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For each g ≥ 1, we study a family Yg(n) of complex surfaces
which admit a singular fibration over CP 1 by complex curves
of genus g. By examining a handlebody description for Yg(n),
we show that these complex surfaces can be smoothly decom-
posed as the Milnor fiber of a Brieskorn homology 3-sphere
union a small submanifold, termed a “nucleus”. This descrip-
tion generalizes known decompositions for elliptic surfaces.

0. Introduction.

Elliptic surfaces have long been an important source of examples in the study
of smooth 4-manifolds. One important step in their study was the discovery
by Gompf of “nuclei” of elliptic surfaces, that is, of small submanifolds which
carry much of the differential topological information of the larger elliptic
surface [G]. Furthermore, Gompf identified the complements of nuclei as
familiar examples (a certain family of Milnor fibers of Brieskorn homology
3-spheres), yielding a decomposition for elliptic surfaces that has proven
useful in a variety of contexts. (See [FS], [G], [GM], [LM] for applications.)

The situation for higher genus fibrations, however, is less settled. In this
paper, for each g ≥ 1 we study a family Yg(n) of complex surfaces admitting
a singular fibration over CP 1 by genus g Riemann surfaces, describing their
topology by means of Kirby calculus. These complex surfaces are shown
to have a decomposition analogous to Gompf’s decomposition for elliptic
surfaces: each Yg(n) contains a small (b2 = 2) submanifold, also referred to
as a nucleus, whose complement is diffeomorphic to the Milnor fiber of the
Brieskorn homology 3-sphere Σ(2, 2g + 1, 2(2g + 1)n− 1). Indeed, for g = 1,
we recover precisely the decomposition of [G] for elliptic surfaces.

1. A Family of Branched Covers.

For all k ≥ 0, let Fk denote the kth Hirzebruch surface, the holomorphic
CP 1-bundle over CP 1 with a holomorphic section of self-intersection number
−k. As a smooth 4-manifold, we will find it convenient to think of Fk as
the double of a D2-bundle over S2 with Euler number k, and hence Fk

can be described by the handlebody in Figure 1. Fk admits two disjoint
holomorphic sections ∆k and ∆−k, with ∆2

±k = ±k.
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For all g ≥ 1 and n ≥ 1, we define Yg(n) to be the 2-fold cover of F2n,
branched over the disjoint union of a smooth curve in |(2g+1)∆2n| and ∆−2n.
Yg(n) admits a singular fibration Yg(n) → CP 1 obtained by composing the
branched cover map with the bundle map F2n → CP 1. Since a typical
nonsingular fiber appears as the double cover of a sphere branched over
2g + 2 points, this is a singular fibration by genus g curves. This fibration
admits a holomorphic section S with S2 = −n, obtained as the lift of ∆−2n

to Yg(n).

2. A handlebody description of Yg(n).

Our results follow by obtaining a handlebody description for Yg(n), which is
used to understand the structure of the singular fibration Yg(n) → CP 1. Be-
cause of the large Euler characteristics involved, we discuss the development
of handlebody pictures for the family Y2(n) of genus 2 fibrations in detail,
and comment later on the obvious modifications for Yg(n). This handlebody
description is also discussed in [Fu] for the special case Y2(1).

Special Case: Y2(n). Setting g = 2, we begin by constructing a smooth
complex curve representing [5∆2n] ∈ H2(F2n). To do this, we construct the
D2-bundle over S2 with Euler number 2n by gluing two copies of C2 with
coordinates (w, η) and (z, ξ) according to the identifications

w = z−1

η = z−2nξ.

We can describe five copies of ∆2n in the (w, η) chart as the set of all points
(w, η1), . . . , (w, η5), where η1, . . . , η5 are the five roots of unity, and extend
these over the (z, ξ) chart by setting ξi = ηiz

2n for 1 ≤ i ≤ 5. These five
copies intersect at z = 0. These five copies are thus given locally by the
complex curve

(ξ − η1z
2n) · · · (ξ − η5z

2n) = ξ5 − z10n = 0,

and we can smooth out the intersection point by deforming this curve into

ξ5 = z10n + ε.

Figure 2 shows F2n along with a piece of the smoothed branch surface,
which is known to be given by the fibered Seifert surface for the (5, 10n) torus
link ([Mi]). We label the 2-handles of F2n as h and h′, for later reference.
The boundary of this surface is five circles; the rest of the surface is five
disjoint smoothly embedded disks D1, . . . , D5 in ∂(4-handle), obtained from
parallel copies of the core of h′. The other component of the branch set is
∆−2n, which is seen in Figure 2 as the cocore of h union an unseen disk D6

in the 4-handle. Sliding h′ 2n times over h produces Figure 3. The images
of the disks D1, . . . , D5 (which we continue to call D1, . . . , D5) under this
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diffeomorphism are parallel copies of the −2n-framed 2-handle (which we
continue to call h′). Moreover, since the handle slides give a diffeomorphism
from F2n to its upside down handlebody description, the disk D6 is also
seen in Figure 3 as a parallel copy of the core of h′. Figure 4 shows the
result of an isotopy, where the five flat disks in Figure 3 have been placed
horizontally across the page. (We leave it to the reader to check that this
isotopy untwists the half-twisted bands of Figure 3.)

Figure 5 shows the 2-fold branched cover Y2(n) of F2n, drawn from Figure
4 using the methods of [AK]. To understand Figure 5, it is best to picture
it being built in stages. We begin by picturing the branch surface as the six
0-handles ∪ 40n 1-handles in ∂(0-handle) of F2n visible in Figure 4, union
the 2-handles D1, . . . , D6 in the 4-handle of F2n. To form the branched cover
Y2(n), we lift the handles of F2n one at a time. To lift the 0-handle of F2n,
we isotop the interior of the six 0-handles ∪ 40n 1-handles into the interior
of the 0-handle of F2n. We then cut each of two copies of the 0-handle of
F2n along the track of this isotopy, and glue the resulting manifolds together
by attaching handles. Gluing two copies of the 0-handle of F2n along the six
0-handles of the branch set is accomplished by attaching six 1-handles with
each component of the attaching region in a separate copy, or equivalently
by attaching five 1-handles to a single 4-ball. These five 1-handles are the
dotted circles in Figure 5. Additional gluings along the 40n 1-handles of the
branch set are obtained by attaching the 40n 0-framed 2-handles in Figure
5.

To lift the 2-handles h and h′, we use the method of [AK], Section 3. The
attaching circle of h′ intersects the branch set geometrically in 2n points.
We lift h′ to two 2-handles h′1 and h′2 that are attached to circles obtained
by cutting the attaching circle of h′ along the branch set, and gluing the
endpoints together as we perform the gluing of the 0-handles of F2n. We
compute, as in [AK], that the framings of h′1 and h′2 are −n. Similarly,
h lifts to 2-handles h1 and h2, each with framing −3. Lastly, we must lift
the 4-handle of F2n. However, the lift is obtained from two copies of the
4-handle glued along the (pushed in) disks D1, . . . , D6, hence by turning
the initial part of our argument upside down it appears as five 3-handles ∪
4-handle.

We next modify this picture of Yg(n). We begin by isotoping the wheels of
0-framed 2-handles so that the two half twists per wheel are turned into one
full twist, resulting in Figure 6. The 1-handles are then isotoped by sliding
each dotted circle over the other dotted circles to its right; this rearranges
the dotted circles so that each wheel runs through a single dotted circle.
Cancelling four of the 1-handles with the outermost 2-handle from each
wheel, and cancelling the fifth 1-handle with one of the −3-framed 2-handles
produces Figure 7. Figure 8 is obtained by sliding one of the −n-framed 2-
handles over the other, splitting off an unknotted 0-framed 2-handle from
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the rest of the picture, which is used to cancel one of the 3-handles. The
handlebody in Figure 9 is diffeomorphic to that in Figure 8, as can be seen
by cancelling each 1-handle with the extra 2-handle in each wheel (and
isotoping the 0-framed (2,5) torus knot).

From Figure 9, we can extract a description of the singular fibers of
Y2(n) → CP 1. Viewing Figure 9 in stages, attaching first the 1-handles and
the 0-framed 2-handle (see Figure 10) describes Σ2 ×D2, a trivial fibration
over D2 by genus 2 surfaces. The 40n −1-framed 2-handles are attached
next with attaching circles lying in fibers Σ2×{pt.} ⊂ Σ2×S1 = ∂(Σ2×D2).
This is known (see [HKK], [K]) to be a handlebody description of a singu-
lar fibration over D2 with 40n singular fibers, each of which is an immersed
genus 2 surface with one transverse self-intersection, obtained from nearby
fibers by identifying one of the circles c1, c2, c3, c4 (see Figure 11) to a point.
The monodromy around each is given by D(ci), a right-handed Dehn twist
around ci. The boundary is an Σ2-bundle over S1 whose global monodromy
is the product of those Dehn twists. Since a meridianal circle to the 0-framed
2-handle in Figure 9 intersects each fiber in the boundary once, traversing
this circle allows us to read off this monodromy as

(D(c1)D(c2)D(c3)D(c4))10n.

Finally, the submanifold given by the −n-framed 2-handle ∪ four 3-handles
∪ 4-handle in Figure 9 is diffeomorphic (by tracing it back to Figure 5) to
the 2-fold cover of the submanifold h′ ∪ 4-handle branched over the pushed
in disks D1, . . . , D6. Since these disks are all parallel copies of h′, this is
diffeomorphic to the 2-fold cover of a trivial D2-bundle over S2 branched over
six fibers, namely Σ2 × D2. Hence adding the −n-framed 2-handle ∪ four
3-handles ∪ 4-handle to complete Figure 9 describes a Σ2 ×D2 attached to
the boundary, preserving the Σ2-bundle structure. In particular, the global
monodromy above must be trivial. (The word (D(c1)D(c2)D(c3)D(c4))10n

is known to be trivial in the mapping class group of a genus 2 surface [B].)
Figure 12(a) shows a regular neighborhood C of four consecutive singu-

lar fibers, whose singularities are defined by the circles c1, c2, c3, and c4,
respectively. Cancelling the 1-handles produces a 4-manifold obtained by
attaching a 2-handle to B4 along a 0-framed (2,5) torus knot K, as in Fig-
ure 12(b). With this description, since K is a fibered knot with genus 2
fiber, we have a fibration on C with only one singular fiber, called a cusp
fiber. (We have described the genus 2 analog of the familiar statement from
elliptic surfaces that two fishtail fibers can be deformed into one cusp fiber.)
Examining the global monodromy (D(c1)D(c2)D(c3)D(c4))10n, we see that
the original fibration with 40n singular fibers is diffeomorphic to a fibration
with 10n cusp fibers.

Following the terminology coined in [G], we make the following definition.
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Definition 1. The nucleus N2(n) ⊂ Y2(n) is a regular neighborhood of a
single cusp fiber union the section S.

Since S intersects each fiber in C once, Figure 13 gives a Kirby calculus
picture of N2(n). We next show that the decompositions of elliptic surfaces
in [G] apply here as well.

Theorem 2. The complement of N2(n) in Y2(n) is diffeomorphic to B(2, 5,
10n−1), the Milnor fiber of the Brieskorn homology 3-sphere Σ(2, 5, 10n−1).

Proof. The argument in [G] generalizes intact to our pictures. It follows
from the above discussion that drawing Figure 9 without the −n-framed 2-
handle ∪ four 3-handles ∪ 4-handle describes Yg(n)− ◦

ν(f), the complement
of a regular neighborhood of a nonsingular fiber f . To describe Yg(n) −
◦
C, we further leave out one −1-framed 2-handle per wheel. To get the
complement of Ng(n), we must additionally delete a neighborhood of S

restricted to Yg(n) −
◦
C. However, the cocore of the 0-framed 2-handle is a

properly embedded disk in Yg(n) −
◦
C which extends to S in Yg(n). Hence

deleting this disk, or equivalently omitting the 0-framed 2-handle, describes
the complement of Ng(n) in Yg(n). Figure 14 shows what has survived from
Figure 9. Cancelling the 1-handles produces Figure 15.

The Milnor fiber B(2, 5, 10n− 1) is by definition the solution set of x2 +
y5 + z10n−1 = ε in the unit ball of C3. This is easily seen (see the discussion
in [AK]) to be diffeomorphic to the (10n − 1)-fold cover of B4, branched
over the fibered Seifert surface for a (2,5) torus knot whose interior has been
pushed into B4. Applying the methods of [AK] to this branched cover also
yields Figure 15. �

The General Case: Yg(n). We can easily extend this discussion to describe
the analogous pictures for arbitrary g. To depict a smooth complex curve in
|(2g + 1)∆2n|, we replace the Seifert surface of a (5, 10) torus link in Figure
2 with the Seifert surface for a (2g + 1, 2(2g + 1)n) torus link, drawn as
2g + 1 disks connected by 4gn(2g + 1) twisted bands. Carrying through the
same analysis as before produces the picture of Yg(n) in Figure 16. In this
case, we consider a regular neighborhood C of 2g consecutive singular fibers
whose monodromies are given by Dehn twists around the circles c1, . . . , c2g

(see Figure 17). C can be obtained by attaching a 2-handle to B4 along
a 0-framed (2, 2g + 1) torus knot, which is taken to be the genus g analog
of the neighborhood of a cusp fiber. As before, if we delete the −n-framed
2-handle ∪ 2g 3-handles ∪ 4-handle from Figure 16, then the boundary is
a Σg-bundle over S1 with global monodromy

(D(c1)D(c2) · · ·D(c2g))2(2g+1)n,
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and we see that Yg(n) is diffeomorphic to the total space of a fibration with
2(2g + 1)n cusp fibers. Once again, we define the nucleus Ng(n) ⊂ Yg(n)
to be a regular neighborhood of a cusp fiber union the section S, so that
Ng(n) appears as in Figure 18. With these definitions, the following theorem
follows as before.

Theorem 3. The complement of Ng(n) in Yg(n) is diffeomorphic to B(2,
2g + 1, 2(2g + 1)n− 1), the Milnor fiber of the Brieskorn homology 3-sphere
Σ(2, 2g + 1, 2(2g + 1)n− 1).

Since the Milnor fibers B(2, 2g+1, 2(2g+1)n−1) have an even intersection
form, we have also shown the following corollary.

Corollary 4. Yg(n) is spin if an only if Ng(n) is spin.

Indeed, this fact is apparent from comparing Figures 16 and 18. In fact,
from these Figures we see that Yg(n) and Ng(n) are spin precisely when n
is even.

In addition, examining Figure 16 more carefully, we note as before that the
−n-framed 2-handle ∪ 2g 3-handles ∪ 4-handle represent a Σg×D2 attached
to the boundary of its complement, preserving the Σg-bundle structure.
Thus the global monodromy recorded above must be trivial. In particular,
setting n = 1, this gives a geometric explanation for the following well-known
fact [B].

Corollary 5. The product of Dehn twists (D(c1)D(c2) · · ·D(c2g))2(2g+1)

represents the trivial element in the mapping class group of Σg.
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Figure 1.

Figure 2.
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Figure 3.

Figure 4.
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Figure 5.

Figure 6.
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Figure 7.

Figure 8.
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Figure 9.

Figure 10.

Figure 11.
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(a)

(b)
Figure 12.

Figure 13.
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Figure 14.

Figure 15.
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Figure 16.

Figure 17.

Figure 18.
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