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A non-commutative non-self adjoint random variable z is
called R-diagonal, if its ∗-distribution is invariant under mul-
tiplication by free unitaries: if a unitary w is ∗-free from z,
then the ∗-distribution of z is the same as that of wz. Using
Voiculescu’s microstates definition of free entropy, we show
that the R-diagonal elements are characterized as having the
largest free entropy among all variables y with a fixed distribu-
tion of y∗y. More generally, let Z be a d×d matrix whose en-
tries are non-commutative random variables Xij, 1 ≤ i, j ≤ d.
Then the free entropy of the family {Xij}ij of the entries of
Z is maximal among all Z with a fixed distribution of Z∗Z, if
and only if Z is R-diagonal and is ∗-free from the algebra of
scalar d × d matrices. The results of this paper are analogous
to the results of our paper [3], where we considered the same
problems in the framework of the non-microstates definition
of entropy.

1. Introduction.

Let (M, τ) be a tracial non-commutative W ∗-probability space. A (non-self-
adjoint) element z ∈ M is called R-diagonal if its ∗-distribution is invariant
under multiplication by free unitaries; i.e., if w is a unitary, ∗-free from z,
the ∗-distributions of wz and z coincide. The concept of R-diagonality was
introduced in [4], where it was shown to be equivalent to several conditions;
we mention that if z∗z has a (possibly unbounded) inverse (in particular, if
the distribution of z∗z is non-atomic), then z is R-diagonal if and only if in
its polar decomposition z = u(z∗z)1/2, u is ∗-free from (z∗z)1/2 and satisfies
τ(uk) = 0 for k ∈ Z \ {0}.

In our recent paper [3] R-diagonal elements appeared in connection with
certain maximization problems in free entropy. Free entropy was introduced
by Voiculescu in [8]; later, a different definition was given by him in [10]. The
first definition involves approximating the given n-tuple of variables using
finite-dimensional matrices (so-called microstates); the normalized limit of
the logarithms of volumes of all such possible microstates is then the free
entropy. On the other hand, Voiculescu’s definition in [10] does not involve
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microstates, but uses free Fisher information measure and non-commutative
Hilbert transform. At present it is not known whether the two definitions
of free entropy always give the same quantity. Our approach in [3] used the
second definition of Voiculescu.

In this paper we prove two theorems for the microstates free entropy,
which are analogous to our results in [3] for the second (non-microstates)
definition of entropy. One of our results can be interpreted as saying that R-
diagonal elements z are characterized by the statement that the free entropy
χ(z) is maximal among all possible χ(y), so that the distributions of y∗y and
z∗z are the same.

When this paper was almost finished we received a preprint of Hiai and
Petz [1], where the same kind of problems were considered.

If Y1, . . . , Yn ∈ M (not necessarily self-adjoint), we denote by χ(Y1, ..., Yn)
the free entropy of Y1, . . . , Yn as defined by Voiculescu in [11]. We denote
by χsa(X1, . . . , Xn) for Xi ∈ M self-adjoint the free entropy of a self-adjoint
n-tuple as defined in [8]; we give a brief review of these quantities below in
§2.3. A unitary u in a non-commutative probability space (M, τ) is called a
Haar unitary if τ(uk) = 0 for all k ∈ Z \ {0}.
Theorem 1. Let y ∈ M , and let u ∈ M be a Haar unitary which is ∗-
free from b = (y∗y)1/2. Let x be an element such that τ(x2k) = τ(b2k) and
τ(x2k+1) = 0, for all k ∈ N (i.e., x is symmetric). Then:

(a) χ(y) ≤ χ(ub).
(b) χ(ub) = χsa(b2/2) + 3/4 + 1/2 log 2π = 2χsa(2−

1
2 x).

(c) If χ(y) = χ(ub) > −∞, then y is R-diagonal, i.e., in the polar de-
composition y = vb we have: v is a Haar unitary and is ∗-free from
b.

Let ω ∈ βN \ N be a free ultrafilter; i.e., a homomorphism from the
algebra C(N) of all bounded (continuous) functions on N to C, which is not
given by the evaluation at a point in N. For d ∈ N we write dω for the
free ultrafilter corresponding to the functional f 7→ limn→ω f(dn). Given ω,
one can construct (see [11] and see also a brief review below) free entropy
quantities χsaω and χω, which have properties similar to those of χsa and χ;
it is in fact not known whether these quantities are different. It is known
that in the one-variable case, χsa(X) = χsaω(X).

Theorem 2. Let Xij, 1 ≤ i, j ≤ d be a family of non-commutative random
variables in a tracial non-commutative probability space (M, τ̂). Let Z ∈
M ⊗Md be given by

Z =
d∑

i,j=1

Xij ⊗ eij ,

where eij are matrix units in the algebra of d × d matrices. We denote
by τ the normalized trace on M ⊗ Md. Let ω be a free ultrafilter. Let X
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be a self-adjoint variable with τ(X2n+1) = 0 for all n ∈ N, and such that
τ(X2n) = τ((Z∗Z)n), ∀n ∈ N. Then we have:

(a) χω({Xij}1≤i,j≤d) ≤ d2χdω(Z)− d2 log d ≤ 2d2χsa(2−
1
2 X)− d2 log d.

(b) If Z is R-diagonal and ∗-free from the algebra 1 ⊗ Md, then
χdω({Xij}1≤i,j≤d) = d2χω(Z)− d2 log d = 2d2χsa(2−

1
2 X)− d2 log d.

(c) If χω({Xij}1≤i,j≤d) = 2d2χsa(2−
1
2 X)−d2 log d and χsa(2−

1
2 X) 6= −∞,

then Z is R-diagonal and is ∗-free from the algebra 1⊗Md.

The proof of the first theorem is quite different in nature than our proof
in [3] (the microstates-free proof relied on the notion of free entropy with
respect to a completely-positive map introduced in [6]). On the other hand,
the proof of the second theorem is analogous to the one we gave in [3], and
relies on the microstates analog [5] of the relative entropy [10] that we used
in the microstates-free approach.

2. Maximality of microstates free entropy for R-diagonal pairs.

Let (M, τ) be a tracial W ∗-probability space, and b ∈ M be a fixed positive
element. Let u ∈ M be a Haar unitary which is ∗-free from b. Lastly, let
x ∈ M be such that for all k ∈ N, τ(x2k+1) = 0 and τ(x2k) = τ(b2k). The
main result of the section is:

Theorem 2.1. Let u, b and x be as above. Assume that y ∈ M satisfies
(y∗y)1/2 = b. Then:

(a) χ(y) ≤ χ(ub).
(b) χ(ub) = χsa(b2/2) + 3/4 + 1/2 log 2π = 2χsa(2−

1
2 x).

(c) If χ(y) = χ(ub) > −∞, then y is R-diagonal, i.e., in the polar de-
composition y = vb, we have: v is a Haar unitary and is ∗-free from
b.

The same conclusions hold for χω in place of χ.

Before starting the proof of the theorem, we fix some notation and defi-
nitions.

Notation 2.2. We use the following notation:
• U(k) is the unitary group of k × k unitary matrices.
• Mk is the set of all k × k matrices; M sa

k is the set of all self-adjoint
matrices in Mk.

• M+
k ⊂ Mk is the set of all positive k × k matrices.

• µk is the normalized Haar measure on U(k); thus µk(U(k)) = 1.
• λk is the measure on Mk, coming from its Euclidean structure 〈a, b〉 =

Re Tr(ab∗), where Tr is the usual matrix trace, Tr(I) = k; λsa
k is the

Lebesgue measure on M sa
k coming from its Euclidean structure 〈a, b〉 =

Re Tr(ab∗).
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• λ+
k is the measure on M+

k coming from its structure of a cone in the
Euclidean space of k × k matrices.

• P : U(k)×M+
k → Mk is given by (v, p) 7→ vp.

• Ωk is the canonical volume form on Mk giving rise to Lebesgue mea-
sure.

• Ωu
k ∧ Ω+

k is the canonical volume form on U(k) × M+
k , giving rise to

the product measure µk × λ+
k .

• u(k) is the Lie algebra of U(k).
• Ck is the volume of U(k) with respect to the bi-invariant volume form

arising from the Euclidean structure on u(k) coming from the Killing
form 〈a, b〉 = Re Tr(ab).

2.3. Definitions of free entropy. Let X1, . . . , Xn ∈ M be self-adjoint,
and Y1, . . . , Yn ∈ M be not necessarily self-adjoint. Let ε > 0, R > 0 be real
numbers and k > 0, m > 0 be integers. Then define the sets (cf. [8, 11])

Γsa
R (X1, . . . , Xn;m, k, ε) =

{
(x1, . . . , xn) ∈ (M sa

k )n :∣∣∣∣1k Tr(xi1 . . . xip)− τ(Xi1 . . . Xip)
∣∣∣∣ < ε

for all p ≤ m, 1 ≤ ij ≤ n, 1 ≤ j ≤ p

}
;

ΓR(Y1, . . . , Yn;m, k, ε) =
{

(y1, . . . , yn) ∈ (Mk)n :∣∣∣∣1k Tr(yg1
i1

. . . y
gp

ip
)− τ(Y g1

i1
. . . Y

gp

ip
)
∣∣∣∣ < ε

for all p ≤ m, 1 ≤ ij ≤ n, gj ∈ {∗, ·}, 1 ≤ j ≤ p

}
.

Define next

χsa(X1, . . . , Xn;m, ε)

= lim sup
k→∞

[
1
k2

log λkΓsa
R (X1, . . . , Xn;m, k, ε) +

n

2
log k

]
and similarly

χ(Y1, . . . , Yn;m, ε)

= lim sup
k→∞

[
1
k2

log λkΓR(Y1, . . . , Yn;m, k, ε) + n log k

]
.

For ω a free ultrafilter on N, the quantities χω(Y1, . . . , Yn;m, ε) and
χsaω(X1, . . . , Xn;m, ε) are defined in exactly the same way, except that
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lim supk→∞ is replaced by limk→ω. Next, the free entropy is defined by

χsa(X1, . . . , Xn) = sup
R

inf
m,ε

χsa(X1, . . . , Xn;m, ε);

the quantities χsaω, χ, χω are defined in exactly the same way, using in
the place of χsa(· · · ;m, ε) the quantities χsaω(· · · ;m, ε), χ(· · · ;m, ε), and
χω(· · · ;m, ε), respectively.

Definition 2.4. Let (XR(k, m, ε), µX
R,k,m,ε) and (YR(k,m, ε), µY

R,k,m,ε) be
two sequences of measure spaces depending on k, m ∈ N and R, ε ∈ (0,+∞).
We shall say that X is asymptotically included in Y , if for all m, ε, R, there
is k0, m′ ≥ m, ε′ ≤ ε, R′ > R, such that for all k > k0, there is a map

φ = φR′,k,m′,ε′ : XR′(k, m′, ε′) → YR(k, m, ε),

which is measure preserving. We say that X and Y are asymptotically equal,
if both X is asymptotically included in Y and Y is asymptotically included
in X.

Remark 2.5. Note that if X is asymptotically included into Y , we obtain
that

sup
R

inf
m,ε

lim sup
k

αk log µX
R,k,m,ε(XR(k, m, ε)) + ak

≤ sup
R

inf
m,ε

lim sup
k

αk log µY
R,k,m,ε(YR(k,m, ε)) + ak,

for all sequences ak, αk.

It is not hard to see that the sets

ΓR(Y1, . . . , Yn; k, m, ε)

and
Γsa

R (Re(Y1), Im(Y1), . . . ,Re(Yn), Im(Yn); k, m, ε)
are asymptotically equal; the relevant maps φ send the n-tuple (y1, . . . , yn)
of non-self-adjoint matrices to the 2n-tuples of self-adjoint matrices (Re(y1),
Im(y1), . . . ,Re(yn), Im(yn)). This implies (using the Remark 2.5) that

χ(Y1, . . . , Yn) = χsa(Re(Y1), Im(Y1), . . . ,Re(Yn), Im(Yn)).

We proceed to prove several lemmas that will be used in the proof of the
main theorem.

Lemma 2.6. Let Γ ⊂ M+
k and Uk ⊂ U(k) be measurable sets. Let

UkΓ = {vp : v ∈ Uk, p ∈ Γ} and S(Γ) =
{

p2

2
: p ∈ Γ

}
.

Then
λk(UkΓ) = Ck µk(Uk)λ+

k (S(Γ)).
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In other words, the map Q : (v, p) 7→ v
√

2p from U(k)×M+
k , endowed with

the measure µk × Ckλ
+
k , to Mk, endowed with the measure λk, is measure

preserving.

Proof. Since invertible matrices are a set of comeasure zero in Mk, we see by
existence of polar decomposition that P : (v, p) 7→ vp is invertible as a map of
measure spaces. We start by computing the pull-back of Lebesgue measure
on Mk to U(k)×M+

k . Note that since P is equivariant with respect to the
actions of U(k) by left multiplication, and Lebesgue measure is invariant
under this action (since the Euclidean structure is), the resulting measure
on U(k) ×M+

k is the product of Haar measure on U(k) and some measure
νk on M+

k , hence λk(UkΓ) = µk(Uk)νk(Γ). It remains to identify νk.
We have the equation

dµk(v)dνk(p) = (P ∗(Ωk) : Ωu
k ∧ Ω+

k )dµk(v)dλ+
k (p),(1)

where P ∗(Ωk) : Ωu
k ∧Ω+

k is the ratio of the two volume forms. Furthermore,
in view of the mentioned invariance under an action of U(k), it is sufficient
to compute (P ∗(Ωk) : Ωu

k ∧ Ω+
k ) in (1) at the point (1, p) ∈ U(k)×M+

k .
Note that the tangent space T1,p(U(k)×M+

k ) is isomorphic to the direct
sum u(k) × M sa

k , where u(k) = iM sa
k is the Lie algebra of U(k). Identify

T(1,p)(U(k) × M+
k ) = iM sa

k ⊕ M sa
k with Mk = Tp(Mk). Then the inner

product given by the trace 〈a, b〉 = Re Tr(ab∗) defines on T1,p a Euclidean
structure, for which the subspaces M sa

k and iM sa
k are perpendicular. Since

the restriction of this inner product to u(k) is the Killing form on this Lie
algebra, and the restriction to TpM

+
k is the inner product we chose before

on this space, Ωk (which via the above identification is a volume form on
U(k)×M+

k ) has the form CkΩu
k ∧Ω+

k . Further, Ck is the ratio of the volume
form on U(k) arising from the Euclidean structure on u(k) coming from the
Killing form and the volume form corresponding to the normalized Haar
measure. Hence Ck is just the volume of U(k) with respect to the volume
form arising from the Euclidean structure on u(k) coming from the Killing
form.

Thus from (1) we get that

dνk(p)dµk(v) = Ckdµk(v) det(DP )(p)dλ+
k (p).

It remains to compute DP . We note that P is the identity map restricted
to M+

k . Choose a basis in which p is diagonal with eigenvalues l1, . . . , lk,
and let eij ∈ Mk be the matrix all of whose entries are zero, except that the
i, j-th entry is 1. Consider the orthonormal basis ξαβ for iM sa

k , given by:

ξαβ =


1√
2
(eαβ − eβα) if α < β

ieαα if α = β

i 1√
2
(eαβ + eβα) if α > β.
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Then

DP (ξαβ)p = ξαβp =
1
2
(lα + lβ)ξαβ +

1
2
(lα − lβ)ηαβ , ηαβ ∈ M sa

k .

It follows that

det(DP )(p) =
1

2k2

k∏
α,β=1

(lα + lβ).

Hence we record the final answer:

dνk(p) = Ck2−k2
k∏

α,β=1

(lα + lβ)dλ+
k (p)

where li are the eigenvalues of p.
Consider the map S : p 7→ p2

2 from M+
k to itself. This map is a.e. invert-

ible; moreover, its Jacobian det(DS) at p is given by det(1
2(1⊗ p + p⊗ 1)),

where 1⊗p and p⊗1 are viewed as elements of Mk⊗Mk
∼= Mk2 (see e.g. [8]).

To compute this determinant, let ζi, i = 1, . . . , k be orthonormal eigenvec-
tors of p, such that pζi = liζi. Then ζi⊗ζj is an orthonormal basis for Ck2

, on
which Mk2 = Mk ⊗Mk acts naturally. Moreover, 1

2(1⊗ p + p⊗ 1)(ζi⊗ ζj) =
1
2(li + lj)ζi ⊗ ζj . So the determinant is 2−k2 ∏k

α,β=1(lα + lβ). Hence the
push-forward of νk by S is given by

d(S∗νk)(p) = Ck2−k2
k∏

α,β=1

(lα + lβ)dλ+
k (p) · det(DS)−1(p) = Ckdλ+

k (p).

Thus we have
S∗νk = Ckλ

+
k ,

which is our assertion. �

We have the following standard lemma (see [8]).

Lemma 2.7. Let p be a positive element in M . Then the sequences of sets
Γsa

R (p, m, k, ε) and Γsa
R (p, m, k, ε)∩M+

k , each taken with the measure λk, are
asymptotically equal.

Lemma 2.8. limk
1
k2 log(Ck) + 1

2 log k = 3
4 + 1

2 log 2π.

In this exact form this lemma can be found, for example, in [2] (the reader
is cautioned that the cited paper uses a slightly different normalization of
the Killing form, different from ours by a factor).

Lemma 2.9. Let y ∈ (M, τ) be a (not necessarily self-adjoint ) random
variable. Then

χ(y) ≤ χsa

(
y∗y

2

)
+

3
4

+
1
2

log 2π.
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Proof. Denote by S : Mk → M+
k the map

y 7→ y∗y

2
.

Note that

S(ΓR(y;m, k, ε)) ⊂ Γsa
R2

(
y∗y

2
;m/2, k, ε

)
,

hence the former is asymptotically included in the latter. Note that

ΓR(y;m, k, ε) ⊂ U(k)ΓR(y;m, k, ε).

We therefore get

λk(ΓR(y;m, k, ε)) ≤ λk(U(k)ΓR(y;m, k, ε))

≤ λk(U(k){(a∗a)1/2 : a ∈ ΓR(y;m, k, ε)})
≤ Ckλk(S(ΓR(y;m, k, ε)))

≤ Ckλk

(
Γsa

R2

(
y∗y

2
;
m

2
, k, ε

))
.

Taking the logarithm and passing to the limits gives the result. �

Lemma 2.10. Let u, b ∈ (M, τ) be such that u is a Haar unitary ∗-free
from the positive element b. Let z = ub. Given δ > 0, there exists k0, such
that for all k > k0, there is a subset Xk ⊂ U(k)×

(
Γsa

R ( z∗z
2 ;m, k, ε) ∩M+

k

)
,

log
µk × λ+

k (Xk)
µk × λ+

k (Uk × Γsa
R ( z∗z

2 ;m, k, ε))
≥ −δ,

such the map

Q : (v, p) 7→ v
√

2p(2)

is an asymptotic inclusion of Xk, endowed with the measure µk×Ckλ
+
k , into

ΓR(z;m, k, ε), endowed with the measure λk.

Proof. Note that by Lemma 2.6, the map defined in Equation (2) is measure
preserving.

Let R > 0, ε > 0 and δ > 0 be fixed. For x ∈ M+
k , let Uk(x, ε) ⊂ U(k) be

the maximal set of unitaries, for which Uk(x, ε) · x ∈ ΓR(wx;m, k, ε), where
w is a Haar unitary ∗-free from x (in other words, “elements of Uk(x, ε) and
x are ∗-free to order m, ε”). Note that Uk(x, ε) is open. By Corollary 2.12
of [11], there exists k0, such that for all k > k0, and any x ∈ M+

k , ‖x‖ < R,
log µk(Uk(x, ε/2)) > −δ. Let

X̂k =
⋃

x∈Γsa
R ( z∗z

2
;m,k,ε)∩M+

k

Uk(x, ε)× {x}.

Since whenever x ∈ Γsa
R

(
z∗z
2 ;m, k, ε

)
∩ M+

k , Uk(x) ·
√

2x ⊂ ΓR(z;m, k, ε),
Q(X̂k) lies in ΓR(z;m, k, ε).
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We claim that there exists a measurable subset Xk ⊂ X̂k of measure at
least exp(−δ) times that of Γsa

R ( z∗z
2 ;m, k, ε). First, it is sufficient to show

(because of Lemma 2.7) that the measure of Xk is at least exp(−δ) times
that of Γsa

R ( z∗z
2 ;m, k, ε) ∩M+

k . Next, let x ∈ Γsa
R ( z∗z

2 ;m, k, ε) ∩M+
k , and let

V (x) be an open neighborhood of x for the norm topology. Then if V (x) is
sufficiently small, for all x′ ∈ V , Uk(x, ε/2) ⊂ Uk(x′, ε). Hence

O(x) = Uk(x, ε/2)× V (x) ⊂ X̂k.

Moreover, the volume of O(x) is at least exp(−δ) times the volume of V (x).
Let

Xk =
⋃
x

O(x).

Then Xk is open, and its volume is at least exp(−δ) times that of
Γsa

R ( z∗z
2 ;m, k, ε) ∩M+

k . �

Proof of 2.1(a) and 2.1(b) in Theorem 2.1. Assume that x, u and b are as in
the statement of Theorem 2.1(b) and let z = ub; note that z is R-diagonal.
By Lemma 2.10 and Lemma 2.8, we have that

χsa

(
z∗z

2

)
+

3
4

+
1
2

log 2π ≤ χ(z).

Since, by Lemma 2.9, we always have the other inequality, we obtain

χ(z) = χsa

(
z∗z

2

)
+

3
4

+
1
2

log 2π.(3)

This can be expressed in terms of the free entropy of the symmetric variable
x as follows (by using the explicit formula for χsa of one variable given by
Voiculescu in [8]):

χ(z) = χsa

(
z∗z

2

)
+

3
4

+
1
2

log 2π

= 2
(

3
4

+
1
2

log 2π

)
+

∫∫
log |s− t|dµ z∗z

2
(s)dµ z∗z

2
(t)

= 2
(

3
4

+
1
2

log 2π

)
+ 2

∫∫
log |s− t|dµ2−1/2x(s)dµ2−1/2x(t)

= 2χsa(2−1/2x).

This proves 2.1(b).
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Combining the above with Lemma 2.9 we get 2.1(a):

χ(y) ≤ χsa

(
y∗y

2

)
+

3
4

+
1
2

log 2π

= χsa

(
z∗z

2

)
+

3
4

+
1
2

log 2π

= χ(z).

�

Proposition 2.11 (A change of variables formula for polar decomposition).
Let y1, . . . , yn be elements of a W ∗-probability space (M, τ), and let yi =

vi(y∗i yi)1/2 be their polar decompositions. Assume that fi : [0,+∞) →
[0,+∞) are C1-diffeomorphisms, and let zi = vi[2f(y∗i yi/2)]1/2. Then

χ(z1, . . . , zn) = χ(y1, . . . , yn) +
n∑

j=1

∫∫
log

∣∣∣∣f(s)− f(t)
s− t

∣∣∣∣ dµi(s)dµi(t),(4)

where µi is the distribution of y∗i yi/2 for i = 1, . . . , n. The same statement
holds for χω in the place of χ.

Proof. If for some i the distribution of y∗i yi contains atoms, then so does the
distribution of z∗i zi. In this case we have

χ(y1, . . . , yn) ≤
∑

j

χ(yj) = −∞,

since by Lemma 2.9, χ(yi) ≤ χsa(y∗i yi/2)+const = −∞. Similarly, χ(z1, . . . ,
zn) = −∞, and there is nothing to prove. Hence we may assume that the
distributions of y∗i yi, and thus the distributions of z∗i zi, are non-atomic for
all i; in particular, that vi are unitaries.

We may also assume that fi for i 6= 1 are the identity diffeomorphisms;
moreover, by replacing fi with f−1

i , we only need to prove that the left-hand
side of the statement of Equation (4) is greater than or equal to the right
hand side. We write f = f1.

Consider the mappings

T : Mk 3 x 7→ v[2f(x∗x/2)]1/2 ∈ Mk,

where x = v(x∗x)1/2 is the polar decomposition of x, and

T̂ : Mn
k 3 (x1, . . . , xn) 7→ (T (x1), x2, . . . , xn) ∈ Mn

k .

Note that the set T̂ (ΓR(y1, . . . , yn;m, k, ε)), taken with the measure λk ×
· · · × λk is asymptotically included into the set ΓR(z1, . . . , zn;m, k, ε), taken
with the same measure. Moreover, the infimum of the Jacobian of T̂ on the
set ΓR(y1, . . . , yn;m, k, ε) is not less than the infimum of the Jacobian of T
on the set ΓR(y1;m, k, ε). View T as a map from U(k)×M+

k to itself, using
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the identification of measure spaces U(k) × M+
k
∼= Mk, (v, p) 7→ vp. Then

T acts trivially on the unitary component. Recall that the measure on M+
k ,

arising from the identification of Mk with U(k) ×M+
k , is the push-forward

of Lebesgue measure on M+
k to M+

k by the map p 7→ p2/2. Hence the
infimum of the Jacobian of T is equal to the infimum of the Jacobian of the
map p 7→ [2f(p2/2)]1/2 viewed as a map from M+

k endowed with Lebesgue
measure to itself, on the set ΓR(y∗1y1/2;m, k, ε). The rest of the computation
is exactly as in the proof of Proposition 3.1 of [9]. �

Remark 2.12. Let B ⊂ M be a subalgebra of M . The proof of the propo-
sition above also works if we replace χ(·) with the relative entropy χ(·|B)
introduced in [5]; we leave the details to the reader.

Proof of 2.1(c) of Theorem 2.1. Assume that χ(y) = χ(ub) > −∞. Because
of part 2.1(b), we conclude that χ(b) > −∞; in particular, the distribution
of b is non-atomic (see [8]). Since (y∗y)1/2 = b, this implies that in the polar
decomposition of y = v(y∗y)1/2, v is a unitary.

Arguing as in Lemma 4.2 of [9], we may assume that there exists a
family fi of C1 diffeomorphisms on [0,+∞), and a continuous function
f : [0,+∞) → [0,+∞), such that f(y∗y

2 ) is the square of a (0, 1)-semicircular
random variable, ‖fj(y∗y)−f(y∗y)‖ → 0 as j →∞, W ∗(y∗y) = W ∗(f(y∗y)),
and limj χsa(fj(y∗y)) = χsa(f(y∗y)). Let y = v(y∗y)1/2 be the polar decom-
position of y; let z = v[2f(y∗y/2)]1/2, and similarly zj = v[2fj(y∗y/2)]1/2.
Then by Proposition 2.11 and the explicit formula for the free entropy of
one variable given by Voiculescu (Proposition 4.5 in [8]), we get for all j,

χ(zj) = χ(y) + χsa

(
fj

(
y∗y

2

))
− χsa

(
y∗y

2

)
.

Applying Proposition 2.6 of [8], we get that

χ(z) ≥ lim sup
j

χ(zj)

= lim sup
j

[
χ(y) + χsa

(
fj

(
y∗y

2

))
− χsa

(
y∗y

2

) ]

= χ(y) + χsa

(
f

(
y∗y

2

))
− χsa

(
y∗y

2

)
.

Since χ(y) = χ(ub) by assumption, and χ(ub) = χsa(y∗y
2 ) + 3

4 + 1
2 log 2π by

Theorem 2.1(b) we get that

χ(z) ≥ χsa

(
f

(
y∗y

2

))
+

3
4

+
1
2

log 2π.

By assumption, the distribution of (z∗z)1/2 is quarter-circular (i.e., it is the
absolute value of a (0, 2)-semicircular). Let c be a circular variable (i.e., its
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real and imaginary parts are free (0, 1)-semicircular variables). Then, since
c is R-diagonal (see [4]), we have by 2.1(b), that

χ(c) = χsa

(
c∗c

2

)
+

3
4

+
1
2

log 2π

= χsa

(
f

(
y∗y

2

))
+

3
4

+
1
2

log 2π,

since c∗c has the same distribution as z∗z = 2f(y∗y/2). Hence χ(z) ≥ χ(c).
On the other hand, c is R-diagonal, with the same distribution of the

positive part as z, so by 2.1(a), we have χ(z) ≤ χ(c). So χ(z) = χ(c).
We claim that z is circular. This will prove the proposition, since then

the polar and positive parts of z are ∗-free (see [7] or [4]), and thus the polar
and positive parts of y are ∗-free, since the polar part of y is the same as the
polar part of z, and the positive part of y is some function of the positive
part of z.

Now, for the claim that z is circular, let γ be a complex number of modulus
one; then χ(γz) = χ(z). Let

Xγ =
1
2
(γz + γz∗), Yγ =

1
2i

(γz − γz∗).

Then
τ(X2

γ) =
1
4

[
2τ(zz∗) + γ2τ(z2) + γ2 · τ(z2)

]
.

Similarly,

τ(Y 2
γ ) =

1
4

[
2τ(zz∗)− γ2τ(z2)− γ2 · τ(z2)

]
.

We choose γ such that γ2τ(z2) is purely imaginary. Since τ(z∗z) = 2, we
have then τ(X2

γ) = τ(Y 2
γ ) = 1. But χ(z) = χ(c) = χsa(x1, x2), where xi are

free (0, 1) semicircular variables. Hence we have

χ(z) = χsa(Xγ , Yγ) = χ(γz) = χsa(x1, x2),

where Xγ and Yγ are some self-adjoint random variables of covariance 1. But
then by Voiculescu’s Proposition 2.4 of [9], Xγ and Yγ are both semicircular
and free, so that γz is circular, so z is circular. �

3. Maximization of free entropy for matrices.

Theorem 3.1. Let Xij, 1 ≤ i, j ≤ d be non-commutative random variables
in a tracial non-commutative probability space (M, τ̂). Let Z ∈ M ⊗Md be
given by

Z =
d∑

i,j=1

Xij ⊗ eij ,

where eij are matrix units in the algebra of d × d matrices. We denote
by τ the normalized trace on M ⊗ Md. Let ω be a free ultrafilter. Let X
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be a self-adjoint variable with τ(X2n+1) = 0 for all n ∈ N, and such that
τ(X2n) = τ((Z∗Z)n), ∀n ∈ N. Then we have:

(a) χdω({Xij}1≤i,j≤d) ≤ d2χω(Z)− d2 log d ≤ 2d2χsa(2−
1
2 X)− d2 log d.

(b) If Z is R-diagonal and ∗-free from the algebra 1 ⊗ Md, then
χdω({Xij}1≤i,j≤d) = d2χω(Z)− d2 log d = 2d2χsa(2−

1
2 X)− d2 log d.

(c) If χdω({Xij}1≤i,j≤d) = 2d2χsa(2−
1
2 X) − d2 log d, and χsa(2−

1
2 X) 6=

−∞, then Z is R-diagonal and is ∗-free from the algebra 1⊗Md.

Proof. Let B = 1⊗Md. We have by [5] that

χdω({Xij}) = d2χω(Z|B)− d2 log d ≤ d2χω(Z)− d2 log d.

(We have the summand −d2 log d rather than −d2

2 log d appearing above be-
cause we are dealing with χ, not χsa.) Moreover, d2χω(Z) ≤ 2d2χsa(2−

1
2 X)

by Theorem 2.1, hence 3.1(a).
If Z is ∗-free from B, then, by [5], we have χω(Z|B) = χω(Z). Moreover,

if Z is R-diagonal, we have, by Theorem 2.1, that χω(Z) = 2χsa(X/
√

2),
which proves 3.1(b).

Assuming the conditions in 3.1(c) are satisfied, we get that χω(Z) =
2χsa(2−

1
2 X) > −∞, so Z is R-diagonal by Theorem 2.1(c), i.e, Z has

polar decomposition Z = v(Z∗Z)1/2, where v is a Haar unitary, which is
∗-free from Z∗Z. Note also that we are given that χω(Z|B) = χω(Z).
We may assume, as in the proof of statement 2.1(c) of Theorem 2.1 that
there exists a family fi of C1 diffeomorphisms on [0,+∞), and a continu-
ous function f : [0,+∞) → [0,+∞), such that f(Z∗Z

2 ) is the square of a
(0, 1)-semicircular random variable, ‖fj(Z∗Z) − f(Z∗Z)‖ → 0 as j → ∞,
W ∗(Z∗Z) = W ∗(f(Z∗Z)), and limj χsa(fj(Z∗Z)) = χsa(f(Z∗Z)). Given
the polar decomposition Z = v(Z∗Z)1/2, let z = v[2f(Z∗Z/2)]1/2, and sim-
ilarly zj = v[2fj(Z∗Z/2)]1/2. Notice that z is circular; moreover, since
W ∗(Z∗Z) = W ∗(f(Z∗Z)) = W ∗(z∗z), we have that Z ∈ W ∗(z). Hence it
will suffice to prove that z is ∗-free from B, as then also Z is ∗-free from B.

By Remark 2.12 and the explicit formula for the free entropy of one vari-
able given by Voiculescu (Proposition 4.5 in [8]), we get for all j,

χω(zj |B) = χω(Z|B) + χsa

(
fj

(
Z∗Z

2

))
− χsa

(
Z∗Z

2

)
.

We get

χω(z|B) ≥ lim sup
j

χω(zj |B)

= lim sup
j

[
χω(Z|B) + χsa

(
fj

(
Z∗Z

2

))
− χsa

(
Z∗Z

2

)]
= χω(Z|B) + χsa

(
f

(
Z∗Z

2

))
− χsa

(
Z∗Z

2

)
.
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By assumption, we have that χω(Z|B) = χω(Z); moreover, by R-diagonality
of Z we get by Theorem 2.1(b) that χ(Z) = χsa(Z∗Z/2)+3/4+(1/2) log 2π.
Therefore, we get that

χω(z|B) ≥ χsa

(
Z∗Z

2

)
+

3
4

+
1
2

log 2π

+χsa

(
f

(
Z∗Z

2

))
− χsa

(
Z∗Z

2

)
=

3
4

+
1
2

log 2π + χsa

(
f

(
Z∗Z

2

))
.

But z is circular, in particular R-diagonal; moreover, z∗z/2 = f(Z∗Z/2). So
from the formula in 2.1(b), we get that

χω(z) =
3
4

+
1
2

log 2π + χsa

(
f

(
Z∗Z

2

))
.

Thus χω(z|B) ≥ χω(z). Since χω(z|B) ≤ χω(z) in general, we get that
χω(z|B) = χω(z).

Now let S1, S2 be the real and imaginary parts of z. Then we have
that χsa(S1, S2|B) = χsa(S1, S2). Since S1 and S2 are two free semicircular
variables, it follows by Theorem 4.5 from [5] that W ∗(S1, S2) is free from B.
Hence z is ∗-free from B; hence Z is ∗-free from B. �
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