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For an almost normal subgroup Γ0 of a discrete group Γ,
conditions are given which allow one to define a universal
C∗-norm on the Hecke algebra H(Γ, Γ0). If Γ is a semidirect
product of a normal subgroup N containing Γ0 by a group
G satisfying some order relations arising from a naturally de-
fined subsemigroup T , and if the normalizer of N is also nor-
mal in Γ, then a presentation of H(Γ, Γ0) is given. In this
situation the C∗-completion of H(Γ, Γ0) is ∗-isomorphic with
the semigroup crossed product C∗-algebra C∗(N/Γ0) o T .

In their paper introducing a number theoretical model of a quantum sta-
tistical system exhibiting a phase transition with symmetry breaking, Bost
and Connes introduce the notion of an almost normal subgroup Γ0 of a
discrete group Γ, along with the associated Hecke algebra H(Γ,Γ0) and its
reduced C∗-algebra completion C∗

r (Γ,Γ0) ([BC]). They also provide a pre-
sentation of the Hecke algebra in the context of the specific almost normal
subgroup they consider in their model. A connection between these relations
and some relations occurring in a stable C∗-algebra associated with certain
examples of dynamical systems described in [B] provided the motivation for
considering the Hecke algebras further.

An overview of the structure of the paper follows. After some prelimi-
naries on almost normal subgroup pairs (Γ,Γ0) we introduce a fundamental
semigroup T in the group Γ, which contains the normalizer NΓ0 of Γ0.
A basic representation of this semigroup as isometries in the convolution
Hecke algebra H(Γ,Γ0) is described. In the presence of a normal sub-
group N of Γ containing Γ0 and contained in NΓ0 , a natural semigroup
C∗-dynamical system occurs which possesses a universal property with re-
spect to ∗-representations of the Hecke algebra.

In the second section we discuss some properties of group partial pre-order
relations arising from a subsemigroup of the group in much the same spirit
as Nica in [N]. Applying this to our situation, with T as the subsemigroup
of Γ, and introducing a notion of solvable least upper bounds, we obtain
some conditions allowing a definition of a universal C∗-norm on the Hecke
algebra. Assuming some more structure for the pair (Γ,Γ0), namely that
Γ is an extension of a normal subgroup N containing Γ0, we obtain that
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the C∗-completion of the Hecke algebra is a quotient of a semigroup crossed
product C∗-algebra.

The main focus of Section 3 is to obtain an identification of the C∗-
completion of the Hecke algebra and the semigroup crossed product C∗-
algebra if the group Γ is a semidirect product of a normal subgroup N con-
taining Γ0 and a subgroup G which is both upward and downward directed.
We also assume that solvable least upper bounds exist in the fundamental
subsemigroup. This identification is proved by patterning our arguments af-
ter those of Bost and Connes to obtain a presentation of the Hecke algebra.
A crucial role is played by the covariance relation Nica isolated in [N]. Once
the identification is established, we can conclude that some of the relations
were superfluous, as they are unnecessary in a presentation of the semigroup
crossed product C∗-algebra.

Section 4 lists some examples pertaining to various stages in the structure
of assumptions needed in the course of the paper.

Once a semigroup crossed product structure is available for these Hecke
algebras, simplifications in the dynamical structure of the Hecke algebras can
occur. For example, it is hoped that the study of the KMS state simplex
and phase transitions under a one parameter automorphism group of the
algebra, as first explored by Bost and Connes, can be extended to the other
examples of Section 4.

As this paper was being prepared for submission we heard that results
pertaining to Examples 4.1 and 4.5 discussed here were also being obtained
in joint work of Arledge, Laca and Raeburn. The methods and approach
employed are however different.

Notation. If X is a set, |X| denotes the cardinality of S. For sets X and
Y, X ∼= Y means that X and Y are isomorphic as sets. If A is a set of
transformations of a set X, then Ax = {a(x) | a ∈ A} for x ∈ X. If H
is a subgroup of group G, write H ≤ G. Let NH be the normalizer of H
in G, and if H is normal in G write H E G. Also [g] is the left coset
gH in G/H, (g ∈ G), and the index of H in G is (G : H) = |G/H|. For
g ∈ G, ad (g) is the group automorphism of a normal subgroup H defined
by h → ghg−1, (h ∈ H). The unit element of a group or semigroup is e.
The natural numbers with zero, a semigroup under addition, are denoted
by N, while N× denotes the non-zero elements of N, an abelian semigroup
under multiplication. If R is a ring, R× denotes the non-zero elements of
R. For d ∈ N×, Md(R) denotes the d × d matrices with entries in R. For
F ∈ Md(R), Ft denotes the transpose matrix.

1. Basics.

If Γ0 is a subgroup of a discrete group Γ, then Γ0 acts on the left on the
coset space Γ/Γ0. We say that Γ0 is almost normal in Γ, or that (Γ,Γ0)
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form an almost normal subgroup pair, if the Γ0-orbits, Γ0[γ], in Γ/Γ0 are
finite for all γ ∈ Γ ([BC]).

Proposition 1.1. If Γ0 is a subgroup of a discrete group Γ then Γ0[γ] ∼=
Γ0/Γ0 ∩ γΓ0γ

−1, (γ ∈ Γ).

Proof. For each γ ∈ Γ consider the map of Γ0 onto the Γ0-orbit of [γ] defined
by h 7→ [hγ]. Since {h ∈ Γ0 | [hγ] = [γ]} = {h ∈ Γ0 | hγ ∈ γΓ0} = Γ0 ∩
γΓ0γ

−1, this map defines a bijection of the coset space Γ0/Γ0∩γΓ0γ
−1 with

Γ0[γ]. �

Another set bijection is useful to note. Left multiplication by an element
α of Γ yields a bijection of Γ/Γ0 with itself, so a subset M of Γ/Γ0 is bijective
with αM . Setting M to be the orbit Γ0[γ] and α to be γ−1, we have that
Γ0γΓ0/Γ0

∼= γ−1Γ0γ Γ0/Γ0.
For a given almost normal subgroup pair (Γ,Γ0), there are Γ0-bivariant

maps L and R from Γ to N× defined by L(γ) = |Γ0[γ]| and R(γ) = L(γ−1)
([BC]). The last proposition shows that L(γ) = (Γ0 : Γ0∩γΓ0γ

−1) and that
[γ] is a fixed point under the left Γ0 action, i.e., L(γ) = 1, if and only if
Γ0 ⊆ γΓ0γ

−1.

Definition. For an almost normal subgroup pair (Γ,Γ0) let T = {γ ∈ Γ |
L(γ) = 1} = {γ ∈ Γ | Γ0γ ⊆ γΓ0}.

Since Γ0γ ⊆ γΓ0 implies γΓ0 ⊆ Γ0γΓ0 ⊆ γΓ0Γ0 = γΓ0, and since Γ0γ ⊆
Γ0γΓ0 it follows that T = {γ ∈ Γ | Γ0γΓ0 = γΓ0}.

Proposition 1.2. If (Γ,Γ0) is an almost normal subgroup pair then T is a
subsemigroup of Γ and T ∩T −1 = NΓ0, the normalizer of Γ0 in γ. The map
R : T → N× is a semigroup homomorphism.

Proof. Clearly e ∈ T . For α, β ∈ T we have Γ0 ⊆ αΓ0α
−1 and Γ0 ⊆

βΓ0β
−1. Applying the automorphism ad (α) to the second inclusion shows

that αΓ0α
−1 ⊆ αβΓ0β

−1α−1, so Γ0 ⊆ (αβ)Γ0 (αβ)−1and αβ ∈ T . Since
T −1 = {γ | R(γ) = 1} = {γ | γΓ0γ

−1 ⊆ Γ0}, the second claim is clear.
The last assertion follows from the elementary fact that (G : K) = (G :
H)(H : K) for subgroups K ≤ H ≤ G of a group G. For αβ ∈ T , we
have R(αβ) = (Γ0 : Γ0 ∩ (αβ)−1Γ0αβ) which is equal to (Γ0 : (αβ)−1Γ0αβ)
since αβ ∈ T . This equals (Γ0 : β−1Γ0β)(β−1Γ0β : β−1α−1Γ0αβ) = (Γ0 :
β−1Γ0β)(Γ0 : α−1Γ0α) = R(β)R(α). �

Proposition 1.3. The semigroup homomorphism R : T → N× defines a
map r : T /NΓ0 → N× satisfying r([αβ]) = r([α])r([β]) for α, β ∈ T .

Proof. For α ∈ T set r([α]) = R(α). For α, β ∈ T with [α] = [β] we have
β−1α ∈ NΓ0 = T ∩ T −1. Thus R(α) = R(ββ−1α) = R(β)R(β−1α) = R(β),
the later equality a consequence of β−1α ∈ T −1. Thus r is a well defined
map of sets. �
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Notice that T /NΓ0 is in general only a coset space, so multiplication of
elements is not well defined.

We now recall from [BC] that the Hecke algebra H(Γ,Γ0) associated to
an almost normal subgroup pair (Γ,Γ0) is the convolution algebra of (C-
valued say) functions with finite support on Γ0\Γ/Γ0, the space of Γ0-orbits
in Γ/Γ0. For f, h ∈ H(Γ,Γ0) define

f ∗ h(γ) =
∑

{f(α)h(α−1γ) | α ∈ Γ/Γ0}

f∗(γ) = f(γ−1), (γ ∈ Γ).

Here we view f and h as Γ0-bivariant functions on Γ. We now proceed to
define some elements of H(Γ,Γ0) that will play a basic role in the rest of
the paper. For a finite subset A of Γ0\Γ/Γ0 let χA denote the characteristic
function of the set A. Also, for γ ∈ Γ, let Oγ be the point Γ0[γ] = Γ0γΓ0 in
Γ0\Γ/Γ0.

Definition. If (Γ,Γ0) is an almost normal subgroup pair and γ ∈ T let
Wγ be the element of H(Γ,Γ0) defined by

Wγ = R(γ)−1/2χOγ .

It will be useful to distinguish those elements Wγ with γ ∈ NΓ0 from the
others. Write Uγ = Wγ if γ ∈ NΓ0 , so Uγ = χOγ . Note that Oγ = γΓ0 for
γ ∈ T , so if γ, γ′ ∈ T then Oγ = Oγ′ if and only if [γ] = [γ′] in T /Γ0. Since
R(γ) = R(γ′) if [γ] = [γ′] in T /Γ0, we have that Wγ = Wγ′ if and only if
[γ] = [γ′] in T /Γ0.

Theorem 1.4. For (Γ,Γ0) an almost normal subgroup pair, W : T →
H(Γ,Γ0) is a representation of the semigroup T by isometries.

Proof. We show first that W ∗
γWγ = We = I. For β ∈ Γ, W ∗

γWγ(β) =
R(γ)−1

∑
{χOγ (α−1)χOγ (α−1β) | α ∈ Γ/Γ0}. Since Oγ = γΓ0 for γ ∈ T ,

α−1 ∈ Oγ if and only if α ∈ Γ0γ
−1 = Γ0γ

−1Γ0, a set with L(γ−1) = R(γ)
points in Γ/Γ0. Thus W ∗

γWγ(β) = R(γ)−1
∑
{χOe(β) | α ∈ Γ0γ

−1Γ0} =
χOe(β) = We(β). It is clear that We is the identity of H(Γ,Γ0).

For α, β ∈ T and γ ∈ Γ we have

WαWβ(γ) = (R(α)R(β))−1/2
∑

{χOα(ρ)χOβ
(ρ−1γ) | ρ ∈ Γ/Γ0}

= R(αβ)−1/2χOβ
(α−1γ),

since Oα = αΓ0 is a single point of Γ/Γ0. This expression equals R(αβ)−1/2

if and only if γ ∈ αΓ0βΓ0 = αβΓ0 = Oαβ , and is zero otherwise. Thus
WαWβ = Wαβ . �

If γ ∈ NΓ0 , we have that γ−1 ∈ NΓ0 also, so WγWγ−1 = We = I. Thus
WγW

∗
γ = WγW

∗
γ (WγWγ−1) = WγWγ−1 = I and U = W |NΓ0

is a unitary
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representation of the groupNΓ0 in H(Γ,Γ0). Since W |Γ0 = I, U should
actually be viewed as a unitary representation of the group NΓ0/Γ0. It
follows from WγW

∗
γ = I (γ ∈ NΓ0) that for α ∈ T the selfadjoint idempotent

WαW
∗
α depends only on the equivalence class [α] of α in T /NΓ0 . Where

convenient we denote WαW
∗
α by P [α].

Proposition 1.5. Let (Γ,Γ0) be an almost normal subgroup pair, and
choose α ∈ T , g ∈ NΓ0. Then

WαUgW
∗
α = R(α)−1

∑
{χOβ

| ad (α−1)(β) ∈ gΓ0}

where this sum is over a set of R(α) points in Γ0\Γ/Γ0.

Proof. First note that WαUgW
∗
α = WαWgW

∗
α = WαgW

∗
α. Since αg ∈ T , the

orbit Oαg = Γ0αgΓ0 is the single point αgΓ0 in Γ/Γ0, so the sum defining
the product of Wαg with W ∗

α consists only of one non-zero term. We have
WαgW

∗
α(γ) = R(α)−1χOα(ρ−1γ)−1 where ρ = αgΓ0. Since ρ−1γ ∈ Γ0α

−1

if and only if γ ∈ αgΓ0α
−1, this expression is R(α)−1 if γ ∈ αgΓ0α

−1 and
zero otherwise. Since the set Γ0α

−1 = Γ0α
−1Γ0 consists of L(α−1) = R(α)

points in Γ/Γ0, so does the set αgΓ0α
−1Γ0. Each one of these points in Γ/Γ0

is however also a point in Γ0\Γ/Γ0, since, as already noted, Γ0αgΓ0 = αgΓ0.
Thus WαUgW

∗
α = R(α)−1

∑
{χOβ | β ∈ ad (α)(gΓ0)}, where the sum has

R(α) terms. �

Remark 1.6. If we further stipulate that NΓ0 be normal in Γ, then the
solutions β ∈ ad (α)(gΓ0) occurring in the sum all occur in NΓ0 , in fact, in
NΓ0/Γ0, and χOβ

= Uβ. Thus WαUgW
∗
α = R(α)−1

∑
{Uβ | ad (α−1)[β] = [g]

in NΓ0/Γ0}.

This remark suggests that if NΓ0 is normal in Γ, a certain semigroup
C∗-dynamical system associated to an almost normal subgroup pair (Γ,Γ0)
should be considered. More generally, if N is a normal subgroup of Γ with
Γ0 < N < NΓ0 , then ad (α−1)N = N for α ∈ Γ and since ad (α−1)Γ0 ⊆ Γ0

for any α ∈ T , the map ad (α−1) defines a group homomorphism of N/Γ0

to itself, for any α ∈ T . Thus,if g ∈ N , we may replace NΓ0 by N in
the above remark. Define an action Θ of the semigroup T on l1(N/Γ0) by
Θα(f) = R(α)−1 ·f ◦ad (α−1), for α ∈ T , f ∈ l1(N/Γ0). For g ∈ N/Γ0 let δg
be the element of l1(N/Γ0) which is one at g and zero elsewhere. Compute
that

Θα(δg) = R(α)−1
∑

{δβ | ad (α−1) (β) = g}

so ‖Θα(δg)‖1 ≤ ‖δg‖1 = 1. Thus Θ is a continuous action of the semigroup
T on the Banach ∗-algebra l1(N/Γ0), so defines an action, again denoted
by Θ, of T on the C∗-completion, C∗(N/Γ0). Thus, to any almost normal
subgroup pair (Γ,Γ0) and N a normal subgroup of Γ containing Γ0, and
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contained in the normalizer of Γ0, there is a semigroup C∗-dynamical system
(C∗(N/Γ0),Θ, T ).

For the reader’s convenience we recall some facts concerning semigroup
dynamical systems. For further details see the results in [LR] and the ref-
erences therein. A covariant representation of a semigroup C∗-dynamical
system (A,Θ, S) where Θ is a representation of the semigroup S as (pos-
sibly non-unital) endomorphisms of a unital C∗-algebra A, is a pair (π, V )
with π a unital representation of A on a Hilbert space H and V a represen-
tation of S on H as isometries with Ve = I, such that π(Θs(a)) = Vsπ(a)V ∗

s ,
a ∈ A and s ∈ S. If a semigroup dynamical system (A,Θ, S) possesses a co-
variant representation (π, V ) then there is a unique unital C∗-algebra AoS
equipped with a unital homomorphism i : A → Ao S and a representation
ν : S → A o S by isometries so that (i, ν) satisfies the covariance relation,
their images generate Ao S as a C∗-algebra, and such that every covariant
representation (ρ,W ) of (A,Θ, S) yields a representation ρ ×W of A o S
with (ρ×W ) ◦ i = ρ and (ρ×W ) ◦ ν = W .

We return now to our context, namely an almost normal subgroup pair
(Γ,Γ0) and a normal subgroup N of Γ with Γ0 < N < NΓ0 . If π :
H(Γ,Γ0) → B(H) is a ∗-representation of the Hecke algebra H(Γ,Γ0) as
bounded operators on a Hilbert space H, denote by πW the representation
of T as partial isometries on H given by πW = π ◦W , and denote by πU
the unitary representation of the group N/Γ0 on H given by πU = π ◦ U .
Combining Proposition 1.5 and Remark 1.6 with the above expression for
Θα(δg), α ∈ T and g ∈ N/Γ0, gives the following result.

Theorem 1.7. If (Γ,Γ0) is an almost normal subgroup pair and N a nor-
mal subgroup of Γ with Γ0 < N < NΓ0 then to every ∗-representation π :
H(Γ,Γ0) → B(H) there corresponds a covariant representation (πU , πW ) of
the semigroup C∗-dynamical system (C∗(N/Γ0),Θ, T ) on H.

Corollary 1.8. The C∗-algebra C∗(N/Γ0) o T exists and for each ∗-repre-
sentation π of H(Γ,Γ0) there is a ∗-representation ρ of C∗(N/Γ0) o T with
image contained in the C∗-algebra generated by Im(π) and with ρ ◦ i = πU
and ρ ◦ ν = πW .

Proof. To conclude that the C∗-semicrossed product algebra exists it is
enough to show that there is at least one covariant representation of the
dynamical system (C∗(N/Γ0),Θ, T ). This follows from Theorem 1.7 af-
ter noting that there is always a regular representation of H(Γ,Γ0) on the
Hilbert space l2(Γ/Γ0) ([BC]). �

Under certain conditions, we may consider a slightly less cumbersome
semigroup C∗-dynamical system. Consider the situation of a normal sub-
group N of a discrete group Γ. There is a commuting diagram of groups



HECKE ALGEBRAS AND SEMIGROUP CROSSED PRODUCT 247

with exact rows:

e → N → Γ
ρ→ G → e

↓ ↓ ↓ad ↓ψ

e → C → N
ad→ Aut (N) → Out (N) → e.

Here C is the center of N, G = Γ/N , ad : Γ → Aut (N) is defined by
γ → ad (γ) |N , and ψ is defined by the diagram. If Γ0 is any normal
subgroup of N , then ad (γ)(Γ0) = Γ0 for any γ ∈ N , so for g ∈ G we may
denote by ψg(Γ0) the well defined subgroup ad (γ)(Γ0) where γ ∈ Γ is any
element of ρ−1(g).

Lemma 1.9. Given the above diagram and Γ0 a normal subgroup of N,
the subgroup pair (Γ,Γ0) is almost normal if and only if the subgroup
ψg(Γ0)Γ0/Γ0 of N/Γ0 is finite for each g ∈ G.

Proof. The subgroup γΓ0γ
−1Γ0/Γ0 = ad (γ)(Γ0)Γ0/Γ0 is finite for each γ ∈

Γ if and only if ψg(Γ0)Γ0/Γ0 is finite for each g ∈ G. The comment after
Proposition 1.1 finishes the claim. �

Assume now that (Γ,Γ0) is an almost normal subgroup pair. Then ρ(T ) =
T /N = {g ∈ G | Γ0 ⊆ ψg(Γ0)} is a semigroup of G, denote it by T . The
normalizer of Γ0 is equal to N if and only if {g ∈ G | ψg(Γ0) = Γ0},
which is T ∩ T−1, is equal to e. Otherwise NΓ0 is an extension of N by
T ∩ T−1. Proposition 1.3 shows that the map R : T → N× defines a
semigroup homomorphism of T /N to N×. Also, for α ∈ N , the group
endomorphism ad (α−1) of N/Γ0 is actually an automorphism of N/Γ0. If
there is a splitting homomorphism ν : G → Γ, in other words if Γ is the
semidirect product of N by G, then ν(g) ∈ T for g ∈ T , so we may define
a semigroup C∗-dynamical system (C∗(N/Γ0), Θ̃, T ) by setting Θ̃ = Θ ◦ ν.
If π is a ∗-representation of H(Γ,Γ0) in B(H) then set πT = π ◦W ◦ ν and,
as before, set πU = π ◦ U . The pair (πU , πT )is a covariant representation of
this dynamical system. Summarizing these observations in connection with
the previous results gives the following result.

Theorem 1.10. If (Γ,Γ0) is an almost normal subgroup pair and e →
N → Γ

ρ→ G → e is a split exact sequence with Γ0 E N then to every
∗-representation π : H(Γ,Γ0) → B(H) there corresponds a covariant repre-
sentation (πT , πU ) of the semigroup C∗-dynamical system (C∗(N/Γ0), Θ̃, T )
on H. The C∗-algebra C∗(N/Γ0) o T exists, and given π there is a ∗-
representation π′ of C∗(N/Γ0) o T with image contained in the C∗-algebra
generated by Im(π), and with π′ ◦ i = πU , π′ ◦ ν = πT .

For example, consider the case when Γ0 is a normal subgroup of Γ. It
is clear that the Hecke algebra H(Γ,Γ0) is the group algebra C[Γ/Γ0]. Set-
ting N = NΓ0 , so N = Γ, we have G = {e} and Theorem 1.10 gives a
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representation π′ of C∗(Γ/Γ0) in the C∗-algebra generated by Im(π) for any
representation π of Γ/Γ0. Of course, in this context, Theorem 1.10 is far
from the best possible.

2. Order Structure.

The semigroup T of Γ defines a pre-order type structure on Γ. Some of the
extra structure on this ordering that is of consequence for our context has
been developed before in [N]. We develop some of the slightly more general
results that are needed in our situation though.

Let S be a sub-semigroup of a discrete group G and define a relation - on
G by a - b if and only if a−1b ∈ S. This relation is: Reflexive since e ∈ S;
transitive since SS ⊆ S; and left invariant, i.e., a - b implies ga - gb for
g ∈ G. We do not specify that the subgroup S ∩ S−1 = {e}, so the relation
is not a partial order on G. The elements a, b satisfy both a - b and b - a if
and only if a−1b ∈ S ∩ S−1. As noted in [N], the set SS−1 = {g ∈ G | g has
an upper bound in S}. If any two arbitrarily chosen elements of a subset A
in G have a common upper bound (c.u.b) in G call A upward directed.

Lemma 2.1. A subset A of G is upward directed if and only if A−1A ⊆
SS−1.

Proof. First suppose that A is upward directed. If l is a c.u.b. for a pair
a, b in A, then a−1b = a−1l(b−1l)−1 ∈ SS−1. For the reverse implication
first notice that if h = st−1 with s, t ∈ S then h and e have a c.u.b., namely
s. Given a, b ∈ A arbitrary, b−1a ∈ SS−1 by hypothesis, so b−1a and e have
a c.u.b., say l. By left invariance, a - bl and b - bl, so bl is a c.u.b. for the
pair a, b of A. �

Thus S is upward directed if and only if S−1S ⊆ SS−1 (cf [N, 2.2.2]).
Also G is upward directed if and only if G = SS−1.

For a, b ∈ G, denote by a ∨ b a least upper bound for a and b, if it exists.
The set of least upper bounds for a and b is a ∨ b (S ∩ S−1). The following
fact is a straightforward consequence of left invariance for the relation -.

Lemma 2.2. Given a pair a, b in G so that a ∨ b exists, and g ∈ G, then
g(a ∨ b) is a l.u.b. for the pair ga, gb.

With an analogous definition for a subset A of G to be lower directed, it
follows that A is lower directed if and only if A−1A ⊆ S−1S. For example, if
l is a common lower bound (c.l.b) for a, b in A then a−1b = (l−1a)−1(l−1b) ∈
S−1S. In the other direction, if h = s−1t ∈ S−1S then s−1 is a c.l.b. for
h, e. Thus, for a, b ∈ A, a−1b ∈ S−1S so there is a c.l.b., say l, for a−1b, e.
Then al is a c.l.b. for a, b.

Thus S−1 is lower directed if and only if SS−1 ⊆ S−1S and G is lower
directed if and only if G = S−1S. Note also that if A ⊆ G is lower directed
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and if a ∨ b exists for a, b ∈ S then g ∨ h exists for all g, h ∈ A. To see this,
let c be a c.l.b. for g and h. Then c−1g, c−1h ∈ S, so c−1g ∨ c−1h exists.
Then c(c−1g ∨ c−1h) is a l.u.b. for g and h.

Theorem 2.3. Assume any pair of elements in S have a l.u.b. If SS−1 ⊆
S−1S then e ∨ g exists for any g ∈ SS−1. In particular if S ∩ S−1 = {e},
then (G,S) is a quasi-lattice ordered group.

Proof. Since SS−1 ⊆ S−1S, S−1 is lower directed. By the remarks preceding
the theorem, c−1 ∨ d−1 exists for any c, d ∈ S. Thus c(c−1 ∨ d−1) is a l.u.b.
for e and cd−1. Set g = cd−1. �

We may, following [N], define a partially pre-ordered group (G,S) to be
quasi-lattice pre-ordered if

1) e ∨ g exists for g ∈ SS−1.
2) For a, b ∈ S with a c.u.b, a ∨ b exists.

As an example, consider the following: G = {g ∈ GL(d,Q) | det g >
0} and S = {g ∈ Md(Z) | det g ≥ 1}. Then S ∩ S−1 = SL(d,Z) and
G = SS−1 = S−1S. In fact G = N−1S where n ∈ N is identified with the
diagonal matrix n ⊗ Id and S = {g ∈ G | g(Zd) ⊆ Zd}. Thus, for a, b ∈ G,
we have a - b if and only if b(Zd) ⊆ a(Zd). It is known that a ∨ b exists
for any a, b ∈ S, usually known as the least common multiple of a and b.
Theorem 2.3 shows that (G,S) is a quasi-lattice pre-ordered group.

Remark 2.4. One last observation before we return to our own context.
If (G,S) is a pre-ordered group such that 1) above is satisfied, then any
x ∈ SS−1 may be written as st−1 for some s, t ∈ S with s−1 ∨ t−1 = e. For
example, set s to be a l.u.b. for e and x and set t = x−1s. Then s, t ∈ S
and x = st−1. Since e ∨ x = s, it follows that s−1 ∨ t−1 = s−1 ∨ s−1x =
s−1(e ∨ x) = e.

Returning to the situation of an almost normal subgroup pair (Γ,Γ0) with
T the semigroup of Γ defined by T = {α ∈ Γ | Γ0 ⊆ ad (α)Γ0} it follows that
α - β in Γ with the pre-order defined by T if and only if αΓ0α

−1 ⊆ βΓ0β
−1.

Lemma 2.5. Let α, β ∈ Γ where (Γ,Γ0) is an almost normal subgroup pair.
Assume there is a γ ∈ Γ with ad (γ)Γ0 = ad (α)Γ0ad (β)Γ0. Then γ is a
l.u.b. for α and β. If η is any l.u.b. for α and β then ad (η)Γ0 = ad (γ)Γ0.
We also have ad (α)Γ0ad (β)Γ0 = ad (β)Γ0ad (α)Γ0.

Proof. Any common upper bound δ for α and β satisfies ad (α)Γ0 ⊆ ad (δ)Γ0

and ad (β)Γ0 ⊆ ad (δ)Γ0, so ad (α)Γ0ad (β)Γ0 ⊆ ad (δ)Γ0. Thus γ is clearly
a l.u.b. for α and β. If η is another l.u.b. for α and β, then η−1γ ∈ T ∩
T −1 = NΓ0 , so ad (γ)Γ0 = ad (η)Γ0. Since ad (α)Γ0ad (β)Γ0 is a subgroup
H = ad (γ)Γ0 of Γ, H = H−1 = ad (β)Γ0ad (α)Γ0. �



250 B. BRENKEN

A l.u.b. γ ∈ Γ for α, β ∈ Γ that satisfies ad (α)Γ0ad (β)Γ0 = ad (γ)Γ0 will
be referred to as a solvable l.u.b. We write γ = α∨s β. The previous results
on least upper bounds hold in (Γ, T ) with l.u.b. replaced by solvable l.u.b.
The example described after Theorem 2.3 actually has solvable least upper
bounds.

Lemma 2.6. Let (Γ,Γ0) be an almost normal subgroup pair. If α, β ∈ T
with α−1 ∨s β−1 = e, then WαW

∗
β = (R(αβ))−1/2χOαβ−1 .

Proof. We have WαW
∗
β (γ) = (R(αβ))−1/2χOβ

((ρ−1γ)−1) where ρ = αΓ0.
This is zero, except when γ ∈ αΓ0β

−1 = ad (α)Γ0αβ
−1. Now Oαβ−1 =

Γ0αβ
−1Γ0 = Γ0ad (αβ−1)Γ0αβ

−1. Thus, the equality holds if and only if
ad (α)Γ0 = Γ0ad (αβ−1)Γ0, which is equivalent to α−1 ∨s β−1 = e. �

We now consider the problem of finding norms on H(Γ,Γ0). As in [BC],
there is an L1 norm on H(Γ,Γ0). For f in H(Γ,Γ0) let

‖f‖1 =
∑

γ∈Γ0\Γ/Γ0

(R(γ)L(γ))1/2|f(γ)|

=
∑

γ∈Γ/Γ0

δ(γ)−1/2 |f(γ)|

where δ(γ) = L(γ)/R(γ). In order to define a universal C∗-norm on H(Γ,Γ0)
the next lemma will be useful.

Lemma 2.7. If α, β ∈ T and α−1 ∨s β−1 = e then L(αβ−1) = R(β) and
R(αβ−1) = R(α).

Proof. Since α−1 ∨s β−1 = e, we have αΓ0β
−1 = Γ0αβ

−1Γ0, so L(αβ−1) is
the number of left cosets in Γ/Γ0 of αΓ0β

−1 = αΓ0β
−1Γ0, which in turn is

the number of left cosets in Γ/Γ0 of Γ0β
−1Γ0. This is of course L(β−1) =

R(β). Since β−1 ∨s α−1 = e also, it follows that L(βα−1) = R(α). So
R(αβ−1) = R(α). �

If we assume that Γ is upward directed, in other words that Γ = T T−1,
then any f ∈ H(Γ,Γ0) may be written as a finite sum

∑{
aiχO

αiβ−1
i

∣∣∣αi, βi ∈
T , ai ∈ C

}
. If we further assume that T −1T = Γ and that any pair

of elements in T have a solvable l.u.b., then by Theorem 2.3 and Re-
mark 2.4, we can ensure that any f ∈H(Γ,Γ0) may be written as a fi-
nite sum

∑{
aiχO

αiβ−1
i

∣∣∣αi, βi ∈ T , α−1
i ∨s β−1 = e, ai ∈ C

}
. If π is a

∗-representation of H(Γ,Γ0) as bounded operators on a Hilbert space, then,
for f of this form, π(f) =

∑
aiR(αiβi)1/2π[WαiW

∗
βi

] by Lemma 2.6. Thus
‖π(f)‖ ≤

∑
|ai|R(αi)1/2R(βi)1/2 =

∑
|ai|R(αiβ−1

i )1/2L(αiβ−1
i )1/2 = ‖f‖1,
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the first equality following from Lemma 2.7. Summarizing this gives the
next proposition.

Proposition 2.8. Let (Γ,Γ0) be an almost normal subgroup pair satisfying
Γ = T −1T = T T−1 and so that any pair of elements of T have a solvable
l.u.b. Then H(Γ,Γ0) = spanC{WαW

∗
β | α, β ∈ T , α−1 ∨s β−1 = e}. Also

‖f‖ = sup{‖π(f)‖ | π :H(Γ,Γ0) → B(H) a ∗-representation} defines a C∗-
norm on H(Γ,Γ0). Denote the C∗-completion of H(Γ,Γ0) in this norm by
C∗(Γ,Γ0).

Remark 2.9. One may define the almost normal subgroup pair (Γ,Γ0) to
be amenable, under the hypothesis of the Proposition, if ‖ ‖ ≤ ‖ ‖r on
H(Γ,Γ0), where ‖ ‖r is the norm on H(Γ,Γ0) arising from the regular rep-
resentation of H(Γ,Γ0) on l2(Γ/Γ0) ([BC]).

The situation discussed previously in Section 1, withN a normal subgroup
of Γ and Γ0 E N leads to further conclusions for (Γ,Γ0) an almost normal
subgroup pair satisfying the hypothesis of Proposition 2.8. We immediately
have the following for example.

Proposition 2.10. If (Γ,Γ0) is an almost normal subgroup pair with Γ =
T −1T = T T−1 and such that α ∨s β exists for α, β ∈ T , and if N is a
normal subgroup of Γ with Γ0 ≤ N ≤ NΓ0, then there is a natural surjective
∗-homomorphism of C∗(N/Γ0) o T onto C∗(Γ,Γ0).

Proof. Using the definition of C∗(Γ,Γ0), Corollary 1.8 gives a ∗-representa-
tion π of C∗(N/Γ0) o T into C∗(Γ,Γ0). Proposition 2.8 shows that the
image of H(Γ,Γ0) in C∗(Γ,Γ0) is contained in the image of π, so π is a
surjection. �

Of course we can say more with the hypothesis of this proposition. With
G = Γ/N = ρ(Γ) and T = T /N as before, we can carry the order structure
of (Γ, T ) to (G,T ). Thus g ≤ h in G if and only if ψg(Γ0) ⊆ ψh(Γ0), where
ψ is defined after Corollary 1.8. In particular, the definition of solvable least
upper bound remains compatible, so α ∨s β = γ in Γ if and only if ρ(α) ∨s
ρ(β) = ρ(γ). In the particular case that N = NΓ0 , then T ∩ T−1 = {e}, so
(G,T ) is a partially ordered group (the order relation is antisymmetric) and
least upper bounds, if they exist, are unique. Also note that G = T−1T if
and only if Γ = T −1T . To see this, it is enough to show that G = T−1T
implies Γ = T −1T . Choosing γ ∈ Γ, we have ρ(γ) = ρ(α−1β) some α, β ∈ T .
Thus γ ∈ α−1βN so γ ∈ T −1T , since N ≤ NΓ0 ≤ T . Similarly, G = TT−1

if and only if Γ = T T −1.

Theorem 2.11. If (Γ,Γ0) is an almost normal subgroup pair and e→ N →
Γ

ρ→ G→ e is a split exact sequence with Γ0 E N , and if G = TT−1 = T−1T
so that the solvable least upper bound g ∨s h exists for every pair g, h ∈ T ,
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then there is a natural surjective ∗-homomorphism of C∗(N/Γ0) o T onto
C∗(Γ,Γ0).

Proof. Since G = TT−1 = T−1T , we have Γ = T −1T = T T−1. Also,
the solvable l.u.b. exists for any pair α, β in T . Proposition 2.8 shows that
C∗(Γ,Γ0) exists, so Theorem 1.10 yields a ∗-homomorphism π : C∗(N/Γ0)o
T to C∗(Γ,Γ0). Proposition 2.8 allows us to see that the image of H(Γ,Γ0)
in C∗(Γ,Γ0) is contained in the image of π, so π is a surjection. �

3. Universal Properties.

In this section our main goal is to provide certain conditions under which the
Hecke C∗-algebra is isomorphic to a semigroup crossed product C∗-algebra.
A crucial role is played here by the covariance condition of Nica, [N].

Lemma 3.1. If α, β ∈ T with α∨sβ = γ then R(γ) |ad (α)Γ0 ∩ ad (β)Γ0| =
R(α)R(β), where the cardinality is computed in Γ/Γ0.

Proof. For α ∈ T , the cardinality of ad (α)Γ0 = αΓ0α
−1Γ0 in Γ/Γ0 is the

same as the cardinality of Γ0α
−1Γ0 in Γ/Γ0, which is R(α). Since ad (γ)Γ0 =

ad (α)Γ0 ad (β)Γ0, ad (γ)Γ0 =
⋃
{η ad (β)Γ0 | η ∈ ad (α)Γ0}. The left cosets

η ad (β)Γ0 are either disjoint or coincide as η varies, and as sets, each is
isomorphic to ad (β)Γ0, which has R(β) elements in Γ/Γ0. Since two such
cosets given by η and η′ coincide if and only if η′−1η ∈ ad (β)Γ0, it follows
that

ad (γ)Γ0 =
⋃
· {η ad (β)Γ0 | η ∈ ad (α)Γ0/ ad (α)Γ0 ∩ ad (β)Γ0}.

Thus, in Γ/Γ0, R(γ) = |ad (α)Γ0/ad (α)Γ0 ∩ ad (β)Γ0|R(β), so
R(γ) |ad (α)Γ0 ∩ ad (β)Γ0| = R(α)R(β). �

Proposition 3.2. Let (Γ,Γ0) be an almost normal subgroup pair. Suppose
that α, β ∈ T , with α ∨s β = γ. Then P[α]P[β] = P[γ], where P[α] = WαW

∗
α

and [ ] denotes the equivalence class in T /NΓ0.

Proof. Recall that P[α] = WαW
∗
α = R(α)−1

∑
{χOη | η ∈ ad (α)Γ0} by

Proposition 1.5, for α ∈ T . Thus P[α]P[β] = R(α)−1R(β)−1
∑
{χOηχOδ

|
η ∈ ad (α)Γ0, δ ∈ ad (β)Γ0} = R(α)−1R(β)−1

∑
{χOηOδ

| η ∈ ad (α)Γ0,
δ ∈ ad (β)Γ0} the convolution product of functions in H(Γ,Γ0). The later
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expression

= R(α)−1R(β)−1
∑ {∑ {∑

{χOη ·Oδ
| δ ∈ ad (β)Γ0} |

η ∈ ad (α)Γ0/(ad (β)Γ0 ∩ ad (α)Γ0)
}
|

η ∈ ad (β)Γ0 ∩ ad (α)Γ0

}
= R(α)−1R(β)−1

∑
{R(γ)P[γ] | η ∈ ad (β)Γ0 ∩ ad (α)Γ0}

= R(α)−1R(β)−1 |ad (β)Γ0 ∩ ad (α)Γ0|R(γ)P[γ] = P[γ] by Lemma 3.1.

�

Remark 3.3. If (Γ,Γ0) is an almost normal subgroup pair so that the solv-
able l.u.b. exists for any pair of elements in T , and if π :H(Γ,Γ0) → B(H)
is a ∗-representation of H(Γ,Γ0), then Proposition 3.2 states that the map
πW = π ◦W is a representation of the semigroup T satisfying the covariance
condition

πW (α)πW (α)∗πW (β)πW (β)∗ = πW (α ∨s β)πW (α ∨s β)∗, α, β ∈ T

of Nica in [N].

Remark 3.4. For α, β ∈ T we have that α−1 ∨s β−1 = e if and only if
either one of the two equivalent conditions αβα−1 ∨s α = αβ, β ∨s βαβ−1 =
βα holds. In particular, if αβ = βα then α−1 ∨s β−1 = e if and only
if α ∨s β = αβ. Since WαW

∗
αWβW

∗
β = Wα∨sβW

∗
α∨sβ

by Proposition 3.2,
we have W ∗

αWβ = W ∗
αWαWa−1(α∨sβ)(WβWβ−1(α∨sβ))∗Wβ , and so W ∗

αWβ =
Wα−1(α∨sβ)Wβ−1(α∨sβ) which is equal to WβW

∗
α if αβ = βα. Thus, for

α, β ∈ T with α−1 ∨x β−1 = e and αβ = βα we have W ∗
αWβ = WβW

∗
α.

Definition. For (Γ,Γ0) an almost normal subgroup pair, let L be the linear
span over C of the set {WαW

∗
β | α, β ∈ T } in H(Γ,Γ0).

Proposition 3.5. Let (Γ,Γ0) be an almost normal subgroup pair and as-
sume that the solvable l.u.b. exists for any pair of elements in T . Then L
is a ∗-subalgebra of H(Γ,Γ0).

Proof. Let α, β, γ, δ ∈ T . Proposition 3.2 shows that WβW
∗
βWδW

∗
δ =

Wβ∨sδW
∗
β∨sδ

. Thus

W ∗
βWδ = W ∗

βWβ∨sδW
∗
β∨sδWδ

= W ∗
βWβWβ−1(β∨sδ)(WδWδ−1(β∨sδ))

∗Wδ = Wβ−1(β∨sδ)W
∗
δ−1(β∨sδ)

.

It follows that WαW
∗
βWδW

∗
γ = Wαβ−1(β∨sδ)W

∗
γδ−1(β∨sδ)

, which is in L.
Clearly L is closed under adjoints. �
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Lemma 3.6. Let (Γ,Γ0) be an almost normal subgroup pair so that the
solvable l.u.b. exists for any pair of elements in T and that Γ = T T−1 =
T −1T . Suppose that α, β, η, γ ∈ T satisfy α−1 ∨s β−1 = η−1 ∨s δ−1 = e.

(a) If αβ−1 = ηδ−1 then there is an n ∈ NΓ0 with η = αn and δ = βn.
(b) If Oαβ−1 ⊆ Oηδ−1 then [α] = [η] and [β] = [δ] in T /NΓ0.

Proof. (a) Set x = αβ−1. Then e ∨s x = α(α−1 ∨s β−1) = η(η−1 ∨s δ−1) by
Lemma 2.2 and the comments preceding Theorem 2.3. Thus α and η are
both solvable l.u.b. for e and x so there is an n ∈ NΓ0 with αn = η. Thus
αβ−1 = αnδ−1 and δ = βn.

(b) Since Γ0αβ
−1Γ0 ⊆ Γ0ηδ

−1Γ0 ⊆ ηΓ0δ
−1, there is an m ∈ Γ0 with

αβ−1 = ηmδ−1. By part (a) there is an n ∈ NΓ0 with α = ηmn and β = δn.
Thus [α] = [η] and [β] = [δ] in T /NΓ0 . �

Proposition 3.7. Let (Γ,Γ0) be an almost normal subgroup pair with Γ =
T T−1 = T −1T and such that the solvable l.u.b. exists for any pair of el-
ements of T . Then L =H(Γ,Γ0). If N is a normal subgroup of Γ with
Γ0 < N < NΓ0 then L = spanC{WsWnW

∗
t | s−1 ∨s t−1 = e, n ∈ N/Γ0

and s, t ∈ F} where F is an arbitrarily chosen set in T of distinct coset
representatives of T /N .

Proof. That L =H(Γ,Γ0) follows from Proposition 2.8. Let α, β ∈ T be
arbitrary. Then by Theorem 2.3 there are elements s, t ∈ T with s =
e ∨s αβ−1 = α(α−1 ∨s β−1) and t = β(α−1 ∨s β−1). Then s−1 ∨s t−1 =
(α−1 ∨s β−1)−1(α−1 ∨s β−1) = e. Since α = s(α−1 ∨s β−1)−1 and β =
t(α−1 ∨s β−1)−1, it follows that WαW

∗
β = WsWq(WtWq)∗ = WsWqW

∗
qW

∗
t

where q = (α−1∨sβ−1)−1 ∈ T . SinceN satisfies Γ0 E N E Γ, Proposition 1.5
and Theorem 1.7 show that WqW

∗
q = R(q)−1

∑
{Un | n ∈ (ad (q)Γ0)/Γ0},

a sum of R(q) terms over N/Γ0, and that WαW
∗
β is in the linear span over

Q of WsWnW
∗
t where n ∈ ad (q)Γ0 ⊆ N and s−1 ∨s t−1 = e. Note also that

(sn)−1 ∨s t−1 = e. �

Proposition 3.8. Let (Γ,Γ0) be an almost normal subgroup pair with Γ =
T T−1 = T −1T and such that the solvable l.u.b. exists for any pair of el-
ements of T . If NΓ0 is normal in Γ then B = {WsWnW

∗
t | s−1 ∨s t−1 =

e, n ∈ NΓ0/Γ0, s, t ∈ F0} is a basis for L. Here F0 is a set in T of coset
representatives of T /NΓ0.

Proof. The preceding proposition shows that this set is a spanning set for
L. By Lemma 2.6 it is enough to show that the elements {χOsnt−1 | s, t ∈
F0, s

−1 ∨s t−1 = e, n ∈ NΓ0/Γ0} are linearly independent in H(Γ,Γ0). If
Osnt−1 ⊆ Opmq−1 where s, t, p, q ∈ F , s−1∨s t−1 = p−1∨s q−1 = e and n,m ∈
NΓ0 , then Lemma 3.6 (b) implies that [s] = [sn] = [pm] = [p] in T /NΓ0 and
similarly [t] = [q]. Thus s = p and t = q. Again, using Lemma 2.6 and
the fact that Ws and Wt are isometries, we have that Wn = Wm (up to a
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scalar), so n = m in NΓ0/Γ0. Since {Oγ | γ ∈ Γ} are points in Γ0\Γ/Γ0, this
shows that the elements {χOsnt−1 | s, t ∈ F0, s−1 ∨s t−1 = e, n ∈ NΓ0/Γ0}
are linearly independent. �

In the presence of some more structure for the pair (Γ,Γ0) there is a slight
strengthening of Proposition 3.8.

Proposition 3.9. Let (Γ,Γ0) be an almost normal subgroup pair with Γ =
T T−1 = T −1T and such that the solvable l.u.b. exists for any pair of el-
ements of T . If Γ0 ≤ N ≤ NΓ0 with both N and NΓ0 normal in Γ, then
BN = {WsWnW

∗
t | s−1 ∨s t−1 = e, n ∈ N/Γ0, s ∈ F , t ∈ F0} is a basis for

L. Here F0 is an arbitrary set in T of coset representatives of T /NΓ0 and
F is an arbitrary set in T of coset representatives of T /N .

Proof. We show that there is a bijective correspondence between the set BN
and the basis B = BNΓ0

of Proposition 3.8. First notice that given s ∈ F0

and n ∈ NΓ0 there is a unique u ∈ F and a unique m ∈ N with sn = um.
To see this, observe snN = uN for a unique u ∈ F . Then sn ∈ uN , so there
is a unique m ∈ N with sn = um. We then have that the element WsWnW

∗
t

of B is equal to the element WsnW
∗
t = WuWmW

∗
t of BN . Conversely, for

u ∈ F and m ∈ N given, there is a unique s ∈ F0 and n ∈ NΓ0 with
um = sn. This follows as before, by first noting that umNΓ0 = sNΓ0 for a
unique s ∈ F0. �

Theorem 3.10. Let (Γ,Γ0) be an almost normal subgroup pair with Γ =
T −1T = T T−1, and such that the solvable l.u.b. exists for any pair of
elements in T . If Γ0 ≤ N ≤ NΓ0 with both N and NΓ0 normal in Γ, then
H(Γ,Γ0), respectively C∗(Γ,Γ0), is the universal ∗-algebra, respectively C∗-
algebra, generated by {Vα | α ∈ T } such that

1) V ∗
αVα = I = Vn (α ∈ T , n ∈ Γ0)

2) VαVβ = Vαβ (α, β ∈ T )
3) VαV ∗

αVβV
∗
β = Vα∨sβV

∗
α∨sβ

(α, β ∈ T )
4) VαVnV ∗

α = R(α)−1
∑
{Vb | b ∈ N/Γ0 such that [ad (α−1)b] = [n] in

N/Γ0}, (α ∈ T , n ∈ N).

Proof. If A is the universal ∗-algebra generated by {Vα | α ∈ T } with these
relations, there is a natural ∗-homomorphism of A to H(Γ,Γ0) mapping Vα to
Wα. This map is surjective since L =H(Γ,Γ0) by Proposition 3.7. Define L′
to be the linear subspace of A generated by {VαV ∗

β | α, β ∈ T }. Using 1), 2)
and 3), we see, as in Proposition 3.5, that L′ is a ∗-subalgebra of A. Since L′
contains the generators of A, L′ = A. By 4), it follows as in Proposition 3.7,
that {VsVnV ∗

t | s−1 ∨s t−1 = e, n ∈ N/Γ0, s, t ∈ F} spans L′. Now notice
that condition 4) with n = e implies that Vα is a unitary element of A for
α ∈ NΓ0 . For if α ∈ NΓ0 , then ad (α)Γ0 = Γ0 and ad (α) is an automorphism
of NΓ0/Γ0. The sum then has only R(α) = 1 terms, and Vb for b = e is the
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only term appearing. Thus VαV ∗
α = I for α ∈ NΓ0 . Using this, we can show

that the set {VuVmV ∗
w | u−1 ∨s w−1 = e, m ∈ N/Γ0, u ∈ F , w ∈ F0} spans

L′. To see this note that tNΓ0 = wNΓ0 for some w ∈ F0, so t = wp for
some p ∈ NΓ0 . Then VsVnV

∗
t = VsVn(VwVp)∗ = VsVnVp−1V ∗

w = Vsnp−1V ∗
w .

Now snp−1N = uN for some u ∈ F , so snp−1 = um for some m ∈ N .
Thus VsVnV ∗

t = VuVmV
∗
w with u ∈ F , m ∈ N and w ∈ F0. Note also that

u−1 ∨s w−1 = e. Under the natural ∗-homomorphism above, the image of
this spanning set in H(Γ,Γ0) is, by Proposition 3.9, linearly independent,
so it must also be linearly independent in A, and so a basis for A. Thus
A ∼=H(Γ,Γ0). �

We conclude this section by considering the case where Γ is a semidirect
product of the normal subgroup N by G, Γ0 E N .

Theorem 3.11. Let (Γ,Γ0) be an almost normal subgroup pair with e →
N → Γ

ν
�
ρ
G → e a split exact sequence and Γ0 ≤ N ≤ NΓ0 E Γ. Also

assume that G = T−1T = TT−1 and that the solvable l.u.b. exists for any
pair of elements of T = {g ∈ G | Γ0 ⊆ ad (ν(g))Γ0}. Then H(Γ,Γ0), respec-
tively C∗(Γ,Γ0) is the universal ∗-algebra, respectively C∗-algebra, generated
by {Vg, Un | g ∈ T, n ∈ N/Γ0} such that for g, h ∈ T , n, m ∈ N/Γ0

1) V ∗
g Vg = I

2) VgVh = Vgh
3) VgV ∗

g VhV
∗
h = Vg∨shV

∗
g∨sh

4) Unm = UnUm and U∗
n = Un−1 , Ue = Ve

5) UnVg = VgUad (v(g−1))n

6) VgUnV ∗
g = R(g)−1

∑
{Ub | ad (ν(g−1))b = n}.

Proof. First note that V 2
e = Ve by 2), so I = V ∗

e Ve = V ∗
e VeVe = Ve. Note

that the first three conditions state that V is a covariant representation by
“isometries” of the semigroup T , condition 4) states that U is a “unitary”
representation of the group N/Γ0 while condition 6) is saying that (U, V ) is
a “covariant pair”. We prove this result directly, rather than using Theorem
3.10. Let A be the universal ∗-algebra generated by the Vg and Un subject
to the six conditions. Define L′ = spanC{VsUnV ∗

t | s, t ∈ T , n ∈ N/Γ0}. We
claim that L′ is a ∗-subalgebra of A, thus, since it contains the generators of
A, A = L′. To see this it is enough to show that VsUnV ∗

t VuUmV
∗
w is of the

form VaUpV
∗
b . Condition 3) states VtV ∗

t VuV
∗
u = Vt∨suV

∗
t∨su, so by 1), V ∗

t Vu =
V ∗
t Vt∨suV

∗
t∨suVu = V ∗

t VtVt−1(t∨su)V
∗
u−1(t∨su)

V ∗
u Vu = Vt−1(t∨su)V

∗
u−1(t∨su)

. Sub-
stituting this into VsUnV ∗

t VuUmV
∗
w and using condition 5) and its adjoint,

finishes the claim.
One can define a ∗-homomorphism of A to H(Γ,Γ0) by mapping Vg to

Wν(g) and Un to Wn, since the six conditions are straightforward to verify
for Wν(g) and Wn.



HECKE ALGEBRAS AND SEMIGROUP CROSSED PRODUCT 257

The argument of Proposition 3.7 using condition 6) shows that L′ =
spanC{VsUnV ∗

t | s−1∨s t−1 = e, s, t ∈ T , n ∈ N/Γ0}. The argument in The-
orem 3.10 using condition 6) with n = e shows that L′ = spanC{VsUnV ∗

t |
s−1 ∨s t−1 = e, s ∈ T , n ∈ N/Γ0, t ∈ F0} where F0 is a set in T of coset
representatives of T/ρ(NΓ0). The image of this spanning set in H(Γ,Γ0) is
a basis in H(Γ,Γ0) by Proposition 3.9, so A ∼= H(Γ,Γ0). �

Within the context of the preceding theorem, we saw earlier in Theorem
2.11 that there is a natural surjective ∗-homomorphism of C∗(N/Γ0) o T
onto C∗(Γ,Γ0). In fact this map is an isomorphism.

Theorem 3.12. Let (Γ,Γ0) be an almost normal subgroup pair with e →
N → Γ

ν
�
ρ
G→ e a split exact sequence. Assume also that Γ0 ≤ N ≤ NΓ0 E

Γ, G = T−1T = TT−1 and that the solvable l.u.b. exists for any pair of
elements of T = {g ∈ G | Γ0 ⊆ ad (ν(g))Γ0}. Then the natural surjective
∗-homomorphism of C∗(N/Γ0) o T onto C∗(Γ,Γ0) is an isomorphism.

Proof. As in Section 1, for n ∈ N/Γ0 let δn be the element of l1(N/Γ0)
which is one at n and zero elsewhere. Let η : l1(N/Γ0) → C∗(N/Γ0) be
the natural norm decreasing injective ∗-homomorphism and un = η(δn) the
natural unitaries generating C∗(N/Γ0). Also denote by {Yg | g ∈ T} the
semigroup of isometries in C∗(N/Γ0) o T implementing the action of the
semigroup T in the dynamical system (C∗(N/Γ0), Θ̃, T ) described before
Theorem 1.10.

Define Vg = Yg and Un = un for g ∈ T and n ∈ N/Γ0. We first show
that the conditions of Theorem 3.11 are fulfilled. It is clear that conditions
1), 2), 4), and 6) hold for this family of elements in C∗(N/Γ0) o T . In-
deed, these are the defining relations for C∗(N/Γ0) o T . We only need to
show that conditions 3) and 5) also hold. By condition 6), VgV ∗

g = YgY
∗
g =

R(g)−1
∑
{Ub | ad (ν(g−1))b = e} = η[R(g)−1

∑
{δb | b ∈ ad (ν(g))Γ0, dis-

tinct in N/Γ0}]. The argument of Proposition 3.2 along with the fact that
η is a ∗-homomorphism shows that condition 3) holds.

We now check condition 5). First note that VgV ∗
g = η(Θ̃g(δe)) by con-

dition 6). Thus UnVg = η(δn)Vg = η(δn)YgY ∗
g Yg = η(δn ∗ Θ̃g(δe))Yg. Also

VgUad g−1(n) = Ygη(δad g−1(n)) = Ygη(δad g−1(n))Y ∗
g Yg = η(Θ̃g(δad g−1(n)))Yg

by condition 6). It is a straightforward calculation to check that the convo-
lution product δn ∗ Θ̃g(δe) = Θ̃g(δad g−1(n)), so condition 5) is verified.

Theorem 3.11 yields a ∗-homomorphism of C∗(Γ,Γ0) to C∗(N/Γ0) o T
which is easily seen to be surjective and the inverse of the surjective ∗-
homomorphism of Theorem 2.11. �
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4. Examples.

In this section we illustrate and apply some of the above results to various
examples. As we will see, many of the examples given are special cases of
other examples.
4.1.

As a first example, it is illustrative to see the Bost-Connes context. Their
work provides the framework for much of this work. Here Γ is the semidirect
product of the abelian group N = (Q,+) and the abelian group G = (Q×

+, ·),
the multiplicative group of nonzero positive rational numbers. The action
ψ : G→ Aut (N) is given by the ring structure of Q, namely ψg(r) = gr for
g ∈ G, r ∈ N . For a subgroup Γ0 of N to be an almost normal subgroup
of Γ, it is only necessary by Lemma 1.9 that the subgroup ψg(Γ0)Γ0/Γ0 of
N/Γ0 is finite for each g ∈ G. If Γ0 = Z, for g = ab−1 with a, b ∈ N, b 6= 0,
we have (ψgZ+Z)/Z ∼= (ψaZ+ψbZ)/ψbZ = (a, b)Z/bZ, a finite group. Since
ψg(Γ0) 6= Γ0 for all g 6= e in G, N is the normalizer NΓ0 of Γ0 in Γ. We
compute that T−1 = {g ∈ G | ψg(Z) ⊆ Z} = N and so G = T−1T = TT−1.
For a = n−1, b = m−1 in T = N−1, we have a ≤ b if and only if n | m, so a∨sb
exists and is the least common multiple of n and m. Thus a−1 ∨s b−1 = e
if and only if n, m are relatively prime. The C∗-Hecke algebra C∗(Γ,Γ0) is
thus isomorphic to the semigroup crossed product C∗-algebra C∗(Q/Z) oT
∼= C∗(Q/Z) o N, where we use the isomorphism of G given by n → n−1,
mapping the semigroup T to N.
4.2.

With N, G as in Example 4.1, there are different possible actions ψ :
G → Aut (N), each giving rise to a split extension Γψ of N by G. The
group Aut (N) = GL(1,Q) = (Q×, ·), so ψ is determined by its effect on
P , the prime members of N, since (Q×

+, ·) ∼=
⊕

P Z. If both ψ−1(1) and
ψ−1(−1) are contained in {1}, the normalizer NΓ0 of Γ0 = Z is N and a
similar analysis to that of 4.1 may be carried through.
4.3.

For d ∈ N, let G = {g ∈ GL(d,Q) | det g > 0} = GL(d,Q)+ and
N = (Qd,+), with ψ : G → Aut (N) the inclusion map. Setting Γ to be
an extension of N by G and Γ0 = Zd we check that (Γ,Γ0) is an almost
normal subgroup pair. Again we need only check that ψg(Zd) + Zd/Zd is
finite for g ∈ G. Choosing g ∈ G, there is an m ∈ N with mg ∈ Md(Z).
For example, there is an m ∈ N so that the ideal {r ∈ Z | rg ∈ Md(Z)}
of Z is mZ. Then ψg(Zd) + Zd/Zd = ψm−1ψmg(Zd) + Zd/Zd ∼= ψmgZd +
ψmZd/ψmZd ⊆ Zd/ψm(Zd), which has md elements. The semigroup T−1 =
{g ∈ G | ψg(Zd) ⊆ Zd} = Md(Z) ∩ G, and T ∩ T−1 = SL(d,Z), which is
not normal in G. Also TT−1 = T−1T = G and a ∨s b exists for each a, b ∈
T . Applying Proposition 2.8 gives us the universal C∗-algebra C∗(Γ,Γ0).
Theorem 2.11 also applies.
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4.4.
This example is a special case of Example 4.3, but designed to circumvent

the problem of NΓ0 not being normal in Γ. It is also the example which
motivated my work in this paper, cf. [B].

Choose M,F ∈ Md(Z) with MF = FM , detF and detM both nonzero
and relatively prime. Define an action ψ : Z ⊕ Z → Aut (N) by ψ(n,m) =
F−n
t M−m

t where N is the subgroup of Qd, endowed with the discrete topol-
ogy, generated by {Fnt Mm

t (Zd) | n,m ∈ Z}. With Γ chosen so that e →
N → Γ → Z ⊕ Z → e is an extension inducing the given ψ, and with
Γ0 = Zd, the argument of Example 4.3) shows that (Γ,Γ0) is an almost nor-
mal subgroup pair. The semigroup T = {(n,m) ∈ Z⊕Z | Fnt Mm

t (Zd) ⊆ Zd}
contains N⊕N and T ∩T−1 = {(n,m) ∈ Z⊕Z | Fnt Mm

t ∈ GL(d,Z)}. Recall
that (detF,detM) = 1, so if we stipulate that both |detF | and |detM |
are not 1, then (n,m) ∈ T ∩ T−1 if and only if n = m = 0. It also fol-
lows in this situation that N ⊕ N = T . Thus TT−1 = T−1T = Z ⊕ Z.
We now show that any pair of elements of the additive group G = Z ⊕ Z
has a solvable l.u.b. The argument of Proposition 3.11 of [B] shows that
F aZd +M bZd = Zd for a, b ∈ N. If we denote the minimum of two integers
a and b by a ∧ b, it follows, since M and F commute, that F aZd +M bZd =
F a∧0M b∧0(Zd). Thus, for (n,m), (p, q) ∈ G, FnMm(Zd) + F pM q(Zd) =
Fn∧pMm∧q[Fn−n∧pMm−m∧q(Zd)+F p−n∧pM q−m∧q(Zd)] = Fn∧pMm∧q(Zd),
so (n,m) ∨s (p, q) = (n ∧ p,m ∧ q). Applying Theorem 3.10 we have, for
Γ the semidirect product of N by Z ⊕ Z with respect to ψ, that the Hecke
C∗-algebra C∗(Γ,Γ0) is isomorphic to the semigroup crossed product C∗-
algebra C∗(N/Γ0) o T = C∗(N/Γ0) o (N ⊕ N). There are other similar
examples along these lines.

4.5.
Let K denote an algebraic number field; so a subfield of C which is a finite

dimensional extension of Q. Thus K = Q[α] for some algebraic number α,
say of degree d. Letting Γ0 denote the ring of algebraic integers in K, choose
an integral basis B = {β1, . . . , βd} of Γ0; so Γ0 is the Z-module generated by
B. Let η denote the norm for K over Q. The group of units of the ring Γ0,
denoted by U , is {g ∈ Γ0 | η(g) = ±1} and K× denotes the multiplicative
group of units of K. There is an action ψ : K× → Aut (K), where K
is viewed as an additive abelian group, given by ψg(k) = gk, k ∈ K and
g ∈ K×. Also set T−1 = {g ∈ K× | ψg (Γ0) ⊆ Γ0}. Since 1 ∈ Γ0, the
condition ψgΓ0 ⊆ Γ0 holds if and only if g ∈ Γ0, so T−1 = Γ0 ∩K× = Γ×0 .

Lemma 4.5.1. K× = T−1T = TT−1.

Proof. For g ∈ K× there is an m ∈ N/{0} with mg ∈ Γ0, so ψmg(Γ0) ⊆ Γ0

and mg ∈ T−1. Since m ∈ T−1 it follows that g = m−1(mg) = (mg)m−1 ∈
TT−1 ∩ T−1T . �
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The argument of Example 4.3 shows that (ψg(Γ0) + Γ0)/Γ0 is finite for
g ∈ K×, so (Γ,Γ0) is an almost normal subgroup pair whenever e → K →
Γ → K× → e is an extension inducing the action ψ.

Lemma 4.5.2. T ∩ T−1 = U .

Proof. If g ∈ T ∩ T−1, then ψgΓ0 = Γ0, so ψg as a matrix with respect to
the basis B of Γ0, is in GL(d,Z). Thus det(ψg) = ±1. Since η(g) = det(ψg),
we have g ∈ U . Conversely, if g is a unit of Γ0, then ψg(Γ0) = Γ0. �

To be able to continue with this example, we need to show that solvable
least upper bounds exist for pairs of elements from T . Since K× is an
abelian group, this is equivalent to any pair of elements from T−1 possessing
a solvable l.u.b. For g, h ∈ T−1, g, h also belong to Γ0, so the subgroup
ψgΓ0 + ψhΓ0 is the sum of two principle ideals in the ring Γ0, so also an
ideal. The question of whether the solvable l.u.b. of g and h exists in T−1 is
then equivalent to whether every ideal of Γ0 is principle. For if c ∈ Γ0 with
ψgΓ0 + ψhΓ0 = ψcΓ0 then rank (ψcΓ0) ≥ rank (ψgΓ0) ≥ d. Thus η(c) 6= 0
and c ∈ Γ0 ∩K× = T−1. Since every ideal of Γ0 can be written as the sum
of two principal ideals, the equivalence is established. Assuming then that
every ideal of Γ0 is equivalent to a principle ideal, namely that the class
group of the field K consists of the unit element only, i.e., that the class
number hK of K is 1, we have that solvable least upper bounds exist in
T−1.

Remark 4.5.3. The subgroup K×
+ = {g ∈ K | η(g)̇ > 0} of K× is just

Q+ when K = Q, which is the group considered in [BC]. One could try
the same approach as above in this situation, obtaining for example T−1 =
Γ0 ∩ K×

+ and K×
+ = TT−1 = T−1T ; however, there are examples where

ψgΓ0 + ψhΓ0 = ψcΓ0 with g, h ∈ T−1, so η(g) and η(h) are both positive,
but η(c) < 0 for any such c, so c /∈ T−1. As an example, considerK = Q[

√
6].

Then Γ0 = Z[
√

6] and U , the units of Γ0, are {±(5 + 2
√

6)n | n ∈ Z}. These
units all have norm 1. Setting g = 2 and h = 4+

√
6 we have that the norms

of g and h are both positive, equal to 4 and 10 respectively. Now write
g = (2+

√
6)2(5− 2

√
6) and h = (2+

√
6)(−1+

√
6). Since η(2+

√
6) = −2,

the element 2 +
√

6 of Γ0 is indecomposable. Also η(−1 +
√

6) = −5,
so −1 +

√
6 is indecomposable. Since 2 +

√
6 = −g + h, it follows that

ψgΓ0 + ψhΓ0 = ψcΓ0 where c = 2 +
√

6 is an element of negative norm. If
cΓ0 = dΓ0 then d must be c up to multiplication by a unit of Γ0, so η(c) < 0
for any c ∈ Γ0 with ψgΓ0 + ψhΓ0 = ψcΓ0. We also mention that Γ0 is
Euclidean and so a principle ideal domain. Thus hK = 1 for this example.

It is a straightforward computation using that K× is abelian to show that
NΓ0 is a normal subgroup of Γ, so Theorem 3.12 applies.
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Proposition 4.5.4. Let K be a number field with class number 1. Denoting
the ring of algebraic integers by Γ0, (Γ,Γ0) is an almost normal subgroup pair
where Γ is the semidirect product K oψ K

× with ψ : K× → Aut (K) given
by multiplication. If T = {g ∈ K× | Γ0 ⊆ ψg(Γ0)} then T−1 = Γ0 ∩K×, the
Hecke algebra H(Γ,Γ0) has a universal C∗-norm, and there is a natural ∗-
isomorphism of the C∗-semigroup crossed product algebra C∗(K/Γ0)oT with
C∗(Γ,Γ0), the C∗-completion of H(Γ,Γ0). If Γ0 has a unit of norm −1, the
statement remains true if K× is replaced with K×

+ = {g ∈ K× | η(g) > 0}
and T = {g ∈ K×

+ | Γ0 ⊆ ψg(Γ0)}.

Consider the multiplicative group J of fractional ideals of the Dedekind
domain Γ0. This is a free abelian group generated by the prime ideals of
Γ0, with unit element the ideal Γ0. A fractional ideal is of the form d−1J for
some integral ideal J of Γ0 and some d 6= 0 in Γ0. The fractional principle
ideals kΓ0 with k ∈ K× form a subgroup K of J , namely the image of the
group homomorphism ϕ : K× → J mapping k to kΓ0. The kernel of this
homomorphism is U , the group of units of Γ0, so K×/U is isomorphic to
the subgroup K of fractional principle ideals of J . Note that if the class
number of K is 1, all ideals of Γ0 are principle, so ϕ is surjective. Since J
is a free abelian group, so is the subgroup of fractional principal ideals K
and therefore the exact sequence e → U → K× → K → e splits, yielding a
subgroup H of K×, isomorphic with K and with H∩U = {e}, H⊕U ∼= K×.

Theorem 4.5.5. Let K be a number field with class number 1, Γ0 the ring
of algebraic integers in K. Then (Γ,Γ0) is an almost normal subgroup pair
where Γ is the semidirect product KoψH with H a subgroup of K× comple-
menting U , the group of units of Γ0 and ψ : H → Aut (K) defined by multi-
plication: ψg(h) = gk, g ∈ H, k ∈ K. If P = {g ∈ H | Γ0 ⊆ ψg (Γ0)} then
the Hecke algebra H(Γ,Γ0) has a universal C∗-norm, and there is a natural
∗-isomorphism of the C∗-semigroup crossed product algebra C∗(K/Γ0) o P
with C∗(Γ,Γ0), the C∗-completion of H(Γ,Γ0).

4.6.
It seems worthwhile to include another example, as it encompasses all

of the examples mentioned above and uses standard constructions in ring
theory ([R]). Let R be a unital ring and Γ0 an R-module. For example, if
Γ0 is an abelian group, it can be viewed as an R-module where R is any
unital subring of the ring R = Hom Z(Γ0,Γ0) by setting f ·m = f(m) for
f ∈ R, m ∈ Γ0. In general, the left regular representation of R is a ring
homomorphism ρ : R→ R.

Now choose a unital multiplicatively closed subset S of the center Z(R)
of R and form N , the localization of the module Γ0 at S, N = S−1Γ0. One
construction of N involves considering S as a preordered directed set under
s ≤ t if and only if s divides t. Define ϕts : Γs → Γt for s ≤ t by restriction,
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where Γs is the abelian group HomR(Rs,Γ0) and set S−1Γ0 = lim⇀(Γs, ϕts),
a limit of Z-modules. If S−1R denotes the ring obtained by localizing the
ring R at S, then N becomes an S−1R module. Letting G denote the group
of units of the ring S−1R we have S ⊆ G and we obtain an action of the
group G which extends the original action of S on Γ0. This construction is
basically the one Cuntz used in forming the crossed product of a C∗-algebra
by an endomorphism [C].

Lemma 4.6.1. If Γ0/sΓ0 is finite for each s ∈ S then (Γ,Γ0) is an almost
normal subgroup pair for any extension e→ N → Γ → G→ e.

Proof. Using Lemma 1.9 it suffices to show that gΓ0 + Γ0/Γ0 is finite for
each g ∈ G. Writing g = s−1r for some s ∈ S, r ∈ R we have gΓ0 +Γ0/Γ0

∼=
(rΓ0 + sΓ0)/sΓ0 ⊆ Γ0/sΓ0, which is finite. �

If we consider the smaller abelian subgroup G0 = S−1S of G and let Γ
be the split extension of N = S−1Γ0 by G0, the setting of Theorem 2.11
begins to appear, with T = S−1 in this case.
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