of order q2 − q + 1 [32, Satz 4.2].

This proves Proposition 4.1. �

For the groups PSL(3, q) and PSU(3, q2) we get a similar result. Note that
PSL(3, q) and PSU(3, q2) are simple except for PSU(3, 22) ∼= (Z3 × Z3).Q8.

Proposition 4.2. The conjecture (ZC) is valid for PSL(3, q) and PSU(3, q2)
for all q = pm, where p is a rational prime and m ≥ 1.

Proof. Let Ḡ = PSL(3, q) or Ḡ = PSU(3, q2), respectively. Let γ̄ be the non-
trivial graph automorphism if Ḡ = PSL(3, q), and γ̄ = ᾱm if Ḡ = PSU(3, q2).
Since we can use the same argumentation as in Proposition 4.1 to deal with
the characters which are p-exceptional, we only have to look at:

Part (A).
The modules Mλ, λ = a1a2 ∈ Xq, are simple kḠ-modules if and only if

a1+2a2 ≡ 0 (3). This follows by looking at the center of SL(3, q) or SU(3, q2)
as described in [7, §12.1].

Let now λ = a1a2 with a1 +2a2 ≡ 0 (3). Then λ = a1 · 11+ 1
3(a2−a1) · 03

if a1 ≤ a2 and λ = a2 · 11 + 1
3(a1 − a2) · 30 if a2 ≤ a1. Note that |a2 −

a1| = 1
2 |a1 + 2a2 − 3a1| is divisible by 3. We have to show that there exists

α ∈ Aut(Ḡ) with M σ̄
11
∼= Mα

11 and M σ̄
03
∼= Mα

03. This then implies hypothesis
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(i) of Proposition 2.11. For hypothesis (ii) we can use the same weak order
≺ as for SL(3, q) and SU(3, q2).

By [2, Thm. 1], all modules of dimension 8 are of the form M ᾱi
11 for some

0 ≤ i ≤ m − 1 and, for p > 3, all modules of dimension 10 are of the form
M

γ̄ν ᾱj

03 for some ν ∈ {0, 1} and some 0 ≤ j ≤ m− 1.
Let now p > 3. Then we get that M σ̄

11
∼= M ᾱi

11 and M σ̄
03
∼= M

γ̄ν ᾱj

03 . Note
that M γ̄

11
∼= M11. Thus we have to show that i = j. This follows, similarly

as in the case of 2F4(q2), from the fact that M11 ⊗M03 and M11 ⊗M30 are
not simple. Note that they have both dimension 80 whereas M14 and M41

have both dimension ≤ 35 by Weyl’s formula (see [21, §24.3]). Thus we get
the desired operation of σ̄ on these modules.

For p = 2, the situation is slightly more complicated. Again M σ̄
11
∼= M ᾱi

11

for some i. But in this case M03
∼= M01⊗M ᾱ1

01 and has dimension 9. We have
only to show that M σ̄

03
∼= M

γ̄ν ᾱj

03 for some ν and some j. The argumentation
that i = j is then similar to the case p > 3.

The modules of dimension 9 have the form M
γ̄ν1 ᾱi1
01 ⊗M

γ̄ν2 ᾱi2
01 with ν1, ν2 ∈

{0, 1}, and 0 ≤ i1 < i2 ≤ m− 1. This is a kḠ-module in case that i2 − i1 is
odd for ν1 = ν2 and i2 − i1 is even for ν1 6= ν2. For the twist of M03 under
σ̄ we have to show that either i2 = i1 +1 and ν1 = ν2 or (i1, i2) = (0,m− 1)
and (ν1 = ν2 if Ḡ = PSL(3, q) or ν1 6= ν2 if Ḡ = PSU(3, q2)). Note that
for m = 2, M03 and M30 are the only kḠ-modules of dimension 9. So let
m ≥ 3.

Suppose first that ν1 6= ν2 and, if Ḡ = PSU(3, q2), that (i1, i2) 6= (0,m−1).
If i2 = i1 + 1 then i2 − i1 is odd, thus the module is not a kḠ-module. So
i2 6= i1 + 1. Then there exists s ∈ {i1 − i, i2 − i} such that s 6≡ 0 (m) and
s 6≡ 1 (m). Thus M03⊗M ᾱs

11
∼= M01⊗M ᾱ1

01 ⊗M ᾱs
11 is a simple module which

would be mapped by σ̄ to M
γ̄ν1 ᾱi1
01 ⊗M

γ̄ν2 ᾱi2
01 ⊗M

ᾱi+s

11 . But this module is
not simple, because neither M01 ⊗M11 nor M10 ⊗M11 are simple.

Suppose now that ν1 = ν2 and i2 6= i1 + 1 and, if Ḡ = PSL(3, q2), that
(i1, i2) 6= (0,m−1). Again there exists s ∈ {i1−i, i2−i} such that s 6≡ 0 (m)
and s 6≡ 1 (m). So we can argue in the same way as in the first case.

Therefore we get for M σ̄
03
∼= M

γ̄ν1 ᾱi1
01 ⊗M

γ̄ν2 ᾱi2
01 that either i2 = i1 +1 and

ν1 = ν2 or (i1, i2) = (0,m − 1) and (ν1 = ν2 if Ḡ = PSL(3, q) or ν1 6= ν2 if
Ḡ = PSU(3, q2)).

This proves Proposition 4.2. �

4.2. The symplectic groups Sp(4, q) and PSp(4, q). After the linear and
unitary groups of type A2, we consider now the symplectic groups Sp(4, q)
and PSp(4, q). Note that Sp(4, 2m) is simple for m ≥ 2, and Sp(4, 2) is
isomorphic to the symmetric group on 6 elements. For even q, the group
automorphisms are generated by inner, graph and field automorphisms. In
all other cases, there exist also diagonal automorphisms, but no nontrivial
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graph automorphisms. The ordinary generic character table for even q has
been determined in [14] and appears also in CHEVIE. For odd q, the generic
character table was first established by Srinivasan [42], Przygocki [34] found
some small mistakes; a preliminary version computed by Lübeck in CHEVIE
shows that the following corrections to Przygocki’s version have to be made:
For the characters ξ′41, (1− q)2 must be replaced by (1− q2) on the classes
D1, for φ3 the sign must be changed on C21, and for φ7 the sign has to be
changed on B3.

We first prove the following proposition:

Proposition 4.3. The conjecture (ZC) is valid for Sp(4, q) for all q = pm

with p a rational prime and m ≥ 1.

Proof. Let G = Sp(4, q).
Part (A).
If p = 2, then Xp = {00, 01, 10, 11} with dim(M01) = 4 = dim(M10) and

M11
∼= M01 ⊗M10. If γ denotes the nontrivial graph automorphism of G,

then M10
∼= Mγ

01. By [10, Thm. (3.4)] it follows that

β01 ⊗ β01 = 4 · 1 + 2 · β10 + βα1
01 .(4.1)

Because of dimensions, βσ
01 = βγναi

01 for some ν ∈ {0, 1}, 0 ≤ i ≤ m − 1.
Thus we get with Equation (4.1)

4 · 1 + 2 · βγναi
10 + β

γναi+1

01 = 4 · 1 + 2 · βσ
10 + βσα1

01

and thus βσ
10 = βγναi

10 . So hypothesis (i) of Proposition 2.11 follows for the
case p = 2.

Now let p 6= 2. Then dim(M01) = 4 and dim(M10) = 5. If M is a simple
kG-module with 1 < dim(M) < 8 then there exists an automorphism α of
G, such that either M ∼= Mα

01 or M ∼= Mα
10 [33, Thm. 1.1]. This implies

hypothesis (i) in case p 6= 2.
The weak order ≺ for hypothesis (ii) is defined as follows:
Let µ1 = b1b2 and µ2 = c1c2 be two different dominant weights. Then

µ1 ≺ µ2 if and only if b1 + b2 < c1 + c2, or b1 + b2 = c1 + c2 and b1 < c1.
Similarly to SL(3, q), it follows that µ1 ≤ µ2, µ1 6= µ2 implies µ1 ≺ µ2 and
µ2 6≺ µ1.

Part (B).
When p = 2, G has no p-exceptional characters. Therefore let p 6= 2.
We use here the notation given in [42] and [34]. The characters which

are p-exceptional are exactly the following pairs: {ξ21(k), ξ22(k)} for each
k, {ξ′21(k), ξ′22(k)} for each k, {ξ41(k), ξ42(k)} for each k, {ξ′41(k), ξ′42(k)} for
each k, {Φ1,Φ2}, {Φ3,Φ4}, {Φ5,Φ6}, {Φ7,Φ8}, {θ1, θ2}, {θ3, θ4}, {θ5, θ6}
and {θ7, θ8}. The nontrivial diagonal automorphism δ of G permutes simul-
taneously the two characters of each such pair. Looking at the corresponding
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conjugacy classes it follows that the only possible nontrivial operation in-
duced by σ on these pairs is the simultaneous permutation of each pair.

This proves Proposition 4.3. �

For the groups PSp(4, q) we get a similar result:

Proposition 4.4. The conjecture (ZC) is valid for PSp(4, q) for all q = pm

with p a rational prime and m ≥ 1.

Proof. Let Ḡ = PSp(4, q). Because of Proposition 4.3, we only have to
show Proposition 4.4 for p ≥ 3. So let p ≥ 3. Since we can use the same
argumentation as in Proposition 4.3 to deal with the characters which are
exceptional for p, we only have to look at:

Part (A).
The modules Mλ, λ = a1a2 ∈ Xq, are simple kḠ-modules if and only if

a2 ≡ 0 (2). This follows by looking at the center of Sp(4, q) as described in
[7, §12.1].

Let now λ = a1λ1+a2λ2 = a1a2 with a2 ≡ 0 (2). Then λ = a1·10+ 1
2a2·02.

We have to show that there exists α ∈ Aut(Ḡ) with M σ̄
10
∼= Mα

10 and M σ̄
20
∼=

Mα
20. This then implies hypothesis (i) of Proposition 2.11. For hypothesis

(ii) we can use the same weak order ≺ as for Sp(4, q).
By [2, Thm. 1], all modules of dimension 5 are of the form M ᾱi

10 for some
i, and all modules of dimension 10 are of the form M

ᾱj

02 for some j. Thus
we get the desired operation of σ̄ on these modules.

This proves Proposition 4.4. �

4.3. The finite Chevalley groups G2(q). After the classical groups of
type A2 and B2, we want now to examine the exceptional groups of type
G2. The ordinary generic character tables of these groups can be found in
[15] and in [9, 16] and have also been determined in CHEVIE.

G2(q) is simple except for G2(2) ∼= SU(3, 32).2 = Aut(SU(3, 32)). For
3

∣∣/ q, the group automorphisms of G2(q) are generated by inner and field
automorphisms. For q = 3m there exists also a nontrivial graph automor-
phism of order 2.

We want to prove the following proposition:

Proposition 4.5. The conjecture (ZC) is valid for G2(q) for all q = pm

with p a rational prime and m ≥ 1.

Proof. Let G = G2(q).
Part (A).
If p = 3, then Xp = {00, 01, 10, 02, 20, 11, 12, 21, 22} with dim(M01) =

7 = dim(M10), dim(M02) = 27 = dim(M20), M11
∼= M01 ⊗ M10, M22

∼=
M02 ⊗ M20, M12

∼= M02 ⊗ M10 and M21
∼= M01 ⊗ M20. If γ denotes the

nontrivial graph automorphism of G, then M10
∼= Mγ

01, M20
∼= Mγ

02 and
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M12
∼= Mγ

21. Using the 3-modular character table of G2(3) listed in GAP
[39], it follows that for q = 3 the tensor product β01 ⊗ β01 decomposes as

β01 ⊗ β01 = 1 · 1 + 2 · β01 + β10 + β02.(4.2)

This is valid for arbitrary q = 3m, since the weights λ ∈ X+ with λ ≤ 02
are exactly λ ∈ {00, 01, 10, 02}.

Because of dimensions, βσ
01 = βγναi

01 for some ν ∈ {0, 1}, 0 ≤ i ≤ m − 1.
Thus we get with Equation (4.2)

1 · 1 + 2 · βγναi
01 + βγναi

10 + βγναi
02 = 1 · 1 + 2 · βσ

01 + βσ
10 + βσ

02

and therefore

βγναi
10 + βγναi

02 = βσ
10 + βσ

02.

Since the Brauer characters are linearly independent, it follows because of
different dimensions that βσ

10 = βγναi
10 and βσ

02 = βγναi
02 . Thus hypothesis (i)

of Proposition 2.11 follows for the case p = 3.
Now let p 6= 3. Then dim(M01) = 7 − δp,2 and dim(M10) = 14. If

M is a simple kG-module with 1 < dim(M) < 18 then there exists an
automorphism α of G, such that either M ∼= Mα

01 or M ∼= Mα
10. This

follows from [31, Prop. 5.4.12], since the center of G2(q) is trivial and thus
every simple kG-module is also a simple projective kG-module. Therefore,
hypothesis (i) follows for p 6= 3.

For the weak order ≺ in hypothesis (ii) we take the natural order relation
≤.

Part (B).
We have to show that if α is the group automorphism from Part (A), then

σα−1 operates trivially on the characters which are p-exceptional.
In CHEVIE, the ordinary generic character tables of G2(q) are divided

into five cases. In all five cases, only the characters χ8 and χ9 are p-
exceptional.

Note that |G| = q6(q− 1)2(q + 1)2(q2− q + 1)(q2 + q + 1), and that G has
maximal tori H3

∼= Zq2+q+1 and H6
∼= Zq2−q+1.

q ≡ 1(3):
Let l be a rational prime dividing q2−q+1. Because of (q2−q+1, q−1) = 1,

(q2− q + 1, q + 1) = 1 and (q2− q + 1, q2 + q + 1) = 1, a Sylow l-subgroup of
H6 is also a Sylow l-subgroup of G, i.e. all Sylow l-subgroups of G are cyclic.
Since χ8 and χ9 belong to the principal l-block and are not l-exceptional,
σα−1 fixes χ8 and χ9 by Lemma 2.14.

q ≡ −1(3) or q ≡ 0(3):
Let l be a rational prime dividing q2 + q + 1. Similarly to q ≡ 1(3) it

follows that all Sylow l-subgroups of G are cyclic. χ8 and χ9 belong to the
principal l-block and are not l-exceptional. Thus by Lemma 2.14, σα−1 fixes
χ8 and χ9.
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This proves Proposition 4.5. �

4.4. The finite twisted groups 3D4(q3). The finite groups of type 3D4

are the only missing simple exceptional groups of rank 2. 3D4(q3) is simple
for all q, and all group automorphisms are generated by inner and field
automorphisms.

The generic character tables of 3D4(q3) have been determined in [13] and
can also be found in CHEVIE.

Proposition 4.6. The conjecture (ZC) is valid for 3D4(q3) for all q = pm,
p a rational prime and m ≥ 1.

Proof. Let G = 3D4(q3). Since there exist no ordinary irreducible characters
of G which are p-exceptional, it suffices to look at:

Part (A).
The simple modules Mλi

satisfy dim(Mλ1) = 8 and dim(Mλ2) = 28−2δp,2,
Mλ3

∼= Mαm
λ1

and Mλ4
∼= Mα2m

λ1
. By [33, Thm. 1.1], for every simple kG-

module M with 1 < dim(M) < 32 there exists a group automorphism α of
G such that either M ∼= Mα

λ1
or M ∼= Mα

λ2
. Note that [33, Thm. 1.1] shows

this for the finite Chevalley groups of type D4, but by Theorem 2.4, this
must also be valid for G. This implies hypothesis (i) of Proposition 2.11.
The weak order ≺ for hypothesis (ii) is defined as follows:

Let µ1 = b1b2b3b4 and µ2 = c1c2c3c4 be two different dominant weights.
Then µ1 ≺ µ2 if and only if b1 + 3

2b2 + b3 + b4 < c1 + 3
2c2 + c3 + c4, or

b1 + 3
2b2 + b3 + b4 = c1 + 3

2c2 + c3 + c4 and b2 < c2. Similarly to the case
SL(3, q), it follows that µ1 ≤ µ2, µ1 6= µ2 implies µ1 ≺ µ2 and µ2 6≺ µ1.

This proves Proposition 4.6. �

The Propositions 3.1, 4.2, 4.4, 4.5 and 4.6 together with the results of [4]
prove Theorem 2.

Altogether the conjecture (ZC) is valid for the following finite groups of
Lie type:

SL(2, pm), PSL(2, pm), p a rational prime
2B2(22m+1), 2G2(32m+1), 2F4(22m+1)

SL(3, pm), PSL(3, pm), p a rational prime

SU(3, p2m), PSU(3, p2m), p a rational prime

Sp(4, pm), PSp(4, pm) , p a rational prime

G2(pm), p a rational prime
3D4(p3m), p a rational prime.
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[17] M. Geck, G. Hiss, F. Lübeck, G. Malle and G. Pfeiffer, CHEVIE — Generic Character
Tables of Finite Groups of Lie Type, Hecke Algebras and Weyl Groups, IWR-Preprint,
93-62, Heidelberg, 1993.

[18] M. Hertweck, Two non-isomorphic finite groups with isomorphic integral group rings,
preprint, 1997.

[19] G. Hiss, Zerlegungszahlen endlicher Gruppen vom Lie-Typ in nichtdefinierender
Charakteristik, Habilitationsschrift, Aachen, 1990.

[20] , The Brauer trees of the Ree groups, Comm. in Alg., 19(3) (1991), 871-888.



238 FRAUKE M. BLEHER

[21] J.E. Humphreys, Introduction to Lie Algebras and Representation Theory, Graduate
Texts in Math., 9, Springer-Verlag, New York, 1972.

[22] , Linear Algebraic Groups, Graduate Texts in Math., 21, Springer-Verlag,
New York, 1975.

[23] , Ordinary and Modular Representations of Chevalley Groups, Lecture Notes
in Math., 528, Springer-Verlag, New York, 1976.

[24] B. Huppert, Endliche Gruppen I, Grundlehren der mathematischen Wissenschaften,
134, Springer-Verlag, Berlin, 1967.

[25] B. Huppert and N. Blackburn, Finite Groups III, Grundlehren der mathematischen
Wissenschaften, 243, Springer-Verlag, Berlin, 1982.

[26] N. Kawanaka, Generalized Gelfand-Graev representations and Ennola duality, in ‘Al-
gebraic Groups and Related Topics’, Adv. Stud. Pure Math., 6, North Holland, Am-
sterdam, (1985), 175-206.
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