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Annegret Paul and Eng-Chye Tan

We describe the Howe quotient and theta lift for one-di-
mensional representations of the dual pairs (O(p, q), SL(2, R)),
(U(p, q), U(1, 1)), (Sp(p, q), O∗(4)), by explicitly constructing
the Howe quotients (of the representations in correspondence)
using the Fock model.

1. Introduction.

Let Sp(2k, R) be the symplectic group on R2k and S̃p(2k, R) be the meta-
plectic group. If H is a subgroup of Sp(2k, R), we shall let H̃ be the pullback
of H by the covering map from S̃p(2k, R) to Sp(2k, R). The oscillator repre-
sentation ω of S̃p(2k, R) may be realized on a space of holomorphic functions
on Ck, using the Fock model.

Let (G, G′) be a reductive dual pair in Sp(2k, R) (in the sense of [Ho1]).
The maximal compact subgroup of S̃p(2k, R) is Ũ(k), the half-determinant
cover of U(k). In the Fock model, the space of Ũ(k)-finite vectors of the os-
cillator representation is P = P(Ck), the set of complex-valued polynomials
on Ck. We can also assume that K = U(k) ∩ G and K ′ = U(k) ∩ G′ are
maximal compact subgroups in G and G′ respectively. We shall let lower
gothic symbols denote Lie algebras of Lie groups, e.g., g and g′ will be the
Lie algebras of G and G′ respectively.

For a reductive subgroup H (with maximal compact subgroup KH =
U(k) ∩ H) of Sp(2k, R), we denote by R(h, K̃H , ω) the set of infinitesimal
equivalence classes of irreducible (h, K̃H) modules realizable as quotients of
P. Consider the dual pair (G, G′). For ρ ∈ R(g′, K̃ ′, ω), the Howe quotient
corresponding to ρ is defined by (see [Ho2])

Ω(ρ) = P/Nρ,

where Nρ is the intersection of all (g′, K̃ ′)-invariant subspaces N of P such
that P/N ∼= ρ as (g′, K̃ ′) modules. It is known (see [Ho2]) that

Ω(ρ) ' ρ′ ⊗ ρ,
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where ρ′ is a (g, K̃) module of finite length, with a unique irreducible quotient
θ(ρ). The correspondence

ρ 7−→ θ(ρ)

is commonly known as the (local) theta correspondence, and θ(ρ) is often
called the theta lift of ρ.

The pullback H̃ of a Lie subgroup of Sp(2k, R) is a split or non-split ex-
tension by Z/2Z depending on the dual pair under consideration. The repre-
sentations which occur in the theta correspondence are genuine, i.e., they do
not factor to H. In the case where the cover of H is split, this just means that
they are of the form π⊗sgn, where π is a representation of H, and sgn is the
non-trivial character of Z/2Z. If H = O(p, q), the non-split cover H̃ may be
realized as H ×Z/2Z with group law (g, ε)(h, δ) = (gh, εδ(det(g),det(h))R),
where (·, ·)R is the Hilbert symbol of R. The character χ of H̃ given by

χ(g, ε) = ε ·

{√
−1 if det(g) = −1,

1 otherwise

is genuine, and a genuine representation of H̃ is of the form π⊗χ for π ∈ H ̂.
In either case we will only refer to π.

It is a central problem in the theory of dual pairs to describe the theta
correspondence. There are several techniques used to obtain explicit corre-
spondences, however they are not elementary.

The theta correspondence for the pairs (O(p, q), SL(2, R)), (U(p, q),
U(1, 1)), (Sp(p, q), O∗(4)) is known mostly to experts in the field. Early
results dealing with the theta correspondence of (O(p, q), SL(2, R)) could
be found in [Ho4] which built on results of Rallis and Schiffman [RS]
and Strichartz [St]. Literature on the last two pairs is quite difficult to
locate. The objective of this paper is to study the Howe quotient corre-
sponding to a small representation by explicit construction using the Fock
model. The representations dealt with here are the one-dimensional repre-
sentations of SL(2, R), U(1, 1), unitary finite-dimensional representations of
O∗(4) ' (SU(2)×SL(2, R))/{±I} (see [Lm]) as well as the one-dimensional
representations of O(p, q), U(p, q) and Sp(p, q). We believe that in the stable
range (see [Ho3]), the Howe quotient (corresponding to a unitary represen-
tation or “small” representation) is irreducible. Evidences in support of this
can be found in this paper as well as [LZ1], [LZ2], [ZH] and [TZ]. The Howe
quotient also features prominently in many applications; see [KV2] and
[Zh] (and the references therein) for applicatons to invariant distributions
and [KR2] (and the references therein) for applications to the construction
of automorphic forms. The setup used to study the duality correspondence
enables one to have control on the Howe quotients, and it is our hope to try
to extend it to other dual pairs.
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The study of Howe quotients was initiated by Kudla and Rallis (see
[KR1]; for the dual pairs (O(p, q), Sp(2n, R))). Their technique is to embed
the Howe quotient in an appropriate degenerate principal series of Sp(2n, R)
and using the work of Guillemonat (see [Gu]) to understand the structure
of these representations, thereby extracting the theta lift in some cases.
Recently, S.T. Lee and C.B. Zhu used similar ideas to describe the theta
lift of a class of one-dimensional representations of O(p, q) (for the dual
pairs (O(p, q), Sp(2n, R)); see [LZ2]) and one-dimensional representations
of U(p, q) (for the dual pairs (U(p, q), U(n, n)); see [LZ1]) using S. T. Lee’s
work on the degenerate principal series of Sp(2n, R) (see [Le2]) and U(n, n)
(see [Le1]). Their results are more exhaustive. It is also possible to de-
scribe the theta lift in the cases that we are considering using the induction
principle (see [Ku]) since the structure of principal series representations of
S̃L(2, R), Ũ(1, 1) and O∗(4) are easily understood. However, our approach
is elementary - we simply work with concrete objects, i.e., polynomials.

It is easy to see that the theta lift of the trivial representation of Sp(2n, R)
exists only if p+ q is even, and in that case, it has a multiplicity-free Õ(p)×
Õ(q) spectrum (see [ZH]). The theta lifts of one-dimensional representations
of U(n, n) also give irreducible U(p, q) representations with multiplicity-free
U(p)×U(q) spectrum (see [TZ]) if min(p, q) ≥ 2n. These representations are
“small” in the sense that they have small Gelfand-Kirillov dimensions and
small rank (in the sense of [Ho3]). They “should” arise from appropriate
quantization of nilpotent orbits (see [TZ] and [ZH]) and are generalizations
of representations dealt with in [BZ], [Ko1] and [Ko2]. Another objective
for the computations in this paper is to provide a basis of K highest weight
vectors (where K is a maximal compact subgroup) for the representations
treated in [TZ] and [ZH]. With such a basis, irreduciblity and perhaps
unitarity of these representations result from similar considerations as in
[HT2]. Of course, irreducibility and unitarity would follow from [Li]’s re-
sults (see [ZH]). But our technique has invariant-theoretic flavour and has
the advantage of providing a model of the representation space which might
be useful to those who would like to make explicit calculations on these
representations. Due to the length of the computations involved, we shall
discusss these in a separate paper (see [Ta]).

2. The Dual Pairs (O(p, q), SL(2, R)).

Let p ≥ 2 and consider the dual pair (O(p), SL(2, R)) acting on the Ũ(p)-
finite vectors of the associated Fock space C[x1, . . . , xp] as follows:

(a) Action of o(p): xi
∂

∂xj
− xj

∂

∂xi
, 1 ≤ i < j ≤ p.

(b) Action of sl(2) = {H1, r
2
1,∆1} :



352 ANNEGRET PAUL AND ENG-CHYE TAN

H1 =
p∑

i=1

xi
∂

∂xi
+

p

2
, r2

1 =
p∑

i=1

x2
i , ∆1 =

p∑
i=1

∂2

∂x2
i

.

It is easy to see that the duality correspondence is as follows:

C[x1, . . . , xp]|O(p)×fSL(2,R)
=

∞∑
m=0

H(p)
m ⊗ Vm+ p

2
,

where
H(p)

m = {f ∈ C[x1, . . . , xp] | deg f = m,∆1f = 0}
is the irreducible O(p) module spanned by spherical harmonics in variables
x1, . . . , xp of degree m and Vm+ p

2
is the S̃L(2, R) lowest weight module of

lowest weight m + p
2 spanned by {(r2

1)
i(x1 −

√
−1x2)m | i = 0, 1, . . . }.

The duality correspondence enables us to write

(2.1) C[x1, . . . , xp]|O(p) =
∞∑

i,m=0

(r2
1)

iH(p)
m ,

where (r2
1)

iH(p)
m are O(p) modules isomorphic to H(p)

m .
We note an interesting computation which makes the computablility of

this problem even easier:

Lemma 2.1. Let φ ∈ H(p)
m where m ≥ 1. If

(xiφ)∼ = xiφ−
1

(2m + p− 2)
r2
1

∂φ

∂xi
,

then

xiφ = (xiφ)∼ +
1

(2m + p− 2)
r2
1

∂φ

∂xi

gives the projection of xiφ into the O(p) modules H(p)
m+1 and r2

1H
(p)
m−1.

Remark. This is a special case of (2.1).

Proof. Easy. �

For convenience, we shall let

cp,m =
1

2m + p− 2
.

We note that when m ≥ 1, cp,m > 0.
Likewise, for q ≥ 2, the dual pair (O(q), SL(2, R)) acting on C[y1, . . . , yq]

gives rise to the following decomposition of the Fock space as an O(q) mod-
ule:

(2.2) C[y1, . . . , yq]|O(q) =
∞∑

j,n=0

(r2
2)

jH(q)
n ,
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where r2
2 =

∑q
j=1 y2

j , (r2
2)

jH(q)
n is isomorphic (as O(q) modules) to H(q)

n ,

the spherical harmonics
(
i.e., killed by ∆2 =

∑q
j=1

∂2

∂y2
j

)
of degree n in the

variables y1, . . . , yq.
Consider P = C[x1, . . . , xp, y1, . . . , yq]. This is the space of Ũ(p+q)-finite

vectors of the associated Fock model for the dual pair (O(p, q), SL(2, R)),
and the actions of the complexified Lie algebras of O(p, q) and S̃L(2, R) can
be described as follows:

(a) Action of o(p, q)C = o(p)C ⊕ o(q)C ⊕ p

(2.3)

(i) Action of o(p)C: xi
∂

∂xj
− xj

∂

∂xi
, 1 ≤ i < j ≤ p,

(ii) Action of o(q)C: yi
∂

∂yj
− yj

∂

∂yi
, 1 ≤ i < j ≤ q,

(iii) Action of p: xiyj −
∂2

∂xi∂yj
, 1 ≤ i ≤ p, 1 ≤ j ≤ q.

(b) Action of sl(2)C = Span {H,E, F} :

(i) H =
p∑

i=1

xi
∂

∂xi
−

q∑
j=1

yj
∂

∂yj
+

p− q

2
,

(ii) E =
p∑

i=1

x2
i −

q∑
j=1

∂2

∂y2
j

= r2
1 −∆2,

(iii) F =
q∑

j=1

y2
j −

p∑
i=1

∂2

∂x2
i

= r2
2 −∆1.

We note that Õ(p, q) is a non-split extension by Z2 while S̃L(2, R) is split if
and only if p + q is even.

Because of the decompositions (2.1) and (2.2), we have the following de-
composition of P as an O(p)×O(q) module:

(2.4) C[x1, . . . , xp, y1, . . . , yq]|O(p)×O(q) =
∞∑

i,j,m,n=0

(r2
1)

i(r2
2)

jH(p)
m H(q)

n .

We will take as a “basis” for P elements of the form

(2.5) [i, j, m, n] = (r2
1)

i(r2
2)

jφ1φ2 where φ1 ∈ H(p)
m and φ2 ∈ H(q)

n .

To be strictly correct, we should take φ1 from a basis of H(p)
m and likewise for

φ2. But our computations basically disregard this. In other words, we can
disregard the actions of Õ(p) × Õ(q) when we study the Õ(p, q) structure
of modules in P. The reason is simple: The action of Õ(p) × Õ(q) leaves
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an element as in (2.5) in the same Õ(p) × Õ(q) type, whilst an operator
from p (the operators transverse to those coming from the Lie algebra of the
maximal compact subgroup Õ(p)× Õ(q)) moves elements from one Õ(p)×
Õ(q) type to another.

Lemma 2.2. Assume that p, q ≥ 2. The actions of sl(2)C and p ⊂ o(p, q)C
on the basis in (2.5) are as follows:

H · [i, j, m, n] =
(

2i− 2j + m− n +
p− q

2

)
[i, j, m, n];

E · [i, j, m, n] = [i + 1, j,m, n]− 2j(q + 2n + 2j − 2)[i, j − 1,m, n];

F · [i, j, m, n] = [i, j + 1,m, n]− 2i(p + 2m + 2i− 2)[i− 1, j,m, n];(
xiyj −

∂2

∂xi∂yj

)
· [i, j, m, n] = [i, j,m + 1, n + 1]

+ cp,m[i + 1, j,m− 1, n + 1]

+ cq,n[i, j + 1,m + 1, n− 1] + cp,mcq,n[i + 1, j + 1,m− 1, n− 1]

− 4ij[i− 1, j − 1,m + 1, n + 1]− 2i(2jcq,n + 1)[i− 1, j,m + 1, n− 1]

− 2j(2icp,m + 1)[i, j − 1,m− 1, n + 1]

− (2icp,m + 1)(2jcq,n + 1)[i, j, m− 1, n− 1].

Proof. Follows from Lemma 2.1 and the commutation relations

(a) [∆1, r
2
1] = 4

(
p∑

i=1

xi
∂

∂xi
+

p

2

)
,

(b) [∆2, r
2
2] = 4

 q∑
j=1

yj
∂

∂yj
+

q

2

 ,

(c) [∆1, (r2
1)

i] = 2i(p + 2i− 2)(r2
1)

i−1 + 4i(r2
1)

i−1
p∑

i=1

xi
∂

∂xi
,

(d) [∆2, (r2
2)

j ] = 2j(q + 2j − 2)(r2
2)

j−1 + 4j(r2
2)

j−1
q∑

j=1

yj
∂

∂yj
.

�

Proposition 2.3. Let (G, G′) ⊂ Sp(2k, R) be a reductive dual pair and
P be the space of Ũ(k)-finite vectors of the Fock model. Let χ be a one-
dimensional representation of G̃′ with differential dχ, then

Nχ = Span {Xf − dχ(X)f, ω(k)f − χ(k)f | X ∈ g′, k ∈ K̃ ′, f ∈ P}
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is (g× g′, K̃ × K̃ ′) invariant and P/Nχ is the Howe quotient corresponding
to the (g′, K̃ ′)-module of χ.

Remark. If G′ is connected, one could omit the terms ω(k)f − χ(k)f . If
G′ is disconnected, there may be more than one character with the same
differential and the term ω(k)f − χ(k)f would capture the piece with the
correct K̃ ′ action.

Proof. Take
∑

(Xi − dχ(Xi))fi ∈ Nχ where Xi ∈ g′ and fi ∈ P. Let
(A,B) ∈ g× g′ and (a, b) ∈ K̃ × K̃ ′. Then

(A,B)
∑

(Xi − dχ(Xi))fi

=
∑

AB(Xi − dχ(Xi))fi

=
∑

(BXi − dχ(Xi)B)(Afi) (since A commutes with B and Xi)

=
∑

(XiB − [Xi, B]− dχ(Xi)B)(Afi)

=
∑

(Xi − dχ(Xi))(BAfi)−
∑

[Xi, B](Afi).

Now fix a choice of the Cartan subalgebra h of g′. If B,Xi ∈ h, [Xi, B] = 0,
so we don’t have a problem here. If B ∈ h and Xi is a non-zero root vector
(so that dχ(Xi) = 0), then [Xi, B] is a multiple of Xi, and we still have
[Xi, B](Afi) ∈ Nχ. Likewise we have no problem if Xi and B are both non-
zero root vectors. For the general case, extend by linearity to see that Nχ

is g× g′ invariant.
For the action of K̃ × K̃ ′,

(a, b)
∑

(Xi − dχ(Xi))fi

=
∑

ab(Xi − dχ(Xi))fi

=
∑

(bXi − dχ(Xi)b)(afi) (since a commutes with b and Xi)

=
∑

(bXib
−1 − dχ(Xi))(bafi)

=
∑

(bXib
−1 − dχ(bXib

−1))(bafi) (since dχ(bXib
−1) = dχ(Xi))

∈ Nχ.

The argument for the term ω(k)f−χ(k)f is similar. So Nχ is (g×g′, K̃×K̃ ′)
invariant.

If N ⊂ P is such that

P/N ' χ (as a (g′, K̃ ′) module),

then for X ∈ g′ and f̄ ∈ P/N , we have

Xf̄ = dχ(X)f̄ ⇒ (X − dχ(X))f̄ = 0
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⇒ (X − dχ(X))f = 0

⇒ (X − dχ(X))f ∈ N .

Likewise for k ∈ K̃ ′,

ω(k)f̄ = χ(k)f̄ ⇒ (ω(k)− χ(k))f̄ = 0.

Thus, Nχ ⊂ N and P/Nχ is the Howe quotient corresponding to the repre-
sentation χ of (g′, K̃ ′). �

Lemma 2.4. Assume p, q ≥ 2. Consider the basis of P as in (2.5), and
take χ = 11, the trivial (sl(2), Ũ(1)) module, then P/N11 is

Span of (images of )
{[0, 0,m, n] | m− n + p−q

2 = 0,m ≥ 0, n ≥ 0} if p−q
2 ∈ Z;

{0} otherwise.

Proof. We note that from Proposition 2.3,

N11 = Span {Hf, Ef, Ff | f ∈ P}.
From Lemma 2.2, we infer that

(a) Action of H ⇒ [i, j, m, n] ∈ N11 if 2i− 2j + m− n +
p− q

2
6= 0;

(b) Action of E ⇒ [i, 0,m, n] ∈ N11 if i > 0, and

[i, j, m, n] ≡ 2j(q + 2n + 2j − 2)[i− 1, j − 1,m, n] mod N11;

(c) Action of F ⇒ [0, j,m, n] ∈ N11 if j > 0, and

[i, j, m, n] ≡ 2i(p + 2m + 2i− 2)[i− 1, j − 1,m, n] mod N11.

Thus, [i, j, m, n] ≡ c1[i− j, 0,m, n] ≡ 0 mod N11 if i > j;

[i, j, m, n] ≡ c2[0, j − i,m, n] ≡ 0 mod N11 if j > i;

[i, j, m, n] ≡ c3[0, 0,m, n] mod N11 if i = j > 0.

Here c1, c2 and c3 are non-zero constants. The result follows. �

Theorem 2.5. Assume p, q ≥ 2. The trivial (sl(2), Ũ(1)) module belongs
to R(sl(2), Ũ(1), ω) if and only if p−q

2 ∈ Z, and if p−q
2 ∈ Z, the theta lift of

the trivial representation is the irreducible and unitary ladder representation
Lp,q = Span {[0, 0,m, n] | m− n + p−q

2 = 0}.

Remark. These representations of Õ(p, q) are known as ladder represen-
tations in the Physics literature (see [AFR] and [BZ]). They have Gelfand-
Kirillov dimension p + q − 3 (in the sense of [Vo]) and correspond to the
quantization of certain minimal orbits (see [BZ], [Ko1] and [Ko2]).

Proof. The first part is immediate from Lemma 2.4.
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Assume that p−q
2 ∈ Z. We note the action of p ⊂ o(p, q)C using Lemma

2.2: (
xiyj −

∂2

∂xi∂yj

)
· [0, 0,m, n]

= [0, 0,m + 1, n + 1]− [0, 0,m− 1, n− 1] mod N11.

A simple computation on the O(p) and O(q) weights shows that [0, 0,m, n] 6=
[0, 0,m′, n′] mod N11 unless both are in N11. Starting from [0, 0, q−p

2 , 0] or
[0, 0, 0, p−q

2 ] which is clearly not in N11, the transition formula above shows
that Lp,q is irreducible as an (o(p, q), Õ(p)×Õ(q)) module. Unitarity follows
from [Li]’s results. �

Next we compute the Howe quotient corresponding to the trivial repre-
sentation of O(p, q) for the dual pair (O(p, q), SL(2, R)). We remark that
[LZ1] has treated these theta lifts in a different way (and for the dual pairs
(O(p, q), Sp(2n, R)) and have explicit information on the structure of the
corresponding Howe quotients.

Assume p, q ≥ 2. If P = C[x1, . . . , xp, y1, . . . , yq] as before, let

N ′
11 = Span{Xf |f ∈ P, X ∈ o(p, q)C}.

Then by the remark following Proposition 2.3, the Howe quotient is con-
tained in P/N ′

11. Recall that the action of o(p, q)C and sl(2)C is given in
(2.3).

Lemma 2.6. Let 1̄, X, and Y be the elements of P/N ′
11 given by

1̄ = 1 +N ′
11,

X = x2
1 +N ′

11,

Y = y2
1 +N ′

11.

Then B = {1̄, Xk, Y l|k, l ∈ Z≥1} is a basis of P/N ′
11.

Proof. For λ = (λ1, . . . , λp) and µ = (µ1, . . . , µq) with λi, µj ∈ Z≥0, let
xλyµ be the monomial

∏p
i=1 xλi

i

∏q
i=1 yµi

i . For 1 ≤ i < j ≤ p and arbitrary
xλyµ, we have that(

xi
∂

∂xj
− xj

∂
∂xi

)
xixjx

λyµ =
(
(λj + 1)x2

i − (λi + 1)x2
j

)
xλyµ ∈ N ′

11,

so that

x2
i x

λyµ ≡ λi+1
λj+1x2

jx
λyµ mod N ′

11.(2.6a)

Similarly, we have for 1 ≤ i < j ≤ q,

y2
i x

λyµ ≡ µi+1
µj+1y2

j x
λyµ mod N ′

11.(2.6b)
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If λi = 0, then (
xi

∂
∂xj

− xj
∂

∂xi

)
xjx

λyµ = (λj + 1)xix
λyµ.

This implies that xλyµ ∈ N ′
11 whenever λi = 1 for some i. Similarly, xλyµ ∈

N ′
11 whenever µi = 1 for some i. Applying (2.6) repeatedly if necessary yields

(2.7) λi odd for some i or µi odd for some i ⇒ xλyµ ∈ N ′
11.

For 1 ≤ i ≤ p and 1 ≤ j ≤ q, applying the operator xiyj − ∂2

∂xi∂yj
to the

monomial xiyjx
λyµ yields

(2.8) x2
i y

2
j x

λyµ ≡ (λi + 1)(µj + 1)xλyµ mod N ′
11.

Using (2.6), (2.7), and (2.8), we see that every monomial in P is either in
N ′

11 or in one of the cosets listed in B. So we have that B spans P/N ′
11. To

see that the elements of B are linearly independent, we notice that each is
a weight vector for u(1)C ⊂ sl(2)C, of the following weights:

1̄ has weight p−q
2 ,(2.9)

Xk has weight p−q
2 + 2k,

Y k has weight p−q
2 − 2k.

Since all weights are distinct, the vectors must be linearly independent, and
the lemma is proved. �

Remark. The proof of Lemma 2.6 also shows that all Ũ(1)-types in P/N ′
11

have multiplicity one.

Theorem 2.7. Suppose p, q ≥ 2. The trivial (o(p, q), Õ(p)×Õ(q))- module
11 belongs to R(o(p, q), Õ(p)×Õ(q), ω) and no other one-dimensional module
does, so that P/N ′

11 is the Howe quotient corresponding to the trivial module.
(i) If p and q are both odd then P/N ′

11 is irreducible and isomorphic to
the principal series of the split double cover of SL(2, R) with infinitesimal
character −p+q

2 + 1, and even U(1)-types if p−q
2 is even, odd U(1)-types

otherwise.
(ii) If p and q are both even then P/N ′

11 has two irreducible (sl(2), U(1))-
submodules V1 and V2 spanned by {Xk|k ≥ q

2} and {Y k|k ≥ p
2} respectively,

which are discrete series representations with minimal U(1)-types p+q
2 and

−p+q
2 respectively. The theta-lift of 11 is the irreducible quotient of P/N ′

11 by
V1⊕V2, which is isomorphic to the unique (sl(2), U(1))- module of dimension
p+q
2 − 1.

(iii) If p is even and q is odd then P/N ′
11 has an irreducible (sl(2), Ũ(1))-

submodule V spanned by {Y k|k ≥ p
2}, which is the Harish-Chandra module of

the discrete series representation of S̃L(2, R) with minimal Ũ(1)-type −p+q
2 .
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The theta-lift of 11 is the irreducible quotient of P/N ′
11 by V which is a lowest

weight module with lowest weight −p+q
2 + 2.

(iv) If p is odd and q is even then P/N ′
11 has an irreducible (sl(2), Ũ(1))-

submodule V spanned by {Xk|k ≥ q
2}, which is the Harish-Chandra module

of the discrete series representation of S̃L(2, R) with minimal Ũ(1)-type p+q
2 .

The theta-lift of 11 is the irreducible quotient of P/N ′
11 by V which is a highest

weight module with highest weight p+q
2 − 2.

Further, the theta-lift of 11 is non-unitarizable except in the case (ii) with
p = q = 2.

Proof. First observe that elements of B transform by the trivial O(p, q)
character, simply by checking the action of Õ(p)× Õ(q). Using the formulas
(2.3), (2.6), and (2.8), we compute the action of p′ = Span{E,F} on the
weight vectors in B:

E · 1̄ = pX;

E ·Xk =
2k + p

2k + 1
Xk+1;

E · Y k = (2k − 1)(p− 2k)Y k−1;

F · 1̄ = qY ;

F ·Xk = (2k − 1)(q − 2k)Xk−1;

F · Y k =
2k + q

2k + 1
Y k+1.

Notice that E annihilates Y
p
2 if p is even, and takes all weight vectors of

weight p−q
2 + 2k with 2k 6= p to weight vectors of weight p−q

2 + 2k + 2.

Similarly, F annihilates X
q
2 if q is even and takes all weight vectors of

weight p−q
2 +2k with 2k 6= −q to weight vectors of weight p−q

2 +2k−2. The
decomposition into submodules and quotients for (i)-(iv) now follows.

The casimir operator of sl(2) acts on the Howe quotient by the constant
(p+q

2 )(p+q
2 − 2). Non-unitarizability then follows from the descriptions of

sl(2) modules given in Chapter III of [HT1]. �

For completeness, we shall provide the results for the cases when either
p = 1 or q = 1 or p = q = 1. Suppose ε1, ε2 ∈ {+,−} and let 11ε1,ε2 be the
unique character of O(p, q) which restricts to det on O(p) if ε1 = − and to
the trivial character if ε1 = + and similarly for O(q) and ε2. Recall that all
genuine characters of Õ(p, q) are obtained by twisting these characters by
the character χ defined in the introduction.

Theorem 2.8.
(a) (O(p, 1), SL(2, R)), p ≥ 2:
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(a)(i) 11+,+ ∈ R(o(p, 1), Õ(p)× Õ(1), ω) if p is even and θ(11+,+) is a lowest
weight (sl(2), Ũ(1)) module of lowest weight −p−3

2 and it is not unitarizable
unless p = 2;

(a)(ii) 11+,− ∈ R(o(p, 1), Õ(p)×Õ(1), ω) if p is even and θ(11+,−) is a highest
weight (sl(2), Ũ(1)) module of highest weight p−3

2 and it is not unitarizable
unless p = 2;

(a)(iii) 11+,+ ∈ R(o(p, 1), Õ(p)× Õ(1), ω) if p is odd and θ(11+,+) is the non-
unitarizable (sl(2), Ũ(1)) principal series representation with infinitesimal
character p−1

2 , and even Ũ(1)-types if p−1
2 is even, odd Ũ(1)-types otherwise;

(a)(iv) 11+,− ∈ R(o(p, 1), Õ(p)×Õ(1), ω) if p is odd and θ(11+,−) is the finite-
dimensional (sl(2), Ũ(1))-module of dimension p−1

2 and it is non-unitarizable
unless p = 3;

(a)(v) 11 ∈ R(sl, Ũ(1), ω) if p is odd and θ(11) is the irreducible and uni-
tarizable (o(p, 1), Õ(p) × Õ(1)) ladder representation with representatives
{(x1 −

√
−1x2)myt | t = m + p−1

2 }.

(b) (O(1, q), SL(2, R)), q ≥ 2:

(b)(i) 11+,+ ∈ R(o(1, q), Õ(1)× Õ(q), ω) if q is even and θ(11+,+) is a highest
weight (sl(2), Ũ(1)) module of highest weight q−3

2 and it is not unitarizable
unless q = 2;

(b)(ii) 11−,+ ∈ R(o(1, q), Õ(1)× Õ(q), ω) if q is even and θ(11−,+) is a lowest
weight (sl(2), Ũ(1)) module of lowest weight − q−3

2 and it is not unitarizable
unless q = 2;

(b)(iii) 11+,+ ∈ R(o(1, q), Õ(1) × Õ(q), ω) if q is odd and θ(11+,+) is the
non-unitarizable (sl(2), Ũ(1)) principal series representation with infinites-
imal character ( q−1

2 ), and even Ũ(1)-types if q−1
2 is even, odd Ũ(1)-types

otherwise;

(b)(iv) 11−,+ ∈ R(o(1, q), Õ(1)×Õ(q), ω) if q is odd and θ(11−,+) is the finite-
dimensional (sl(2), Ũ(1)) of dimension q−1

2 and it is non-unitarizable unless
q = 3;

(b)(v) 11 ∈ R(sl, Ũ(1), ω) if q is odd and θ(11) is the irreducible and uni-
tarizable (o(1, q), Õ(1) × Õ(q)) ladder representation with representatives
{xs(y1 −

√
−1y2)n | s = n + q−1

2 }.

(c) (O(1, 1), SL(2, R)) :

(c)(i) 11+,+ ∈ R(o(1, 1), Õ(1) × Õ(1), ω) and θ(11+,+) is the unitarizable
(sl(2), Ũ(1)) principal series representation with infinitesimal character 0;
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(c)(ii) 11−,+ ∈ R(o(1, 1), Õ(1) × Õ(1), ω) and θ(11+,−) is the unitarizable
lowest weight (sl(2), Ũ(1)) module of lowest weight 1 (i.e., limit of discrete
series);

(c)(iii) 11+,− ∈ R(o(1, 1), Õ(1) × Õ(1), ω) and θ(11+,−) is the unitarizable
highest weight (sl(2), Ũ(1)) of highest weight −1 (i.e., limit of discrete se-
ries );

(c)(iv) 11 ∈ R(sl, Ũ(1), ω) and θ(11) is the non-unitarizable two-dimensional
(o(1, 1), Õ(1)× Õ(1)) module with representatives {1, xy}.

Remark. The cases (a)(iv) and (b)(iv) could be interpreted physically, in
terms of the Huygens’ Principle. Even the cases under Theorem 2.7 could be
suitably interpreted in terms of O(p, q) invariant distributions (see [HT1]).

Proof. Basically the computations are similar. The results are obtained
by tracking the actions of Õ(p), Õ(q) and sl(2) on the representatives in
P/N ′

11. �

3. The Dual Pairs (U(p, q), U(1, 1)).

Consider the dual pair (U(p), U(1, 1)) acting on the Ũ(2p)-finite vectors of
the associated Fock space C[z1, . . . , zp, z̄1, . . . , z̄p] as follows:

(a) Action of u(p)C: zi
∂

∂zj
− z̄j

∂

∂z̄i
, 1 ≤ i, j ≤ p.

(b) Action of u(1, 1)C = Span {h1, h2, r
2
1,∆1}, where

h1 =
p∑

i=1

zi
∂

∂zi
, h2 =

p∑
i=1

z̄i
∂

∂z̄i
, r2

1 =
p∑

i=1

ziz̄i, ∆1 =
p∑

i=1

∂2

∂zi∂z̄i
.

It is easy to see that the duality correspondence is as follows:

C[z1, . . . , zp, z̄1, . . . , z̄p]|U(p)×eU(1,1)
=

∞∑
m=0

H(p)
α,β ⊗ (det)

α−β
2 Vp+α+β,

where H(p)
α,β is the irreducible U(p) module characterized as follows:

H(p)
α,β = {f ∈ C[z1, . . . , zp, z̄1, . . . , z̄p] | h1f = αf, h2f = βf, ∆1f = 0},

and Vp+α+β is the SU(1, 1) lowest weight module of lowest weight p+α+β

spanned by {(r2
1)

izα
1 z̄β

p | i = 0, 1, . . . }. Note that the representation of
SU(1, 1) is twisted by the α−β

2 -power of the determinant character det on
Ũ(1, 1). Incidentally, C[z1, . . . , zp, z̄1, . . . , z̄p] is bigraded in degrees in the
z coordinates and z̄ coordinates. The subscript in H(p)

α,β indicates that the
module lives in the homogeneous component of degree α in the z coordinates
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and degree β in the z̄ coordinates. The U(p) highest weight vector in H(p)
α,β

is zα
1 z̄β

p .
The duality correspondence enables us to write

(3.1) C[z1, . . . , zp, z̄1, . . . , z̄p]|U(p) =
∞∑

i,α,β=0

(r2
1)

iH(p)
α,β,

where (r2
1)

iH(p)
α,β are U(p) modules isomorphic toH(p)

α,β. We note the analogue
of Lemma 2.1.

Lemma 3.1. Let φ ∈ H(p)
α,β where α + β ≥ 1. If

(ziφ)∼ = ziφ−
1

(p + α + β − 1)
r2
1

∂φ

∂z̄i
, and

(z̄iφ)∼ = z̄iφ−
1

(p + α + β − 1)
r2
1

∂φ

∂zi
,

then

ziφ = (ziφ)∼ +
1

(p + α + β − 1)
r2
1

∂φ

∂z̄i

gives the projection of ziφ into the U(p) modules H(p)
α+1,β and r2

1H
(p)
α,β−1, while

z̄iφ = (z̄iφ)∼ +
1

(p + α + β − 1)
r2
1

∂φ

∂zi

gives the projection of z̄iφ into the U(p) modules H(p)
α,β+1 and r2

1H
(p)
α−1,β.

Proof. Easy. �

For convenience, we shall let

cp,α,β =
1

p + α + β − 1
.

We note that when α + β ≥ 1, cp,α,β > 0.
Likewise, the dual pair (U(q), U(1, 1)) acting on C[w1, . . . , wq, w̄1, . . . , wq]

gives rise to the following decomposition of the Fock space as U(q) modules:

(3.2) C[w1, . . . , wq, w̄1, . . . , w̄q]|U(q) =
∞∑

j,γ,δ=0

(r2
2)

jH(q)
γ,δ,

where r2
2 =

∑q
j=1 wjw̄j , (r2

2)
jH(q)

γ,δ is isomorphic to H(q)
γ,δ, the spherical har-

monics of degree γ, δ (i.e., killed by ∆2 =
∑q

j=1
∂2

∂wj∂w̄j
) in the variables

w1, . . . , wq, w̄1, . . . , w̄q.
Consider P = C[z1, . . . , zp, z̄1, . . . , z̄p, w1, . . . , wq, w̄1, . . . , w̄q]. This is the

space of Ũ(2p + 2q)-finite vectors of the associated Fock model for the dual
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pair (U(p, q), U(1, 1)), and the actions of the complexified Lie algebras of
U(p, q) and Ũ(1, 1) can be described as follows:

(a) Action of u(p, q)C = u(p)C ⊕ u(q)C ⊕ p :

(3.3)

(i) Action of u(p)C: zi
∂

∂zj
− z̄j

∂

∂z̄i
, 1 ≤ i, j ≤ p;

(ii) Action of u(q)C: wi
∂

∂wj
− w̄j

∂

∂w̄i
, 1 ≤ i, j ≤ q;

(iii) Action of p: Sij = ziwj −
∂2

∂z̄i∂w̄j
, 1 ≤ i ≤ p, 1 ≤ j ≤ q;

Tij = z̄iw̄j −
∂2

∂zi∂wj
, 1 ≤ i ≤ p, 1 ≤ j ≤ q.

(b) Action of u(1, 1)C = Span {H1,H2, E, F} :

(i) H1 =
p∑

i=1

zi
∂

∂zi
−

q∑
j=1

wj
∂

∂wj
+

p− q

2
,

(ii) H2 = −
p∑

i=1

z̄i
∂

∂z̄i
+

q∑
j=1

w̄j
∂

∂w̄j
− p− q

2
,

(iii) E = r2
1 −∆2,

(iv) F = r2
2 −∆1.

We note that Ũ(p, q) is split while Ũ(1, 1) is split when p + q is even and
non-split otherwise.

Because of the decompositions (3.1) and (3.2), we have the following de-
composition of P as a U(p)× U(q) module:

(3.4) P|U(p)×U(q) =
∞∑

i,j,α,β,γ,δ=0

(r2
1)

i(r2
2)

jH(p)
α,βH

(q)
γ,δ.

Again, we will take as a “basis” for P, elements of the form

(3.5) [i, j, α, β, γ, δ] = (r2
1)

i(r2
2)

jφ1φ2, where φ1 ∈ H(p)
α,β and φ2 ∈ H(q)

γ,δ.

Lemma 3.2. The actions of u(1, 1)C and p ⊂ u(p, q)C on the basis in (3.5)
are as follows:

H1 · [i, j, α, β, γ, δ] =
(

i− j + α− γ +
p− q

2

)
[i, j, α, β, γ, δ];

H2 · [i, j, α, β, γ, δ] =
(

j − i + δ − β − p− q

2

)
[i, j, α, β, γ, δ];
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E · [i, j, α, β, γ, δ] = [i + 1, j, α, β, γ, δ]

− j(q + γ + δ + j − 1)[i, j − 1, α, β, γ, δ];

F · [i, j, α, β, γ, δ] = [i, j + 1, α, β, γ, δ]

− i(p + α + β + i− 1)[i− 1, j, α, β, γ, δ]

Skl · [i, j, α, β, γ, δ] = [i, j, α + 1, β, γ + 1, δ]

+ cp,α,β[i + 1, j, α, β − 1, γ + 1, δ]

+ cq,γ,δ[i, j + 1, α + 1, β, γ, δ − 1]

+ cp,α,βcq,γ,δ[i + 1, j + 1, α, β − 1, γ, δ − 1]

− ij[i− 1, j − 1, α + 1, β, γ + 1, δ]

− i(jcq,γ,δ + 1)[i− 1, j, α + 1, β, γ, δ − 1]

− j(icp,α,β + 1)[i, j − 1, α, β − 1, γ + 1, δ]

− (icp,α,β + 1)(jcq,γ,δ + 1)[i, j, α, β − 1, γ, δ − 1];

Tkl · [i, j, α, β, γ, δ] = [i, j, α, β + 1, γ, δ + 1]

+ cp,α,β[i + 1, j, α− 1, β, γ, δ + 1]

+ cq,γ,δ[i, j + 1, α, β + 1, γ − 1, δ]

+ cp,α,βcq,γ,δ[i + 1, j + 1, α− 1, β, γ − 1, δ]

− ij[i− 1, j − 1, α, β + 1, γ, δ + 1]

− i(jcq,γ,δ + 1)[i− 1, j, α, β + 1, γ − 1, δ]

− j(icp,α,β + 1)[i, j − 1, α− 1, β, γ, δ + 1]

− (icp,α,β + 1)(jcq,γ,δ + 1)[i, j, α− 1, β, γ − 1, δ].

Proof. Similar to Lemma 2.2. �

For ν ∈ 1
2Z, let detν be the ν-power of the determinant character on

Ũ(1, 1). Let

Nν = Span {H1f − νf, H2f − νf, Ef, Ff | f ∈ P}.

Lemma 3.3. For ν ∈ 1
2Z, detν ∈ R(u(1, 1), Ũ(1)× Ũ(1), ω) if and only if

p−q
2 − ν ∈ Z. Consider the basis of P as in (3.5). If p−q

2 − ν ∈ Z,P/Nν =

Span of (images of ){
[0, 0, α, β, γ, δ]

∣∣∣∣α− γ +
p− q

2
− ν = δ − β − p− q

2
− ν = 0

}
.

Proof. From Lemma 3.2, we infer that
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(a) Action of H1 and H2 ⇒ [i, j, α, β, γ, δ] ∈ Nν if i−j+α−γ+ p−q
2 −ν 6= 0,

or if j − i + δ − β − p−q
2 − ν 6= 0;

(b) Action of E ⇒ [i, 0, α, β, γ, δ] ∈ Nν if i > 0, and

[i, j, α, β, γ, δ] ≡ j(q + γ + δ + j − 1)[i− 1, j − 1, α, β, γ, δ] mod Nν ;

(c) Action of F ⇒ [0, j, α, β, γ, δ] ∈ Nν if j > 0, and

[i, j, α, β, γ, δ] ≡ i(p + α + β + i− 1)[i− 1, j − 1, α, β, γ, δ] mod Nν .

Thus,

[i, j, α, β, γ, δ] ≡ c1[i− j, 0, α, β, γ, δ] ≡ 0 mod Nν if i > j;

[i, j, α, β, γ, δ] ≡ c2[0, j − i, α, β, γ, δ] ≡ 0 mod Nν if j > i;

[i, j, α, β, γ, δ] ≡ c3[0, 0, α, β, γ, δ] mod Nν if i = j > 0,

where c1, c2 and c3 are non-zero constants. The result follows. �

Theorem 3.4. Assume that p−q
2 − ν ∈ Z. The theta lift of the representa-

tion detν of Ũ(1, 1) is the irreducible and unitarizable (u(p, q), U(p)×U(q))
module

Hp,q,ν = Span (of the images)
{

[0, 0, α, β, γ, δ] |α− γ +
p− q

2
− ν = 0,

δ − β − p− q

2
− ν = 0

}
.

Remark. The representations are also known as ladder representations
(see [AFR]), even though their K-spectrum has two parameters. They are
restrictions of the ladder representation L2p,2q of O(2p, 2q):

L2p,2q|U(p,q) =
∑

ν∈ 1
2

Z

Hp,q,ν

and have Gelfand-Kirillov dimensions 2p+2q− 4 (compare with 2p+2q− 3
of L2p,2q).

Proof. We note the action of p ⊂ u(p, q)C using Lemma 3.2:

Skl · [0, 0, α, β, γ, δ]

= [0, 0, α + 1, β, γ + 1, δ]− [0, 0, α, β − 1, γ, δ − 1] mod Nν ;

Tkl · [0, 0, α, β, γ, δ]

= [0, 0, α, β + 1, γ, δ + 1]− [0, 0, α− 1, β, γ − 1, δ] mod Nν .

This shows that Hp,q,ν is irreducible as a (u(p, q), Ũ(p) × Ũ(q)) module.
Unitarity follows from the observation that they are restrictions of the uni-
tarizable (o(2p, 2q), Õ(2p)× Õ(2q)) module L2p,2q. �
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Now we compute the Howe quotient corresponding to the trivial represen-
tation of U(p, q) for the dual pair (U(p, q), U(1, 1)). Assume that p, q ≥ 1.
If

P = C[z1, . . . , zp, z̄1, . . . , z̄p, w1, . . . , wq, w̄1, . . . , w̄q]
as before, let

N ′
11 = Span{Xf |f ∈ P, X ∈ u(p, q)C}.

Then by Proposition 2.3, the Howe quotient is P/N ′
11. Recall that the action

of u(p, q)C and u(1, 1)C is given in (3.3).

Lemma 3.5. Let 1̄, Z, and W be the elements of P/N ′
11 given by

1̄ = 1 +N ′
11,

Z = z1z̄1 +N ′
11,

W = w1w̄1 +N ′
11.

Then B = {1̄, Zk,W l|k, l ∈ Z≥1} is a basis of P/N ′
11.

Proof. For λ = (λ1, . . . , λp, λ̄1, . . . , λ̄p) and µ = (µ1, . . . , µq, µ̄1, . . . , µ̄q) with
λi, λ̄i, µj , µ̄j ∈ Z≥0, let zλwµ be the monomial

∏p
i=1 zλi

i z̄λ̄i
i

∏q
i=1 wµi

i w̄µ̄i
i . For

1 ≤ i, j ≤ p, and arbitrary zλwµ, we have that(
zi

∂
∂zj

− z̄j
∂

∂z̄i

)
z̄izjz

λwµ =
(
(λj + 1)ziz̄i − (λ̄i + 1)zj z̄j

)
zλwµ ∈ N ′

11,

so that

ziz̄iz
λwµ ≡ λ̄i+1

λj+1zj z̄jz
λwµ mod N ′

11.(3.6a)

Similarly, we have for 1 ≤ i, j ≤ q,

wiw̄iz
λwµ ≡ µ̄i+1

µj+1wjw̄jz
λwµ mod N ′

11.(3.6b)

If λ̄i = 0, then(
zi

∂
∂zj

− z̄j
∂

∂z̄i

)
zjz

λwµ = (λj + 1)ziz
λwµ ∈ N ′

11.

This implies that ziz
λwµ ∈ N ′

11 whenever λ̄i = 0. Similarly, z̄iz
λwµ ∈ N ′

11

whenever λi = 0, wiz
λwµ ∈ N ′

11 whenever µ̄i = 0, and w̄iz
λwµ ∈ N ′

11

whenever µi = 0. Using (3.6) with i = j, we see that if λi 6= λ̄i for some i,
then ziz̄iz

λwµ ∈ N ′
11 (and similarly if µi 6= µ̄i), so that we have

(3.7) λi 6= λ̄i for some i or µi 6= µ̄i for some i ⇒ zλwµ ∈ N ′
11.

For 1 ≤ i ≤ p and 1 ≤ j ≤ q, applying the operator ziwj − ∂2

∂z̄i∂w̄j
to the

monomial z̄iw̄jz
λwµ yields

(3.8) ziz̄iwjw̄jz
λwµ ≡ (λ̄i + 1)(µ̄j + 1)zλwµ mod N ′

11.

Using (3.6), (3.7), and (3.8), we see that every monomial in P is either in
N ′

11 or in one of the cosets listed in B. So we have that B spans P/N ′
11. To
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see that the elements of B are linearly independent, we notice that each is
a weight vector for

(
u(1)⊕ u(1)

)
C ⊂ u(1, 1)C, of the following weights:

1̄ has weight (p−q
2 ,−p−q

2 ),

Zk has weight (p−q
2 + k,−p−q

2 − k),(3.9)

W k has weight (p−q
2 − k,−p−q

2 + k).

Since all weights are distinct, the vectors must be linearly independent, and
the lemma is proved. �

Remark. The proof of Lemma 3.5 also shows that all Ũ(1) × Ũ(1)-types
in P/N ′

11 have multiplicity one.

Theorem 3.6. Suppose p, q ≥ 1. The trivial (u(p, q), U(p)×U(q))-module
11 belongs to R(u(p, q), U(p) × U(q), ω). The Howe quotient P/N ′

11 has two
irreducible (u(1, 1), Ũ(1)× Ũ(1))-submodules V1 and V2 spanned by {Zk|k ≥
q} and {W k|k ≥ p} respectively, which are discrete series representations
with minimal Ũ(1) × Ũ(1)-types (p+q

2 ,−p+q
2 ) and (−p+q

2 , p+q
2 ) respectively.

The theta-lift of 11 is the irreducible quotient of P/N ′
11 by V1 ⊕ V2, the

(u(1, 1), Ũ(1) × Ũ(1))-module of dimension p + q − 1, with Ũ(1) × Ũ(1)-
types {(k + p−q

2 ,−k − p−q
2 )| − q + 1 ≤ k ≤ p − 1}. The theta-lift of 11 is

unitarizable only in the case when p = q = 1.

Remark. The situation in this case is very much controlled by the situation
for the dual pair (O(2p, 2q), SL(2, R)) (see Theorem 2.7(ii)). Again, Lee
and Zhu [LZ2] has treated these representations of U(n, n) for the dual
pairs (U(p, q), U(n, n)) and have explicit information on the structure of the
corresponding Howe quotients.

Proof. Using the formulas (3.3), (3.6), and (3.8), we compute the action of
p′ = Span{E,F} on the weight vectors in B:

E · 1̄ = pZ;

E · Zk =
k + p

k + 1
Zk+1;

E ·W k = k(p− k)W k−1;

F · 1̄ = qW ;

F · Zk = k(q − k)Zk−1;

F ·W k =
k + q

k + 1
W k+1.

Notice that E annihilates W p, and takes all weight vectors of weight (k +
p−q
2 ,−k− p−q

2 ) to weight vectors of weight (k+1+ p−q
2 ,−k−1− p−q

2 ). Simi-
larly, F annihilates Zq and takes all weight vectors of weight (k + p−q

2 ,−k−
p−q
2 ) to weight vectors of weight (k − 1 + p−q

2 ,−k + 1 − p−q
2 ). The result
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follows since we know that only the trivial finite-dimensional module is uni-
tarizable. �

4. The Dual Pairs (Sp(p, q), O∗(4)).

Consider the dual pair (Sp(p), O∗(4)) acting on the Ũ(4p)-finite vectors of
the associated Fock space C[z1, . . . , z2p, z̄1, . . . , z̄2p] as follows:

(a) Action of sp(p)C:

(4.1)

(i) zi
∂

∂zj
− z̄j

∂

∂z̄i
− zp+j

∂

∂zp+i
+ z̄p+i

∂

∂z̄p+j
, 1 ≤ i, j ≤ p;

(ii) zi
∂

∂zp+j
− z̄p+j

∂

∂z̄i
+ zj

∂

∂zp+i
− z̄p+i

∂

∂z̄j
, 1 ≤ i ≤ j ≤ p;

(iii) zp+i
∂

∂zj
− z̄j

∂

∂z̄p+i
+ zp+j

∂

∂zi
− z̄i

∂

∂z̄p+j
, 1 ≤ i ≤ j ≤ p.

(b) Action of o∗(4)C = Span{Ez
11 + p, Ez

22 + p, Ez
12, E

z
21, r

2
1,∆1} :

Ez
11 =

2p∑
i=1

zi
∂

∂zi
, Ez

22 =
2p∑
i=1

z̄i
∂

∂z̄i
, Ez

12 =
p∑

i=1

(
zp+i

∂

∂z̄i
− zi

∂

∂z̄p+i

)
,

Ez
21 =

p∑
i=1

(
z̄i

∂

∂zp+i
− z̄p+i

∂

∂zi

)
, r2

1 =
2p∑
i=1

ziz̄i, ∆1 =
2p∑
i=1

∂2

∂zi∂z̄i
.

Observe that

o∗(4)C ' Span{Ez
11 − Ez

22, E
z
12, E

z
21} ⊕ Span{Ez

11 + Ez
22 + 2p, r2

1,∆1}
' su(2)C ⊕ sl(2)C =⇒ O∗(4) ' (SU(2)× SL(2, R))/{±I}.

Define the spherical harmonics as in the last section:

H(C2p) = {f ∈ C[z1, . . . , z2p, z̄1, . . . , z̄2p] | ∆1f = 0}.

We have the following decomposition (see [HT2]):

H(C2p)
∣∣
Sp(p)×SU(2)

=
∑

ξ1,ξ2≥0

K(p)
(ξ1+ξ2,ξ2) ⊗ V ξ1

1 ,

where SU(2) is the group with (complexified) Lie algebra {Ez
11 − Ez

22, E
z
12,

Ez
21}, V m

1 is the irreducible unitary representation of SU(2) of dimension m+
1, and K(p)

(ξ1+ξ2,ξ2) is the Sp(p) module with highest weight (ξ1+ξ2, ξ2, 0, ..., 0)
with respect to the Cartan subalgebra spanned by{

zi
∂

∂zi
− z̄i

∂

∂z̄i
− zp+i

∂

∂zp+i
+ z̄p+i

∂

∂z̄p+i

∣∣∣∣ i = 1, . . . , p

}
.
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The joint Sp(p)× SU(2) highest weight vector of K(p)
(ξ1+ξ2,ξ2) ⊗ V ξ1

1 is given
by

(4.2) γ(ξ1,ξ2) = zξ1
1

∣∣∣∣z1 z̄p+1

z2 z̄p+2

∣∣∣∣ξ2 .

More precisely, there are ξ1 + 1 copies of the Sp(p) representations in
K(p)

(ξ1+ξ2,ξ2) ⊗ V ξ1
1 , and the Sp(p) highest weight vectors are

u(p,ξ1,ξ2,j) = z̄j
p+1v(p,ξ1+ξ2−j,ξ2)

= z̄j
p+1z

ξ1−j
1

∣∣∣∣z1 z̄p+1

z2 z̄p+2

∣∣∣∣ξ2 , j = 0, 1, . . . , ξ1.

We shall denote the Sp(p) module with highest weight vector u(p,ξ1,ξ2,j) by

K(p)
(ξ1+ξ2,ξ2),j . Thus

H(C2p)
∣∣
Sp(p)

=
∑

ξ1≥0,ξ2≥0,j=0,... ,ξ1

K(p)
(ξ1+ξ2,ξ2),j .

We also note that K(p)
(ξ1+ξ2,ξ2),j ⊂ H

(2p)
ξ1+ξ2−j,ξ2+j . In particular, we can extract

the decomposition of H(2p)
α,β into Sp(p) modules:

H(2p)
α,β

∣∣∣
Sp(p)

= K(p)
(α+β,0),β ⊕K

(p)
(α+β−1,1),β−1 ⊕K

(p)
(α+β−2,2),β−2

⊕ . . .⊕K(p)
(max(α,β),min(α,β)),β−min(α,β).

The duality correspondence is as follows:

C[z1, . . . , z2p, z̄1, . . . , z̄2p]|Sp(p)×O∗(4) =
∞∑

ξ1,ξ2=0

K(p)
(ξ1+ξ2,ξ2) ⊗ V ξ1

1 ⊗ Vp+ξ1+2ξ2 ,

where Vp+ξ1+2ξ2 is the SL(2, R) lowest weight module of lowest weight p +
ξ1+2ξ2 spanned by {(r2

1)
iγ(ξ1,ξ2) | i = 0, 1, . . . }. The duality correspondence

enables us to write

(4.3) C[z1, . . . , z2p, z̄1, . . . , z̄2p]|Sp(p)×SU(2) =
∞∑

i,ξ1,ξ2=0

(r2
1)

iK(p)
(ξ1+ξ2,ξ2) ⊗ V ξ1

1 ,

where (r2
1)

iK(p)
(ξ1+ξ2,ξ2) ⊗ V ξ1

1 are Sp(p) × SU(2) modules isomorphic to

K(p)
(ξ1+ξ2,ξ2) ⊗ V ξ1

1 .
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Likewise, the dual pair (Sp(q), O∗(4)) acting on C[w1, ..., w2q, w̄1, ..., w2q]
gives rise to the following decomposition as Sp(q)× SU(2) modules:
(4.4)

C[w1, . . . , w2q, w̄1, . . . , w̄2q]|Sp(q)×SU(2) =
∞∑

i,η1,η2=0

(r2
2)

jK(q)
(η1+η2,η2) ⊗ V η1

1 ,

where (r2
2)

iK(q)
(η1+η2,η2) ⊗ V η1

1 are Sp(q) × SU(2) modules isomorphic to

K(q)
(η1+η2,η2) ⊗ V η1

1 , which are analogously defined as in the (Sp(p), O∗(4))
case.

Consider P = C[z1, . . . , z2p, z̄1, . . . , z̄2p, w1, . . . , w2q, w̄1, . . . , w̄2q]. This is
the space of Ũ(4p + 4q)-finite vectors of the associated Fock model for the
dual pair (Sp(p, q), O∗(4)), and the actions of the complexified Lie algebras
of Sp(p, q) and O∗(4) can be described as follows:

Lemma 4.1.

(a) Action of sp(p, q)C = sp(p)C ⊕ sp(q)C ⊕ p :

(i) Action of sp(p)C: as in (4.1);

(ii) Action of sp(q)C: similar to (4.1);

(iii) Action of p:

Pij = ziwj −
∂2

∂z̄i∂w̄j
+ z̄p+iw̄q+j −

∂2

∂zp+i∂wq+j
, 1 ≤ i ≤ p, 1 ≤ j ≤ q;

Qij = ziwq+j −
∂2

∂z̄i∂w̄q+j
− z̄p+iw̄j +

∂2

∂zp+i∂wj
, 1 ≤ i ≤ p, 1 ≤ j ≤ q;

Rij = zp+iwj −
∂2

∂z̄p+i∂w̄j
− z̄iw̄q+j +

∂2

∂zi∂wq+j
, 1 ≤ i ≤ p, 1 ≤ j ≤ q;

Sij = zp+iwq+j −
∂2

∂z̄p+i∂w̄q+j
+ z̄iw̄j −

∂2

∂zi∂wj
, 1 ≤ i ≤ p, 1 ≤ j ≤ q.

(b) Action of o∗(4)C = Span{E11 + p− q, E22 + p− q, E12, E21, E, F} :
E11 = Ez

11 − Ew
11, E22 = Ez

22 − Ew
22, E12 = Ez

12 − Ew
21,

E21 = Ez
21 − Ew

12, E = r2
1 −∆2, F = r2

2 −∆1.

Proof. Omitted. �

We note that S̃p(p, q) and Õ∗(4) are both split extensions. Because of
the decompositions (4.3) and (4.4), we have the following decomposition of
P as Sp(p)× Sp(q)× SU(2) modules:

(4.5) P|Sp(p)×Sp(q)×SU(2) =
∑

(r2
1)

i(r2
2)

jK(p)
(ξ1+ξ2,ξ2) ⊗K

(q)
(η1+η2,η2) ⊗ V µ

1 ,
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where the sum is over the 7-tuples (i, j, ξ1, ξ2, η1, η2, µ) ∈ Z≥0 such that

|ξ1 − η1| ≤ µ ≤ ξ1 + η1,

µ ≡ ξ1 + η1 mod 2.

This comes about by a direct application of the Clebsh-Gordan formula for
the decomposition of a tensor product of two SU(2) modules:

(4.6) V ξ1
1 ⊗ V η1

1 = V ξ1+η1
1 ⊕ V ξ1+η1−2

1 ⊕ V ξ1+η1−4
1 ⊕ . . .⊕ V

|ξ1−η1|
1 .

Observe that Sp(q) acts in a contragredient fashion, so to obtain a set
of Sp(p) × Sp(q) × SU(2) highest weight vectors in P, we need a little
adjustment. Recall that

γ(ξ1,ξ2) = zξ1
1

∣∣∣∣z1 z̄p+1

z2 z̄p+2

∣∣∣∣ξ2
is a joint Sp(p)× SU(2) highest weight vector. In a similar way,

(4.7) θ(η1,η2) = w̄η1
q+1

∣∣∣∣w1 w̄q+1

w2 w̄q+2

∣∣∣∣η2

is a joint Sp(q)× SU(2) highest weight vector (relative to another choice of
positive system for SU(2)) satisfying

− Ew
11θ(η1,η2) = −η2θ(η1,η2),

− Ew
22θ(η1,η2) = −(η1 + η2)θ(η1,η2),

− Ew
21θ(η1,η2) = 0.

We will take as a “basis” for P elements of the form (see (4.2) and (4.7)
for the definitions of γξ1,ξ2 and θη1,η2)

(4.8) [i, j, ξ1, ξ2, η1, η2, µ] = (r2
1)

i(r2
2)

jγ(ξ1−ν,ξ2)θ(η1−ν,η2)(z1w1+ z̄p+1w̄q+1)ν ,

where µ = ξ1 + η1 − 2ν and |ξ1 − η1| ≤ µ ≤ ξ1 + η1.
Note that if we set i = j = 0, then

E11[0, 0, ξ1, ξ2, η1, η2, µ] = (ξ1 + ξ2 − η2 − ν)[0, 0, ξ1, ξ2, η1, η2, µ],

E22[0, 0, ξ1, ξ2, η1, η2, µ] = (ξ2 − η1 − η2 + ν)[0, 0, ξ1, ξ2, η1, η2, µ],

E12[0, 0, ξ1, ξ2, η1, η2, µ] = 0.

In other words, [0, 0, ξ1, ξ2, η1, η2, µ] is the set of joint Sp(p)×Sp(q)×SU(2)
pluriharmonics (up to multiples, of course).

Lemma 4.2. The actions of sl(2)C ⊂ o∗(4) on the basis in (4.8) are as
follows:

(a) E11 · [i, j, ξ1, ξ2, η1, η2, µ] = (2i + ξ1 + ξ2 − η2) [i, j, ξ1, ξ2, η1, η2, µ];

(b) E22 · [i, j, ξ1, ξ2, η1, η2, µ] = (−2j + ξ2 − η1 − η2) [i, j, ξ1, ξ2, η1, η2, µ];

(c) E · [i, j, ξ1, ξ2, η1, η2, µ] = [i + 1, j, ξ1, ξ2, η1, η2, µ]
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− j(2q + η1 + 2η2 + j − 1)[i, j − 1, ξ1, ξ2, η1, η2, µ];

(d) F · [i, j, ξ1, ξ2, η1, η2, µ] = [i, j + 1, ξ1, ξ2, η1, η2, µ]

− i(2p + ξ1 + 2ξ2 + i− 1)[i− 1, j, ξ1, ξ2, η1, η2, µ].

Proof. Similar to Lemma 2.2. �

Proposition 4.3. Consider the basis of P as in (4.8). Then V µ
1 ⊗ 11 ∈

R(o∗(4), (SU(2) × SO(2))/{±I}, ω) if and only if µ is even. If µ is even,
the Howe quotient corresponding to V µ

1 ⊗ 11 (i.e., the trivial representation
of SL(2, R) twisted by a unitary representation of SU(2)) of O∗(4) is

P/Nµ = Span of (images of ) {[0, 0, ξ1, ξ2, η1, η2, µ] | |ξ1−η1| ≤ µ ≤ ξ1+η1,

µ ≡ ξ1 + η1 mod 2, ξ1 + 2ξ2 + 2p− 2q = η1 + 2η2}.
In particular,

P/Nµ ' Lµ ⊗ (V µ
1 ⊗ 11)

is an irreducible (sp(p, q), Sp(p)× Sp(q))× (o∗(4), (SU(2)× SO(2))/{±I})
module, so the theta lift of V µ

1 ⊗ 11 is the irreducible and unitarizable repre-
sentation Lµ.

Remark. This is not surprising; in fact, the restriction of the ladder
representation L4p,4q of O(4p, 4q) to Sp(p, q) decomposes as follows:

L4p,4q|Sp(p,q)×SU(2) =
∞∑

µ=0,µ even

Lµ ⊗ V µ
1 .

Here SU(2) is not embedded in O(4p, 4q). It arises from the exponentiated
action of the Lie algebra su(2) = Span {E11 − E22, E12, E21} (see Lemma
4.1). We shall call the Lµ ladder representations. They have Gelfand-Kirillov
dimensions 4p + 4q − 6 (compare with 4p + 4q − 3 of L4p,4q).

Proof. Let P/Nµ be the Howe quotient corresponding to the representation
V µ

1 ⊗ 11. As an SU(2) module, P is completely reducible, i.e., P =
∑

µ∈Z Pµ

where Pµ denotes the V µ
1 -isotypic component of P. Thus as an SU(2)

module,
P/Nµ ' Pµ/(Nµ ∩ Pµ).

Let N11 = {Xf | X ∈ sl(2), f ∈ P}. Since sl(2) acts trivially, we have
N11 ∩ Pµ ⊂ Nµ ∩ Pµ. But Nµ = ∩N where N ⊂ P is such that P/N '
Pµ/(N ∩ Pµ) ' V µ

1 ⊗ 11 as SU(2) modules. Thus Nµ ∩ Pµ = ∩(N ∩ Pµ)
is the smallest subspace in Pµ such that Pµ/(Nµ ∩ Pµ) ' V µ

1 ⊗ 11. Hence
N11 ∩ Pµ = Nµ ∩ Pµ and thus

P/Nµ ' Pµ/(N11 ∩ Pµ)

as (o∗(4), (SU(2)× SO(2))/{±I}) modules.
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From the above and Lemma 4.2, the (sp(p, q), Sp(p)× Sp(q)) module Lµ

has a multiplicity free Sp(p)× Sp(q) spectrum:

Lµ|Sp(p)×Sp(q) =
∑

K(p)
(ξ1+ξ2,ξ2) ⊗K

(q)
(η1+η2,η2),

where the sum runs through non-negative integer tuples (ξ1, ξ2, η1, η2) sat-
isfying

|ξ1 − η1| ≤ µ ≤ ξ1 + η1,

µ ≡ ξ1 + η1 mod 2,

ξ1 + 2ξ2 + 2p− 2q = η1 + 2η2.

The above relations show that µ must be even.
There are several ways to show irreducibility. In the spirit of this paper,

we note the transitions from K(p)
(ξ1+ξ2,ξ2)⊗K

(q)
(η1+η2,η2) to neighbouring Sp(p)×

Sp(q) types as follows. Let the operators P11, P12 and P21 from p be given
as in Lemma 4.1 and

X21 = z2
∂

∂z1
− z̄1

∂

∂z̄2
− zp+1

∂

∂zp+2
+ z̄p+2

∂

∂z̄p+1
,

Y21 = w2
∂

∂w1
− w̄1

∂

∂w̄2
− wp+1

∂

∂wp+2
+ w̄p+2

∂

∂w̄p+1

be operators coming from sp(p)C and sp(q)C (see (4.1)). Then the formulae

(a) P11[0, 0, ξ1, ξ2, η1, η2, µ] = [0, 0, ξ1 + 1, ξ2, η1 + 1, η2, µ],

(b) (P11X21 − ξ1P21)[0, 0, ξ1, ξ2, η1, η2, µ]

=
(

η1 − ξ1 − µ

2

)
[0, 0, ξ1 − 1, ξ2 + 1, η1 + 1, η2, µ],

(c) (P11Y21 − η1P12)[0, 0, ξ1, ξ2, η1, η2, µ]

=
(

η1 + µ− ξ1

2

)
[0, 0, ξ1 + 1, ξ2, η1 − 1, η2 + 1, µ],

(d) (P11X21Y21 − η1P12Y21 − ξ1P12X21 + ξ1η1P12P21)[0, 0, ξ1, ξ2, η1, η2, µ]

=
(

ξ1 + η1 − µ

2
− (η1 − ξ1 − µ)(ξ1 − η1 − µ)

4

)
· [0, 0, ξ1 − 1, ξ2 + 1, η1 − 1, η2 + 1, µ],

describes the transitions (of Sp(p)×Sp(q)-types) K(p)
(ξ1+ξ2,ξ2)⊗K

(q)
(η1+η2,η2) to

K(p)
(ξ1+ξ2+1,ξ2)⊗K

(q)
(η1+η2+1,η2), toK(p)

(ξ1+ξ2,ξ2+1)⊗K
(q)
(η1+η2+1,η2), toK(p)

(ξ1+ξ2+1,ξ2)⊗

K(q)
(η1+η2,η2+1), and to K(p)

(ξ1+ξ2,ξ2+1) ⊗ K
(q)
(η1+η2,η2+1) respectively. Noting that

the lowest joint harmonic (see [Ho2]) has trivial Sp(p)× Sp(q) type, these
transitions are enough to show that the (sp(p, q), Sp(p)×Sp(q)) module Lµ
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is irreducible. Unitarity follows from the unitarizability of the (o(4p, 4q),
Õ(4p)× Õ(4q)) module L4p,4q. �

Now we compute the Howe quotient corresponding to the trivial represen-
tation of Sp(p, q) for the dual pair (Sp(p, q), O∗(4)). Assume that p, q ≥ 1.
If

P = C[z1, . . . , z2p, z̄1, . . . , z̄2p, w1, . . . , w2q, w̄1, . . . , w̄2q]

as before, let
N ′

11 = Span{Xf |f ∈ P, X ∈ sp(p, q)C}.
Then by Proposition 2.3, the Howe quotient is P/N ′

11. Recall that the action
of sp(p, q)C and o∗(4)C ∼= (su(2)⊕ sl(2))C is given in Lemma 4.1.

Lemma 4.4. Let 1̄, Z, and W be the elements of P/N ′
11 given by

1̄ = 1 +N ′
11,

Z = z1z̄1 +N ′
11,

W = w1w̄1 +N ′
11.

Then B = {1̄, Zk,W l|k, l ∈ Z≥1} is a basis of P/N ′
11.

Proof. For λ = (λ1, . . . , λ2p, λ̄1, . . . , λ̄2p) and µ = (µ1, . . . , µ2q, µ̄1, . . . , µ̄2q)
with λi, λ̄i, µj , µ̄j ∈ Z≥0, let zλwµ be the monomial

∏2p
i=1 zλi

i z̄λ̄i
i

∏2q
i=1 wµi

i w̄µ̄i
i .

For 1 ≤ i ≤ p, and arbitrary zλwµ, and using (4.1)(a)(ii) with i = j, we
have that (

zi
∂

∂zp+i
− z̄p+i

∂
∂z̄i

)
z̄izp+iz

λwµ

=
(
(λp+i + 1)ziz̄i − (λ̄i + 1)zp+iz̄p+i

)
zλwµ ∈ N ′

11,

so that

(4.9 a) ziz̄iz
λwµ ≡ λ̄i+1

λp+i+1zp+iz̄p+iz
λwµ mod N ′

11.

Similarly, we have for 1 ≤ i ≤ q,

(4.9 b) wiw̄iz
λwµ ≡ µ̄i+1

µq+i+1wq+iw̄q+iz
λwµ mod N ′

11.

If λi = 0, then using (4.1)(a)(iii) with i = j we get(
zp+i

∂
∂zi
− z̄i

∂
∂z̄p+i

)
z̄p+iz

λwµ = −(λ̄p+i + 1)z̄iz
λwµ ∈ N ′

11.

This implies that z̄iz
λwµ ∈ N ′

11 whenever λi = 0. Analogous statements
hold for the cases λ̄i = 0, λp+i = 0, λ̄p+i = 0, and for 1 ≤ i ≤ 2q, µi = 0,
and µ̄i = 0. Applying (4.9) repeatedly if necessary yields

(4.10)
λi 6= λ̄i for some i ≤ 2p

or
µi 6= µ̄i for some i ≤ 2q

⇒ zλwµ ∈ N ′
11.
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Now suppose zλwµ satisfies

(4.11) λi = λ̄i for 1 ≤ i ≤ 2p and µi = µ̄i for 1 ≤ i ≤ 2q.

Let 1 ≤ i, j ≤ p. Then(
zi

∂
∂zj

− z̄j
∂

∂z̄i
− zp+j

∂
∂zp+i

+ z̄p+i
∂

∂z̄p+j

)
z̄izjz

λwµ

= (λj + 1)ziz̄iz
λwµ − (λ̄i + 1)zj z̄jz

λwµ −M1 + M2,

where M1 and M2 are in N ′
11 by (4.10), so we have that

(4.12 a) ziz̄iz
λwµ ≡ λ̄i+1

λj+1zj z̄jz
λwµ mod N ′

11.

Similarly,

(4.12 b) zp+iz̄p+iz
λwµ ≡ λ̄p+i+1

λp+j+1zp+j z̄p+jz
λwµ mod N ′

11,

and for 1 ≤ i, j ≤ q,

(4.12 c) wiw̄iz
λwµ ≡ µ̄i+1

µj+1wjw̄jz
λwµ mod N ′

11,

and

(4.12 d) wq+iw̄q+iz
λwµ ≡ µ̄q+i+1

µq+j+1wq+jw̄q+jz
λwµ mod N ′

11.

Now suppose again that zλwµ satisfies (4.11), and that 1 ≤ i ≤ p and
1 ≤ j ≤ q. Then(

ziwj − ∂2

∂z̄i∂w̄j
+ z̄p+iw̄q+j − ∂2

∂zp+i∂wq+j

)
z̄iw̄jz

λwµ

= ziz̄iwjw̄jz
λwµ − (λi + 1)(µj + 1)zλwµ + M3 −M4,

where M3 and M4 are in N ′
11 by (4.10). Consequently,

ziz̄iwjw̄jz
λwµ ≡ (λi + 1)(µj + 1)zλwµ mod N ′

11.(4.13a)

Similarly,

zp+iz̄p+iwq+jw̄q+jz
λwµ ≡ (λp+i + 1)(µq+j + 1)zλwµ mod N ′

11.(4.13b)

Notice that (4.12) and (4.13) also hold if zλwµ ∈ N ′
11.

Using (4.9), (4.10), (4.12), and (4.13), we see that every monomial in P
is either in N ′

11 or in one of the cosets listed in B. So we have that B spans
P/N ′

11. To see that the elements of B are linearly independent, we notice
that each is a weight vector for u(1)C ⊂ sl(2)C, of the following weights:

1̄ has weight 2(p− q),

Zk has weight 2(p− q) + 2k,(4.14)

W k has weight 2(p− q)− 2k.

Since all weights are distinct, the vectors must be linearly independent, and
the lemma is proved. �
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Remark. The proof of Lemma 3.5 also shows that all U(1)-types in P/N ′
11

have multiplicity one.

Theorem 4.5. Suppose p, q ≥ 1. The trivial (sp(p, q), Sp(p) × Sp(q))-
module 11 belongs to R(sp(p, q), Sp(p) × Sp(q), ω). Since O∗(4) is a quo-
tient of SU(2) × SL(2, R), we may regard the Howe quotient P/N ′

11 as an
(su(2)⊕sl(2), SU(2)×U(1))-module. This module is of the form 11⊗V . The
(sl(2), U(1))-module V has two irreducible submodules V1 and V2 spanned by
{Zk|k ≥ 2q} and {W k|k ≥ 2p} respectively, which are discrete series repre-
sentations with minimal U(1)-types 2p and −2q respectively. The quotient
of V by V1 ⊕ V2 is irreducible and of dimension 2(p + q) − 1. If σp,q is the
unique irreducible (sl(2), U(1))-module of dimension 2(p + q) − 1, then the
theta-lift of 11 is 11⊗ σp,q, and it is not unitarizable.

Remark. The situation in this case is again controlled by the situation
for the dual pair (U(2p, 2q), U(1, 1)) (see Theorem 3.6) which is in turn
controlled by the situation in (O(4p, 4q), SL(2, R)) (see Theorem 2.7(ii)).

Proof. Using the formulas of Lemma 4.1, it is easy to confirm that su(2)
(and hence SU(2)) acts trivially on P/N ′

11. Using (4.9), (4.12), and (4.13),
we compute the action of p′ = Span {E,F} ⊂ sl(2)C (see Lemma 4.1) on
the weight vectors in B:

E · 1̄ = 2pZ;

E · Zk =
k + 2p

k + 1
Zk+1;

E ·W k = k(2p− k)W k−1;

F · 1̄ = 2qW ;

F · Zk = k(2q − k)Zk−1;

F ·W k =
k + 2q

k + 1
W k+1.

Notice that E annihilates W 2p, and takes all weight vectors of U(1)-weight
2(p− q) + 2k to weight vectors of U(1)-weight 2(p− q) + 2k + 2. Similarly,
F annihilates Z2q and takes all weight vectors of U(1)-weight 2(p− q) + 2k
to weight vectors of U(1)-weight 2(p− q) + 2k − 2. The result follows. �
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