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Sub-Riemannian geometry is the geometry of non-integr-
able k-plane distributions D on n-manifolds M , 1 < k < n,
where D is equipped with a positive definite metric g. We clas-
sify the simply-connected contact sub-Riemannian symmetric
spaces (these belong to a class of sub-Riemannian manifolds
(M, D, g) with special symmetry properties).

0. Introduction.

Sub-Riemannian geometry is the geometry of non-integrable k-plane distri-
butions D on n-manifolds M , 1 < k < n, where D is equipped with a
positive definite metric g. See [20, 24, 25, 26, 14, 19] for an introduction
and details on the subject. Note that when k = n we recover Riemannian
geometry, but the sub-Riemannian setting includes new interesting phenom-
ena as described in the references above. Sub-Riemannian symmetric spaces
constitute a class of sub-Riemannian manifolds (M,D, g) with special sym-
metry properties. It is our hope that this class of examples will be valuable
in deciphering the features of sub-Riemannian geometry.

This paper completes the classification of simply-connected contact sub-
Riemannian symmetric spaces initiated in [24, 8, 9, 10] and provides a link
with the symplectic symmetric spaces defined and studied in [1, 2]. This
goal is achieved by analysing the involutive Lie algebra naturally attached to
the sub-Riemannian symmetric space. It turns out that, in the semisimple
case, the sub-Riemannian symmetric space canonically fibers over a base
manifold belonging to a subclass of symplectic symmetric spaces. On the
other hand, the non-semisimple case includes two cases: The manifold of
contact elements of Euclidean space (and its dual) and twisted products of
the Heisenberg group with the spaces of the semisimple case. See Table 1
for the full classification.

This work can also be viewed as a first step towards proving a de Rham
decomposition theorem for contact sub-Riemannian manifolds. The relation
with the holonomy of sub-Riemannian manifolds investigated in [10] will
certainly provide the clue for such a result.

Finally, it is worth mentioning here a few other related problems:
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a) The non-simply-connected case, i.e. the problem of studying discrete
quotients of contact sub-Riemannian symmetric spaces.

b) The non-contact sub-Riemannian symmetric spaces and their singular
geodesics (see [20]).

c) Realizing the underlying CR structure of a sub-Riemannian symmetric
space as the boundary of a complex manifold.

The last two authors would like to thank FAPESP and CNPq for partial
support during the development of this work. Part of this work was com-
pleted when the first and last authors were visiting U. C. Berkeley, for which
they thank Prof. J. A. Wolf for his hospitality, and when the second author
was visiting U. Paris-Sud, Orsay, for which he thanks Prof. P. Pansu for his
hospitality.

1. Sub-Riemannian symmetric spaces.

A sub-Riemannian manifold is a triple (M,D, g) where M is an oriented
smooth manifold, D is an oriented smooth distribution on M and g is a
smoothly varying positive definite symmetric bilinear form defined on D.

In this paper we shall consider only the case in which D is a contact
distribution. That means that D is a codimension one distribution on M
and that the Levi form L : D × D → TM/D, defined by L(X,Y ) = [X,Y ]
mod D, is non-degenerate as a skew-symmetric bilinear form on D. Let
dimM = 2n + 1 and let dV be the volume form on D. The (normalized)
contact form is the 1-form θ on M such that

ker θ = D,
(dθ|D)n = n! 2n dV.

Since dθ has maximal rank, there is a unique vector field ξ on M such
that

θ(ξ) = 1,
ιξdθ = 0.

It is called the characteristic vector field. Note that the sub-Riemannian
metric g has a natural extension to a Riemannian metric on M by setting ξ
to be orthonormal to D.

A local isometry between two sub-Riemannian manifolds (M,D, g) and
(M ′,D′, g′) is a diffeomorphism between open sets ψ : U ⊂ M → U ′ ⊂ M ′

such that ψ∗(D) = D′ and ψ∗g′ = g. In the contact case it follows that
ψ∗θ′ = ±θ and ψ∗ξ = ±ξ′ (and therefore ψ will be a local Riemannian
isometry relative to the extended Riemannian metrics on M and M ′). If ψ
is globally defined on M to M ′, we say simply that ψ is an isometry.

A canonical connection analogous to the Levi-Cività connection in the
case of Riemannian geometry is uniquely defined on M . This connection is
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defined for a contact sub-Riemannian manifold of arbitrary (odd) dimension;
in the 3-dimensional case it is the same as the pseudo-Hermitian connection
of Webster ([27]). Let TM and D denote respectively the set of sections of
TM and of D.

Theorem 1.1 ([8, 11, 12]). There exists a unique connection ∇ : TM →
TM∗⊗ TM , called the adapted connection, and a unique symmetric tensor
τ : D → D, called the sub-torsion, with the following properties (T is the
torsion tensor of the connection):

a. ∇U : D → D;
b. ∇ξ = 0;
c. ∇g = 0;
d. T (X,Y ) = dθ(X,Y )ξ,
T (ξ,X) = τ(X);

for X, Y ∈ D, U ∈ TM .

Observe that an isometry ψ : M → M ′ is affine with respect to the
adapted connection, that is, ∇′

ψ∗X
ψ∗Y = ψ∗(∇XY ) for X, Y ∈ TM .

If (M,D, g) is a sub-Riemannian manifold, it is possible to define a metric
space structure on M , simply by taking the distance between two points
to be the infimum of the g-lengths of absolutely continuous curves which
are tangent to D whenever they are differentiable, joining the two points.
By Chow’s theorem (see one of the surveys cited in the Introduction), the
infimum is finite, and defines a bona fide metric distance d on M . A sub-
Riemannian geodesic (as opposed to the affine ∇-geodesics) is defined to be
a local minimizer with respect to d. The contact assumption precludes the
appearence of “abnormal” geodesics, so that all geodesics are smooth and, in
fact, projections of the trajectories of the Hamiltonian vector field in T ∗M
given by the Legendre transform of the inner product g on D (see [20]).

In the following, we want to relate three natural notions of completeness
for a sub-Riemannian manifold. The following lemma is due to Daniel V.
Tausk.

Lemma 1.1. If M is any sub-Riemannian manifold and ∇ is its adapted
connection, then any two points in M can be joined by a broken horizontal
(i.e. everywhere tangent to D) ∇-geodesic.

Proof. In fact, given p, q ∈ M , define an equivalence relation p ∼ q if and
only if they can be joined by such a curve. We check the equivalence classes
are open. Fix p ∈M and let q ∈M be in its equivalence class. It is easy to
construct a local horizontal frame field near q such that the integral curves
of any vector field in that frame are geodesics. By Chow’s theorem, every
point sufficiently close to q can be joined to q by a finite sequence of segments
of integral curves of vector fields in that frame. It follows that the class of
p is open. �
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Theorem 1.2. Let (M,D, g) be a sub-Riemannian manifold. Denote with
∇ the adapted connection and with ∇̄ the Levi-Cività connection associated
to the canonical extension of g to a Riemannian metric ḡ on M . Then the
following statements are equivalent:

a. M is ∇-complete;
b. M is ∇̄-complete;
c. M is sR-complete, that is, every sub-Riemannian geodesic in M can

be extended indefinitely.

Proof. Let d̄ be the metric distance induced by ḡ on M . Then the identity
map (M, d̄) → (M,d) is C1/2-Holder and its inverse is Lipschitz (see [14]).
It follows that (M, d̄) is a complete metric space if and only if (M,d) is
a complete metric space. We apply the Höpf-Rinow theorem and its sub-
Riemannian version (see [24]) to get the equivalence of b. with c.

Now assume b. is true and a. is false and let γ be a ∇-geodesic defined
on a maximal positive time interval [0, t) with t < +∞. Since ∇g = ∇ḡ = 0,
we have that ḡ(γ′, γ′)1/2 is constant. Take a sequence tn ↑ t. Then {γ(tn)}
is a d̄-Cauchy sequence, hence, convergent to a point q ∈ M . If we define
γ(t) = q then γ can be extended beyond t, a contradiction.

Finally, we show that a. implies b. and c. Fix p ∈ M . For each integer
n ≥ 1, define Kn to be the set of all points in M that can be joined to p by
a sequence of at most n horizontal ∇-geodesic segments, each of which of
g-length at most n. Then (Kn) is an increasing sequence of compact subsets
of M (because the ∇-exponential map is continuous whichever metric we
choose to use in M , d or d̄) which exhausts M (because of Lemma 1.1). �

The definition of sub-symmetric space was given by Strichartz in [24].
Since we have restricted our investigation to contact distributions, we will
use a simplified definition. A sub-Riemannian [locally] symmetric space (or
sub-symmetric space, for short) is a sub-Riemannian manifold (M,D, g) such
that for every point x0 ∈ M there is an isometry [resp., a local isometry]
ψ, called the sub-symmetry at x0, with ψ(x0) = x0 and ψ∗|Dx0

= −1 (in
the contact case it follows that ψ∗(ξx0) = ξx0 , where ξ is the characteristic
field).

It is easy to see that the sub-symmetry at a point x0 must be unique;
in fact, it is given by expx0

(X) 7→ expx0
(ψ∗x0X), where exp is the affine

exponential map associated to the adapted connection. Observe that the
sub-symmetry at x0 maps a geodesic passing through x0 to itself if and only
if the geodesic is horizontal.

Remark 1.1. In [8, 9, 10] we required homogeneity in the definition of
sub-symmentric spaces. This in fact follows from the existence of the sub-
symmetry at all points, as we will see now.
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Theorem 1.3. Let (M,D, g) be a sub-Riemannian manifold and let ∇ be
its adapted connection. Then:

a. M is locally sub-symmetric if and only if ∇DR = ∇DT = 0;
b. if M is locally sub-symmetric, then it is locally homogeneous;
c. if M is locally sub-symmetric, ∇-complete and simply-connected, then

it is (globally) sub-symmetric;
d. if M is (globally) sub-symmetric, then it is homogeneous.

Proof. a. This was proved in [8].
b. Let p, p′ ∈ M and take normal neighborhoods U = expp(V ), U ′ =

expp′(V ′) relative to ∇. Choose any piecewise smooth horizontal curve con-
necting p and p′ and let φ : TpM → Tp′M be the parallel transport along
this curve. Since M is locally sub-symmetric, we have ∇DR = ∇DT = 0,
so φ sends Rp to Rp′ and Tp to Tp′ . Given z ∈ U , write z = expp v for
a unique v ∈ TpM and define φz : TzM → Tz′M , z′ = expp′ φ(v), to be
φz = τφ(v)φτ

−1
v , where τv, τφ(v) are parallel transport along t 7→ expp tv,

t 7→ expp′ tφ(v), resp. (shrink U so that expp′ φ(V ) ⊂ U ′). Since ∇DR =
∇DT = 0, R and T satisfy a system of ODE’s along geodesic rays starting
from p, p′ which have unique solutions for given initial conditions (see [8]).
Therefore φz sends Rz to Rz′ and Tz to Tz′ . By Cartan’s result (see [7],
p. 238, or [28]), f = expp′ φ exp−1

p : U → U ′ is an affine diffeomorphism, it
is the unique one that induces φ on TpM , and f∗z = φz for z ∈ U . Hence f is
a local (sub-Riemannian) isometry at p with f(p) = p′ (see Theorem 1.7.18
in [28]).

c. Let p ∈ M and consider the sub-symmetry ψ : U → U at p. We must
show that ψ is globally defined. Recall ψ(p) = p and ψ∗p|Dp

= −1. Given
a finite sequence V = {v1, . . . , vr} ⊂ TpM , let γV denote the corresponding
broken geodesic in M obtained by following v1 for time 1, then following (the
parallel transport to expp(v1) of) v2 for time 1, etc., and let τV be parallel
transport along γV from p to γV (r). Let φV = τψ∗V ψ∗pτ

−1
V . We have that

ψ∗p sends Rp to Rp and Tp to Tp, and since∇DR = ∇DT = 0, R and T must
satisfy a system of ODE’s along geodesic rays which has unique solutions
for given initial conditions. Hence, φV sends RγV (r) to Rγψ∗V (r) and TγV (r)

to Tγψ∗V (r). Therefore f : M → M defined by f(γV (r)) = γψ∗V (r) is a
well-defined affine diffeomorphism, it is the unique one which induces ψ∗ on
TpM and the φV are the tangent maps of f . Clearly, f is an extension of ψ
(see Theorem 1.9.1 in [28]).

d. If γ(t) = expp tv for p ∈ M , v ∈ TpM , is a horizontal geodesic,
i.e. v ∈ Dp, then the sub-symmetry at γ(r/2) interchanges γ(0) and γ(r).
Therefore, it is enough to show that any two points in M can be joined by
a broken horizontal geodesic. But this is the contents of Lemma 1.1. �
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2. Involutive Lie algebras.

An involutive Lie algebra (IL-algebra, for short) is a pair (g, σ) where g is a
(real) Lie algebra and σ is an involutive automorphism of g. Then there is
a canonical decomposition g = h + p into the ±1-eigenspaces of σ. We will
always assume that [p, p] = h.

An orthogonal IL-algebra (OIL-algebra, for short) is a triple (g, σ, B) where
(g, σ) is an IL-algebra such that h is effective on p and B is an adh-invariant
inner product on p.

A contact IL-algebra is a triple (g, σ, k) where (g, σ) is an IL-algebra, k is
a codimension one compact subalgebra of h which has an effective action
on p, and the skew-symmetric bilinear form Ω : p × p → h/k defined by
Ω(X,Y ) = [X,Y ] mod k is non-degenerate.

A sub-orthogonal IL-algebra (sub-OIL algebra, for short) is a quadruple
(g, σ, k, B) where (g, σ, k) is a contact IL-algebra and B is an adk-invariant
inner product on p.

A symplectic IL-algebra is a triple (g, σ,Ω) where (g, σ) is an IL-algebra
such that h is effective on p and Ω is an adh-invariant, non-degenerate skew-
symmetric bilinear form on p (remark that in this case, the extension of Ω
to g by 0 on h is a Chevalley 2-cocycle for the trivial representation of g on
R).

A sub-symplectic IL-algebra is a symplectic IL-algebra (g, σ,Ω) such that
Ω = dθ for some θ ∈ g∗ and ker θ ∩ h is a compact subalgebra (we denote
the Chevalley coboundary by d).

An OIL-algebra is the linear object naturally associated to a Riemannian
symmetric space, see for instance [28, 17, 15]. In much the same way, a
sub-OIL algebra is the linearization of the sub-Riemannian symmetric space
structure (see [8, 9, 10]) and a symplectic IL-algebra is the linearization
of the symplectic symmetric space structure (see [1, 2, 4]). Next we recall
some facts about sub-OIL algebras and later we will explain the relation
between contact IL-algebras and sub-symplectic IL-algebras.

Lemma 2.1 ([8]). Let (g, σ, k) be a contact IL-algebra. Then k is an ideal
of h and we can write h = k + 〈ξ〉 where ξ is in the center of h. Moreover,
the restriction of the Killling form β of g to k is negative definite.

Let (g, σ, k, B) be a sub-OIL algebra and consider θ ∈ g∗ such that θ(k +
p) = 0 and θ(ξ) = 1. Then dθ is non-degenerate on p and θ (and ξ) can
be normalized, up to a sign, so that (dθ|p×p)n is a volume form on p (the
ambiguity in the sign can be fixed by choosing orientations for g/k and p).
Now consider the operator −adξ : p → p. Its symmetric part is called the
sub-torsion τ : p → p. We say that the sub-OIL algebra is subtorsionless if
τ = 0. Note that, in this case, B is adh-invariant. More generally, we have
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the formula

−2B(τ(X), Y ) = B([ξ,X], Y ) +B(X, [ξ, Y ]),

for X, Y ∈ p.

Proposition 2.1 ([8]). Let (g, σ, B) be a simple Hermitean OIL-algebra.
Then (g, σ, [h, h], B) is a subtorsionless sub-OIL algebra.

3. The classification of sub-OIL algebras.

If (g, σ, k, B) is a sub OIL-algebra, we write g = h + p under σ, h = k + 〈ξ〉
with [k, ξ] = 0 and ξ normalized by B (see observation after Lemma 2.1) and
set dim p = 2n. Denote with β the Killing form of g and with Ω : p×p → h/k
the canonical symplectic form. We also have that [p, p] = h.

3.1. Semisimple case.
Throughout this section we assume that g is a semisimple Lie algebra.

The classification in the simple case is contained in [9, 8, 10]:

Theorem 3.1 ([9, 8, 10]). Let (g, σ, k, B) be a simple sub-OIL algebra.
Then, either adh is irreducible on p and (g, σ, k) is the underlying contact
IL-algebra of the sub-OIL algebra canonically associated to a simple Her-
mitean OIL-algebra (see Proposition 2.1) (recall the six compact and six
non-compact families of simple Hermitean OIL-algebras; here we list the
pairs (g, h):

(su(p+ q), s(u(p) + u(q))) (su(p, q), s(u(p) + u(q)))
(sp(n), u(n)) (sp(n,R), u(n))
(so(2n), u(n)) (so∗(2n), u(n))
(e6(−78), so(10) + so(2)) (e6(−14), so(10) + so(2))
(e7(−133), e6 + so(2)) (e7(−25), e6 + so(2))
(so(n+ 2), so(n) + so(2)), n 6= 2 (so(n, 2), so(n) + so(2)), n 6= 2)

or adh is not irreducible on p and (g, h) = (so(1, n + 1), so(n) + R). In
all but the cases g = so(n + 2), so(1, n + 1) and so(n, 2), there is only one
adk-invariant inner product B on p, up to homothety, and the correspond-
ing sub-OIL algebra is subtorsionless. In the other three cases there is a two
parameter family of B’s. Moreover, the so(1, n + 1) case is never subtor-
sionless.

Proposition 3.1. There exists a canonical bijection between the set of iso-
morphism classes of semisimple contact IL-algebras and the set of homothety
classes of semisimple sub-symplectic IL-algebras.

Proof. Let (g, σ, k) be a semisimple contact IL-algebra. Choose an identifi-
cation ι1 : h/k → R. This gives rise to a symplectic form Ω1 on p which
is adh-invariant so that (g, σ,Ω1) is a sub-symplectic IL-algebra. Observe
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that there exists a unique element ξ ∈ h such that dβ(ξ, ·) = Ω1 (since
H1(g) = H2(g) = 0). Also, β(ξ, k) = 0. In particular, since ξ does not
belong to k, the restriction of β to k× k is non-degenerate and 〈ξ〉 = k⊥β ∩ h.
This shows that the subspace 〈ξ〉 is independent of the identification ι1 and
that another choice ι2 gives rise to a cocycle Ω2 which is proportional to Ω1.
The remainder is immediate. �

According to the above proposition, we shall always choose the direction
of ξ to be the β-orthogonal complement to k in h.

Denote by g → Z2(g) : X → X the map defined by the formulaX(Y, Z) =
β(X, [Y, Z]) and denote by Z2(g)

ρ→ Λ2(p) the restriction map to p× p. An
element ξ of g is said admissible if its centralizer Cg(ξ) in g is equal to h.
Denote by Adm(g, σ) the set of admissible elements.

Proposition 3.2. The mapping Adm(g, σ) → Λ2(p) : ξ → ρ(ξ) defines a
bijection between Adm(g, σ) and the set of adh-invariant symplectic forms
on p. It follows that if t = (g, σ,Ω) is a semisimple symplectic IL-algebra
and if g = ⊕ri=1gi denotes the canonical decomposition of g into a direct sum
of simple ideals, then:

a. σ(gi) = gi for all i;
b. setting ti = (gi, σ|gi ,Ω|p∩gi×p∩gi), one has the decomposition into a

direct sum of symplectic IL-algebras: t = ⊕ri=1ti.

Proof. Denote by Λ the set of adh-invariant 2-forms on p, and by Λ0 the
symplectic ones. Using Jacobi’s identity, the invariance of β and the def-
inition of Adm(g, σ), one checks that ρ(Adm(g, σ)) ⊂ Λ. Since (g, σ) is
semisimple, one has {X ∈ p| [X, h] = 0} = 0 hence Adm(g, σ) ⊂ Z(h). The
invariance of β, the non degeneracy of its restriction to p × p and the defi-
nition of Adm(g, σ) yield ρ(Adm(g, σ)) ⊂ Λ0. Since the restriction of β to
h × h is non-degenerate, one checks that the map h → Λ2(p) : h → ρ(h) is
injective; therefore Adm(g, σ) injects into Λ0. Using an argument identical
to the one used in the proof of Proposition 3.1, one observes that Ω = ρ(ξ)
where ξ ∈ Z(h); using the non-degeneracy of Ω|p×p one gets Cg(ξ) = h

i.e. the map is onto Λ0. Finally, assume σ(gi) 6= gi for some i. Define
ĝ = gi⊕σ(gi) (see [17]), σ̂ = σ|ĝ, p̂ = p∩ ĝ and p = p∩ ĝ⊥β . Since [p̂, p] = 0,
ρ(ξ)|p̂×p̂ = Ω|p̂×p̂ is non-degenerate; but Adm(ĝ, σ̂) ⊂ Z(h) ∩ ĝ = 0, a
contradiction. �

As a corollary of the proof, one has:

Corollary 3.1. Let (g, σ,Ω) be a semisimple symplectic IL-algebra. Then

Adm(g, σ) = Z(h) \ ∪ri=1Z(hi)
⊥β ,

where hi = gi ∩ h.
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Remark 3.1. a. Corollary 3.1 tells us that when (g, σ,Ω) is a semisimple
symplectic IL-algebra, Adm(g, σ) is an open subset of Z(h) whose con-
nected components are described as follows. For all i, fix an element
ξi ∈ Z(hi)\{0}. Choose a subset E ⊂ {1, ..., r} and define ΓE = {X ∈
Z(h) |β(X, ξj) > 0 if j ∈ E and β(X, ξl) < 0 if l ∈ {1, ..., r} \ E}.
Then, clearly, ΓE is a connected component of Adm(g, σ) and every
connected component is obtained this way; in particular there are 2r

such connected components.
b. One can show that, if gi is absolutely simple (i.e. gci is simple), one has

dimZ(hi) = 1 (see [18, 3]).

A symplectic IL-algebra t = (g, σ,Ω) is said to be of Hermitean type if
there exists a Ω-compatible adh-invariant complex structure J on p such
that the symmetric bilinear form BJ(X,Y ) = Ω(JX, Y ) on p is positive
definite (in particular, h must be a compact Lie algebra). An IL-algebra
(g, σ) is said to be of Hermitean type if it is the underlying IL-algebra of
a symplectic IL-algebra of Hermitean type. The IL-algebras of Hermitean
type are the IL-algebras associated to the Hermitean Riemannian symmetric
spaces ([28, 15]). These Hermitean IL-algebras are classified in terms of root
systems by the Borel-de Siebenthal-Murakami theorem ([6, 22]); indeed,
they are direct sums of simple IL-algebras (g, σ) where, either σ is a Cartan
involution of the non-compact g such that the associated maximal compact
subalgebra admits a non-trivial center, or (g, σ) is the compact dual to such
an algebra; these simple IL-algebras are the six pairs listed in Theorem 3.1.

Lemma 3.1. Let t = (g, σ,Ω) be a semisimple symplectic IL-algebra of the
Hermitean type. Define t− = (g, σ,−Ω). Then, t and t− are isomorphic
symplectic IL-algebras.

Proof. It is sufficient to prove the lemma for g simple (cf. Proposition 3.2)
and non-compact (use the duality “compact/non-compact” for irreducible
Hermitean symmetric spaces). In this case, σ is a Cartan involution of g
and there exists a Cartan subalgebra t of g contained in h. Let gu = h⊕ i p
the compact real form of the complexified Lie algebra gc obtained from
σ and denote by tc the complexified Cartan subalgebra. One knows that
dim(Z(h)) = 1 and that Ω = dξ where ξ ∈ Z(h). We may assume that
t was chosen so that ξ ∈ t. In order to prove the lemma, it is sufficient
to exhibit an automophism ϕ of g such that ϕ(ξ) = −ξ. One knows that
the “rotation” ρ = −1 of tc extends to an automorphism θρ of gc which
leaves gu invariant (see [28], (8.9.11), p. 267 or [13, 3]). Therefore θρ leaves
h invariant (because h is the centralizer of ξ in gu); by orthogonality with
respect to the Killing form, pu = i p is θρ-invariant, too. The restriction of
θρ to g provides the desired element ϕ. �
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Lemma 3.2. Let t = (g, σ,Ω) be a semisimple sub-symplectic IL-algebra. If
h is non-compact, then g is simple (and therefore g = so(1, n+ 1), cf. The-
orem 3.1).

Proof. Let t = ⊕ri=1ti be the decomposition into simple factors. One first
observes that each triple ti = (gi, σi,Ωi) is a sub-symplectic IL-algebra.
For all i, one has Ωi = dβ(ξi, ·) with ξi ∈ Z(hi) and the β-orthogonal
decomposition hi = 〈ξi〉 ⊕ ki, where ki is a compact subalgebra of h as
ti is sub-symplectic; also, [ξi, ξj ] = 0 for all i, j. Set I = {j ∈ {1, ..., r} :
hi is not compact}. Then k̃ =

⊕
j∈I kj⊕

⊕
l∈{1,...,r}\I hl is a maximal compact

subalgebra of h. Indeed, let k̄ be a compact subalgebra of h containing k̃.
The vector space V =

⊕
j∈I 〈ξj〉 is clearly an Abelian subalgebra of h which

has a non-compact action on p and such that h = k̃ ⊕ V . Now, choose
k̄ ∈ k̄ and write k̄ = k̃ + v under the above decompostion. The element
k̄ − k̃ belongs to k̄; in particular v is compact, hence null. So k̃ is maximal
compact and is therefore conjugated to k under an inner automorphism of h

(see [21]). But codhk̃ = dim V = ]I; since codhk = 1, one can suppose hi to
be compact for all i ≥ 2 and h1 non-compact. Since Inn(h) ⊂ Aut(t), one
can also suppose k = k̃ = [h1, h1]

⊕
⊕ri=2hi. Now, by non degeneracy of Ω,

we have g = g1. �

Let (g, σ) be a semisimple IL-algebra of Hermitean type. We denote by
π : Z(h) → P (Z(h)) the projectivization map onto the projective space
P (Z(h)). If (g, σ, k) is a contact IL-algebra, we say that k determines a
contact structure on (g, σ). Two contact structures on (g, σ) are equivalent
if the associated contact IL-algebras are isomorphic.

Theorem 3.2. a. Under the bijection described in Proposition 3.2, the
set of isomorphism classes of contact semisimple non-simple IL-alge-
bras corresponds to the set of homothety classes of semisimple non-
simple sub-symplectic IL-algebras of Hermitean type.

b. Let (g, σ) be a semisimple IL-algebra of Hermitean type. Choose a
connected component Γ of Adm(g, σ). Then the set of equivalence
classes of contact structures on (g, σ) is parametrized by π(Γ).

Proof. Item a. follows from Lemma 3.2 and from the fact that if t = (g, σ,Ω)
is a semisimple symplectic IL-algebra such that h is compact then t is of
Hermitean type. In order to prove this fact, one can assume that g is simple
and non-compact. In this case σ is a Cartan involution and Z(h) is one-
dimensional. For all Z ∈ Z(h) \ {0}, one has ker(adZ|p) = 0; indeed, g

being simple, Corollary 3.1 tell us that Adm(g, σ) = Z(h) \ {0}. Therefore,
ker(adZ|p) 6= 0 would contradict the non degeneracy of ρ(Z). Now, by
compactness, one gets an element Z0 ∈ Z(h) \ {0} such that J = adZ0 |p
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defines the desired complex structure. Item b. follows from Propositions 3.1
and 3.2, Lemma 3.1 and the fact that h is compact. �

It remains to analyse the sub-Riemannian metrics.

Theorem 3.3. Let (g, σ, k, B) be a semisimple non-simple sub-OIL algebra.
If dim p > 4 then the subtorsion τ vanishes. In particular, (g, σ, B) is a Her-
mitean OIL-algebra and the set of equivalence classes of contact structures
on (g, σ) is described in Theorem 3.2.

Proof. Let ξ be an element of Z(h) associated to k. According to Corol-
lary 3.1, one has ξ =

∑r
i=1 ξi where ξi ∈ Z(hi) \ {0}. Defining, for all

k = 1, . . . , r, ak = −β(ξ(k), ξ(k))/β(ξk, ξk) where ξ(k) =
∑

i6=k ξi, one checks
that ηk = ξ(k) + akξk belongs to k as β(ηk, ξ) = 0. For all i, j; i 6= j, one
has adξ|pi = adηj |pi

. This implies, since r ≥ 2, that Bi = B|pi×pi is adh-
invariant (note that this is true even if dim p = 4). The condition r ≥ 3
implies that the subtorsion τ vanishes; indeed, choose i 6= k 6= j, then for
Xi ∈ pi, Xj ∈ pj we have

−2B(τ(Xi), Xj) = B([ξ,Xi], Xj) +B(Xi, [ξ,Xj ])
= B([ηk, Xi], Xj) +B(Xi, [ηk, Xj ])
= 0.

Therefore, B is adh-invariant and the proposition is proved in the case r ≥ 3.
Assume in the following that r = 2 and dim p > 4.

Without loss of generality, one can suppose dim p1 ≥ 4. Therefore (g1,
σ|g1

) is a simple IL-algebra of Hermitean type such that k1 6= 0 (indeed, if
k1 = 0 then g1 cannot be simple, see [8], Theorem 4.1). Let V = [k1, p1] ⊂ p1.
Since ξ1 is central in h1, V is adh1

-invariant. Then V = 0 or V = p1, because
adh1

is irreducible on p1. But k1 is effective on p1, which rules out the former
possibility. Therefore, [k1, p1] = p1 and one has B(p1, p2) = B([k1, p1] , p2) =
B(p1, [k1, p2]) = 0 which implies B is adh-invariant (since B1 and B2 are
already adh-invariant). �

Theorem 3.4. Let (g, σ, k) be a semisimple non-simple contact IL-algebra
such that dim p = 4. Then, r = 2 and gci has the type A1 (i = 1, 2); in
particular, h = u(1)⊕ u(1). Moreover, every adk-invariant sub-Riemannian
structure B has a vanishing associated subtorsion τB if and only if k =
〈Z1 ⊕ Z2〉 with Z1 6= Z2; Z1, Z2 ∈ u(1) \ {0} and in this case one has
a one-parameter family of sub-Riemannian metrics, up tp homothety. In
the case k = 〈Z ⊕ Z〉; Z ∈ u(1) \ {0}, one has a three-parameter family
of adk- invariant sub-Riemannian structures (one-parameter with vanishing
associated subtorsion).

Proof. By direct computation. �
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3.2. Non-semisimple case.
Throughout this section we assume that (g, σ, k, B) is a non-semisimple

sub-OIL algebra.

Theorem 3.5. Let n ≥ 2. If g is a solvable Lie algebra, then k = 0 and
(g, σ, 0, B) is the Heisenberg sub-OIL algebra.

Proof. We have k = [p, p] ∩ k, β(g, [g, g]) = 0 and β is negative definite on k.
Therefore k = 0. Now Theorem 4.1 in [8] implies that g is the Heisenberg
algebra. �

Let r be the radical of g. Because of Theorem 3.5, we may assume that
0 6= r 6= g. If s 6= 0 is an adk-, σ- invariant Levi subalgebra of g (cf. [17]),
write hr = h ∩ r, hs = h ∩ s, pr = p ∩ r and ps = p ∩ s. Then r = hr + pr
and s = hs + ps and g = r + s semidirect sum of IL-algebras. Note also that
r 6= 0 implies that pr 6= 0.

Lemma 3.3. We have k ∩ [p, pr] = 0.

Proof. This follows since β is negative definite on k, β(r, [g, g]) = 0 and
[p, pr] ⊂ r ∩ [g, g]. �

Lemma 3.4. We have [p, pr] = hr and [ps, ps] = hs. In particular, dim hr =
1 and we may take hr = 〈ξ〉.

Proof. Use the facts that r is an ideal, s is a subalgebra and [p, p] = h
to conclude that [p, pr] = hr and [ps, ps] = hs; since Ω is exact and non-
degenerated on p, this implies hr 6= 0. Now hr 6⊂ k (Lemma 3.3) and
[k, hr] ⊂ k ∩ hr = 0 (k and hr are ideals in h), so hr is complementary to k in
h and in the centralizer of k. �

Lemma 3.5. If hs 6⊂ k, then [ξ, ps] = 0.

Proof. Suppose W = ξ+Z ∈ hs, with Z ∈ k. Then [ξ, ps] ⊂ ps ∩ pr = 0. �

Lemma 3.6. If [ξ, ps] = 0, then [hs, pr] = 0.

Proof. We have [hs, pr] = [[ps, ps], pr] ⊂ [ps, [ps, pr]] ⊂ [ps, ξ] = 0. �

Lemma 3.7. If [hs, pr] = 0, then [r, s] = 0.

Proof. We have:
a. [hr, hs] = 0 because hr = 〈ξ〉 is in the center of h.
b. [pr, ps] = 0 because

[pr, ps] = [pr, [hs, ps]] = [[pr, hs], ps] + [[pr, ps], hs] ⊂ [hr, hs] = 0.

c. [hr, ps] = 0 because

[hr, ps] = [hr, [hs, ps]] = [[hr, hs], ps] + [[hr, ps], hs] ⊂ [pr, hs] = 0.

�
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3.2.1. pr is symplectic.
Throughout this section, we assume that the restriction of Ω to pr is a

symplectic form.

Lemma 3.8 ([1, 2]). There exists one and only one adk-, σ-invariant Levi
subalgebra s of g such that g decomposes as a direct sum of ideals r + s.
Moreover, (r, σ|r, 0) is the Heisenberg contact IL-algebra and B(pr, ps) = 0.

Proof. Define p1 to be the symplectic orthogonal of pr in p. Then p = pr+p1,
adh-invariant decomposition, and [hr, p1] ⊂ p1 ∩ pr = 0. Now define h1 =
[p1, p1]. We have [h1, pr] = 0 because

[h1, pr] ⊂ [[p1, pr], p1] ⊂ [hr, p1] = 0.

Next we show that r with the induced structure of contact IL-algebra is
the Heisenberg contact IL-algebra. In fact, if dim r ≥ 5 this follows from
Theorem 3.5. If dim r = 3, this follows from the fact that r is subtorsionless
with respect to B|pr×pr : Since p1 is symplectic, h1 6⊂ k and then there is
W = ξ + Z ∈ h1 with Z ∈ k; now adξ|pr = −adZ|pr .

The above considerations imply that [ξ, p] = 0. If s is any adk-, σ−invari-
ant Levi subalgebra of g, then Lemmas 3.6 and 3.7 imply that [r, s] = 0.
Moreover, Ω(ps, pr) = Ω([hs, ps], pr) = Ω(ps, [hs, pr]) = 0, hence ps = p1 and
a similar argument yields that B(ps, pr) = 0. �

It follows that:

Theorem 3.6. Let (g, σ, k, B) be a sub-OIL algebra such that g is not semi-
simple nor solvable and pr is a Ω-symplectic space. Then g = r+s direct sum
of IL-algebras where (r, σ|r, 0, B|pr×pr) is the Heisenberg sub-OIL algebra,
(s, σ|s, k ∩ s, B|ps×ps) is a subtorsionless, semisimple sub-OIL algebra and
k = k ∩ s + 〈ξ − ξs〉 where 〈ξs〉 = (k ∩ s)⊥β ∩ hs and ξ, ξs are normalized by
B, B|ps×ps. The sub-OIL algebra (g, σ, k, B) is subtorsionless.

3.2.2. pr is not symplectic.
Throughout this section, we assume that the restriction of Ω to pr is not

a symplectic form.
If s is any Levi subalgebra of g, then [r, s] 6= 0. By Lemmas 3.5, 3.6

and 3.7, it follows that hs ⊂ k. Therefore, hs = k and ps is isotropic
(i.e. Ω(ps, ps) = 0). Also, q = {Y ∈ pr : Ω(Y, pr) = 0} 6= 0.

Lemma 3.9. We have [ξ, pr] = 0 and [pr, pr] = 0. Therefore, pr and ps are
Lagrangian (i.e. maximally isotropic) and r is Abelian.

Proof. Choose Y ∈ q and X ∈ ps such that [X,Y ] = ξ (we have [q, ps] 6= 0
by definition of q and non-degeneracy of Ω). By definition of q, we get
[q, pr] = 0 and, since

Ω([ξ, q], p) = Ω(q, [ξ, p]) = Ω(q, pr) = 0,
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we have [ξ, q] = 0. Now

[ξ, pr] = [[pr, X], Y ] + [[Y, pr], X] ⊂ [[pr, q], ps] + [ξ, q] = 0,

and [[pr, pr], p] ⊂ [[pr, p], pr] = [ξ, pr] = 0. We conclude that [pr, pr] = 0
because h is effective on p by Lemmas 3.6 and 3.7.

Now pr and ps are adk-equivariantly isomorphic under Ω. In particular,
we have that dim pr = dim ps = n ≥ 2. �

Lemma 3.10. We have adξ : ps → pr is an (adk-equivariant) isomorphism.

Proof. In fact, define p̄s to be the centralizer of ξ in ps. Jacobi implies that
this is an adhs

-invariant subspace; the complete reducibility of hs = k on p

and [s, s] = s then yield [hs, p̄s] = p̄s. Therefore

Ω([hs, p̄s], pr) = Ω(p̄s, [hs, pr])
= Ω(p̄s, [ps, [ps, pr]])
= Ω(p̄s, [ps, ξ])
= Ω([ξ, p̄s], ps)
= 0.

Thus, p̄s = [hs, p̄s] = 0. �

Now s = k + ps is a semisimple OIL-algebra, and the calculation in [10]
shows that it is a constant curvature simple OIL-algebra. Thus, g = so(n+
1) ./ Rn+1 or g = so(1, n) ./ Rn+1 and k = so(n), as in [10]. Therefore,

Theorem 3.7. Let (g, σ, k, B) be a sub-OIL algebra such that g is neither
semisimple nor solvable and pr is not a Ω-symplectic space. Then the as-
sociated sub-Riemannian symmetric space is either the manifold of con-
tact elements of Euclidean space SO(n + 1) ./ Rn+1/SO(n) or its dual
SO(1, n) ./ Rn+1/SO(n) (see [10]).

Theorems 3.1, 3.3, 3.4, 3.5, 3.6 and 3.7 put together complete the classi-
fication of simply-connected sub-Riemannian symmetric spaces.

4. CR manifolds.

Let M be a smooth manifold equipped with a contact distribution D and
suppose that a complex structure J is defined on D, that is, J is a smooth
bundle endomorphism D → D such that J2

x = −1 for all x ∈M . Decompose
the complexification Dc = D1,0⊕D0,1 into the ±ı-eigenbundles of J . We say
that (M,D, J) is a Cauchy-Riemann manifold (or CR-manifold, for short)
if the (real) distribution D1,0 is involutive. It is well known (see [16]) that
a sufficient condition for that is that for all X, Y ∈ D we have:

J [JX, Y ]− J [X, JY ] ∈ D(1)
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and the Nijenhuis tensor

N(X,Y ) = [JX, JY ]− [X,Y ]− J [JX, Y ]− J [X, JY ](2)

vanishes.
Now let (M,D, g) be a sub-Riemannian manifold of contact type, and

consider the normalized contact 1-form θ. It is known that from this data
we get a canonical complex structure J on D. In fact, if H : D → D is
defined by

dθ(X,Y ) = g(HX,Y )

for X, Y ∈ D, we let J be the orthogonal component in the polar decompo-
sition of H; see [23]. In this case, condition (1) is automatic, as it follows
from the fact that dθ(JX, JY ) = dθ(X,Y ).

In the particular case when (M,D, g) is a sub-Riemannian symmetric
space, J is clearly invariant under the sub-symmetries. Now condition (2)
holds too, because N is a tensor of odd degree which is invariant under the
sub-symmetries. In this way, for each space in the classification table we get
an example of a homogeneous CR manifold. Finally, we note that for each
one of these spaces we have also that∇J = 0 (sub-Kahler condition) as again
we have here a tensor of odd degree invariant under the sub-symmetries.
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[7] É. Cartan, Leçons sur la geométrie des espaces de Riemann, Gauthier-Villars, Paris,
1951.

[8] E. Falbel and C. Gorodski, On contact sub-Riemannian symmetric spaces, Ann. Sc.
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Université de Paris VI
Paris Cedex 05
France
E-mail address: falbel@math.jussieu.fr

Universidade de São Paulo
05315-970 São Paulo, SP
Brazil
E-mail address: gorodski@ime.usp.br

mailto:bieliap@math.psu.edu
mailto:falbel@math.jussieu.fr
mailto:gorodski@ime.usp.br

