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Let N be the set of all meromorphic functions f defined
in the unit disc D that satisfy Nehari’s univalence criterion
(1 − |z|2)2|Sf(z)| ≤ 2. In this paper we investigate certain
properties of the class N . We obtain sharp estimates for the
spherical distortion, and also a two-point distortion theorem
that actually characterizes the set N . Finally, we study some
aspects of the boundary behavior of Nehari functions, and
obtain results that indicate how such maps can fail to map D
onto a quasidisc.

1. Introduction.

Let f be analytic in the unit disc D and let Sf = (f ′′/f ′)′ − (1/2)(f ′′/f ′)2

be its Schwarzian derivative. In 1949 Nehari showed that if

(1.1) |Sf(z)| ≤ 2
(1− |z|2)2

for all z ∈ D then f is univalent [11]. A necessary condition for univalence
is obtained by replacing the 2 with a 6 in the numerator of (1.1). It was
proved by Kraus in 1932, [9], and rediscovered later by Nehari.

Let N be the set of all meromorphic functions satisfying (1.1). This
Nehari Class was formally introduced and extensively studied in [5]. In the
present paper we will make use of several results from [5] and also earlier
papers, and it is our purpose here to investigate further properties of Nehari
maps.

We shall consider functions in N normalized in two different ways. In the
first one,

(1.2) f(z) =
1
z

+ b0 + b1z + · · · ,

while in the second, we let

(1.3) f(0) = 0, f ′(0) = 1, f ′′(0) = 0.

Both normalizations are achieved by composing f from the left with siutable
Möbius transformations. This leaves (1.1) invariant. The second normaliza-
tion gives rise to the class N0, and according to a result in [3] if f satisfies
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(1.1) and (1.3) then it has no poles. In fact, such a function will either be a
rotation of the logarithm

(1.4) L(z) =
1
2

log
1 + z

1− z
,

or else it will be bounded. The function L has

(1.5) SL(z) =
2

(1− z2)2

and plays a very important role and is extremal for many problems in the
class N .

There is a classical connection between the Schwarzian and second order
linear differential equations. If Sf = 2p and u = (f ′)−1/2 then

(1.6) u′′ + pu = 0.

Conversely, if u1, u2 are linearly independent solutions of (1.6) and f =
u1/u2 then Sf = 2p.

Much of the work in [3] is based on applying comparison theorems for
solutions of differential equations to obtain bounds on f and f ′. For example,
if f ∈ N0 then u = (f ′)−1/2 satisfies the initial conditions u(0) = 1, u′(0) = 0,
and it was shown that

(1.7) n(|z|) ≤ |f(z)| ≤ L(|z|),
and

(1.8) n′(|z|) ≤ |f ′(z)| ≤ L′(|z|),
where

n(z) =
1√
2

(1 + z)
√

2 − (1− z)
√

2

(1 + z)
√

2 + (1− z)
√

2
.

The function n belongs to N0 and has Sn(z) = −2/(1− z2)2.
The techniques of comparison allow one also to describe the cases of equal-

ity: If equality holds in (1.7) or (1.8) at a single z0 6= 0 then f must be a
rotation of the corresponding extremal, n or L.

In Section 2 we shall consider Equation (1.6) but with the dual inital
condition, namely, u(0) = 0, u′(0) = 1. In terms of the function f this
means assuming the normalization (1.2). By considering g = 1/f , f ∈ N0,
we will derive in this way sharp upper and lower bounds for the spherical
distortion |f ′|/(1+ |f |2). We will also obtain a two-point distortion theorem
that actually characterizes Nehari functions. This result can be viewed as an
analogue of a theorem of Blatter that characterizes the set of all univalent
functions in D [2].

One of the main results in [5] is the fact that, for a function in N , the
image domain is a quasidisc as soon as it is a John domain. In other words,
linear connectivity comes as a consequence of the John condition. Recall
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that if f is any univalent function then one of the many characterizations
of John domains is that there exits a constant M such that for all z ∈ D

(1.9) diamf(B(z)) ≤ M(1− |z|2)|f ′(z)|,
where

(1.10) B(z) = {w : |z| ≤ |w| < 1, |arg(w)− arg(z)| ≤ π(1− |z|)}.
For a detailed exposition of these concepts we refer the reader to [12, Chap-
ter 5].

In Section 3 we will derive an estimate for diamf(B(z)) when f ∈ N ,
which will indicate how a Nehari domain can fail to be a quasidisc. Finally,
in Section 4 we will be concerned with other ‘quasidisc like’ properties of
Nehari domains, expressed in terms of f ′′/f ′.

2. Two-point distortion and characterization.

The starting point in this section is a comparison lemma. It is essentially
contained in [3], and we include here a brief proof for the convenience of the
reader.

Lemma 1. Let P = P (x) ≥ 0 be continuous for x ∈ [0, 1) and suppose
that the solution of

(2.1) v′′(x) + P (x)v(x) = 0, v(0) = 0, v′(0) = 1

is positive in the open interval (0, 1). Let w be solution of

(2.2) w′′(x)− P (x)w(x) = 0, w(0) = 0, w′(0) = 1.

If p = p(z) is analytic in D and |p(z)| ≤ P (|z|) then the solution of

(2.3) u′′ + pu = 0 , u(0) = 0 , u′(0) = 1

satisfies

(2.4) v(|z|) ≤ |u(z)| ≤ w(|z|).

Proof. We consider u along rays starting from the origin, and without loss
of generality, we may take the segment [0, 1). Thus let ϕ(x) = |u(x)| for
x ∈ [0, 1). At x = 0 the right hand derivative of ϕ exists and equals 1.
Whenever u(x) 6= 0 then ϕ is smooth, and it is not difficult to show that

ϕ′′(x) + |p(x)|ϕ(x) ≥ 0.

Since the function v is positive in (0, 1), it follows from the Sturm comparison
theorem that

ϕ(x) ≥ v(x)
for all x ∈ [0, 1). This proves the lower bound in (2.4).
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In order to establish the remaining inequality we turn (2.3) into the inte-
gral equation

u(z) = z −
∫ z

0
(z − ζ)p(ζ)u(ζ)dζ.

Since |p(z)| ≤ P (|z|) it is a consequence of Lemma 8 in [6] that

|u(z)| ≤ w(|z|).
This finishes the proof. �

Theorem 1. Let f ∈ N0. Then

(2.5)
n′(|z|)

1 + n2(|z|)
≤ |f ′(z)|

1 + |f(z)|2
≤ L′(|z|)

1 + L2(|z|)
.

If equality holds in either inequality at a single z0 6= 0 then f is a rotation
of the corresponding extremal.

Proof. Let f ∈ N0 and let g = 1/f . Then g satisfies (1.1) and (1.2), hence
for u = (g′)−1/2 one has

u′′ +
(

1
2
Sf

)
u = 0, u(0) = 0, u′(0) = 1.

With P (x) = (1− x2)−2 the functions v, w of the lemma are given by

v(x) =

√
L2

L′
(x)

and

w(x) =

√
n2

n′
(x).

So the lemma yields

n′

n2
(|z|) ≤

∣∣∣∣ f ′f2
(z)
∣∣∣∣ ≤ L′

L2
(|z|).

Hence, using in addition (1.8), we obtain

1 + |f(z)|2

|f ′(z)|
=

1
|f ′(z)|

+
|f2(z)|
|f ′(z)|

≥ 1
L′(|z|)

+
L2(|z|)
L′(|z|)

,

and similarly,
1 + |f(z)|2

|f ′(z)|
≤ 1

n′(|z|)
+

n2(|z|)
n′(|z|)

.

These two inequalities give (2.5).
Finally, if equality holds in (2.5) at some z0 6= 0 then it follows already

from the case of equality in (1.8) that f must be a rotation of n or L. This
finishes the proof. �
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If f ∈ S, the class of all univalent function in D with f(0) = 0, f ′(0) = 1
then, as mentioned in the introduction, one has |Sf(z)| ≤ 6(1 − |z|2)−2.
Again by looking at g = 1/f and u = (g′)−1/2 we can apply Lemma 1,
but now only with the solution w because the corresponding function v has
(infinitely many) zeroes [8, p. 492]. The function w arises from the Koebe
function k(z) = z/(1− z)2, that is,

w(x) =

√
k2

k′
(x),

and we obtain in this fashion the sharp estimate∣∣∣∣ f ′f2
(z)
∣∣∣∣ ≥ 1− |z|2

|z|2
.

This inequality is equivalent to one established in 1919 by Löwner, namely
that for functions g in the class Σ,

|g′(ζ)| ≥ 1− 1
|ζ|2

, |ζ| > 1.

It is interesting to note that in our proof we only use the fact that (1 −
|z|2)2|Sf(z)| ≤ 6, rather than the univalence of f .

The next result characterizes Nehari functions in terms of a two-point
distortion property. Let dh(z1, z2) be the hyperbolic distance between points
in D.

Theorem 2. Let f be meromorphic and locally univalent in D. Then

(2.6) (1− |z|2)2|Sf(z)| ≤ 2

for all z ∈ D if and only if

(2.7) (1− |z1|2)|f ′(z1)|(1− |z2|2)|f ′(z2)| dh(z1, z2)2 ≤ |f(z1)− f(z2)|2

for all z1, z2 ∈ D. Furthermore, equality holds for z1 6= z2 if and only if f is
of the form T ◦L ◦ τ , where T is Möbius and τ an automorphism of D with
τ(z1), τ(z2) ∈ (−1, 1).

Proof. Suppose first that (2.6) holds. Then

(2.8) g(z) =
(1− |z1|2)f ′(z1)

f

(
z + z1

1 + z̄1z

)
− f(z1)

=
1
z

+ b0 + b1z + · · ·

also satisfies (2.6). It follows from Theorem 2 in [5] that

(2.9) (1− |z|2)dh(0, z)2|g′(z)| ≤ 1
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for all z ∈ D. This gives

(1− |z|2)
(1− |z1|2)2|f ′(z1)|

∣∣∣∣f ′( z + z1

1 + z̄1z

)∣∣∣∣
|1 + z̄1z|2

∣∣∣∣f ( z + z1

1 + z̄1z

)
− f(z1)

∣∣∣∣2
dh(0, z)2 ≤ 1.

With z2 =
z + z1

1 + z̄1z
, the above inequality gives (2.7).

The case of equality in (2.7) for z1 6= z2 corresponds to the case of equality
in (2.9) for z 6= 0. As shown in [5] this occurs if and only if g is a rotation
of a function of the form 1/L + a. Hence f is of the form stated.

Let us assume now that (2.7) holds. Then the function g as defined in
(2.8) satisfies (2.9). Hence, for z ∈ D we have

(1− |z|2)
(
|z|+ 1

3
|z|3 + · · ·

)2 ∣∣∣∣− 1
z2

+ b1 + · · ·
∣∣∣∣ ≤ 1,

which implies that(
1− 1

3
|z|2 + O(z3)

)
(1− Re{b1z

2}+ O(z3)) ≤ 1

as z → 0. Therefore

Re
{

b1
z2

|z|2

}
≤ 1

3
+ O(z)

as z → 0, which in turn gives that |b1| ≤ 1/3. Thus

(1− |z1|2)2|Sf(z1)| = |Sg(0)| = 6|b1| ≤ 2.

Since the point z1 is arbitrary we conclude that f ∈ N . �

Remarks.

1. If Ω = f(D) is the image domain with Poincaré metric λ(w)|dw| and
hyperbolic distance δh, then (2.7) can be rewritten as

δh(w1, w2) ≤
√

λ(w1)λ(w2) |w1 − w2|

for points w1, w2 ∈ Ω.
2. Theorem 2 resembles a result of Blatter, according to which an analytic
function in the unit disc is univalent if and only if

|f(z1)− f(z2)|2

≥ 1
8

sinh2(2dh(z1, z2))
cosh(4dh(z1, z2))

{(1− |z1|2)2|f ′(z1)|2 + (1− |z2|2)2|f ′(z2)|2}.

Here the cases of equality for z1 6= z2 only happen when f is of the form
ak ◦ τ + b with τ(D) = D, τ(z1), τ(z2) ∈ (−1, 1), and k the Koebe function.



CHARACTERISTIC PROPERTIES OF NEHARI FUNCTIONS 89

3. A diameter bound.

As was pointed out in the proof of Theorem 2, if f ∈ N is normalized so
that f(z) = 1/z + b0 + b1z + · · · then

(1− |z|2)L2(|z|)|f ′(z)| ≤ 1.

Lemma 2. Let f(z) = 1/z + b0 + b1z + · · · belong to N . Then for |ζ| = 1

(3.1) q(r) = (1− r2)L2(r)|f ′(rζ)|
is decreasing for r ∈ [0, 1).

Proof. Let |ζ| = 1 and for r ∈ [0, 1) define

u(r) =
1√

(1− r2)|f ′(rζ)|
.

It was shown in [5] that

(3.2)
d

dr
[(1− r2)u′(r)] ≥ 0.

Also, u(0) = 0 and u′(0) = 1. Let

v(r) = (1− r2)u′(r)L(r)− u(r).

A simple calculation shows that

v′(r) = L(r)
d

dr
[(1− r2)u′(r)],

hence v is increasing. Since v(0) = 0 we conclude that v(r) ≥ 0 for r ∈ [0, 1),
and therefore

d

dr

(
u(r)
L(r)

)
=

v(r)
(1− r2)L2(r)

≥ 0.

Since q(r) = (L(r)/u(r))2 the lemma follows. �

Theorem 3. Let
f(z) =

1
z

+ b0 + b1z + · · ·

belong to N . Then

(3.3) diamf(B(z)) ≤ K(1− |z|2)|f ′(z)|L(|z|),
where K is an absolute constant.

Proof. Let z = reit and w = ρeiθ ∈ B(z). We write q = (1 − |z|2)|f ′(z)|.
The classical distortion theorems for univalent functions imply that

(3.4) |f(reiθ)− f(reit)| ≤ K1q

and

(3.5) (1− r2)|f ′(reiθ)| ≤ K2q,
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where K1,K2 are absolute constants. It follows now from Lemma 2 and
Equation (3.5) that

(3.6) (1− ρ2)|f ′(ρeiθ)|L2(ρ) ≤ (1− r2)|f ′(reiθ)|L2(r) ≤ K2qL
2(r).

Hence

|f(ρeiθ)− f(reiθ)| ≤
∫ ρ

r
|f ′(seiθ)|ds ≤ K2q

∫ ρ

r

L2(r)
(1− s2)L2(s)

ds

≤ K2qL
2(r)

∫ 1

r

L′(s)
L2(s)

ds = K2qL(r).

This inequality together with (3.4) implies (3.3). �

In Theorem 3 we have used the stated normalization on f in order to make
∂f(D) bounded. If now f ∈ N0 then, as pointed out in the introduction, the
image Ω will either be a parallel strip or else will be bounded. In the latter,
it is clear that (3.3) will still hold with K replaced by some constant M
depending on f . From the results in [5], such a domain will be a quasidisc
if for some constant M the stronger estimate holds:

diamf(B(z)) ≤ M(1− |z|2)|f ′(z)|,
that is, Equation (3.3) without the logarithm.

4. Boundary behavior and exceptional points.

It was shown in [7] that all Nehari functions admit a (spherically) continuous
extension to the closed disc. In this section we shall be interested in studying
the behavior of

(1− r2)Re
{

ζ
f ′′

f ′
(rζ)

}
as r → 1. According to Theorem 4 in [5], a Nehari domain is a John domain
(hence a quasidisc) if and only if the corresponding function f normalized
to be in N0 satisfies

(4.1) lim sup
|z|→1

(1− |z|2)Re
{

z
f ′′

f ′
(z)
}

< 2.

Recall also that if f ∈ N0 then in any case

(4.2) (1− |z|2)
∣∣∣∣f ′′f ′

(z)
∣∣∣∣ ≤ 2.

See, e.g., [4].
The following lemma is of a general nature:

Lemma 3. Let h(z) be analytic in D and suppose that for some 0 < α <
∞, M < ∞
(4.3) (1− |z|)α|g(z)| ≤ M.
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Then there exist at most countably many points ζ, |ζ| = 1, such that

(4.4) lim
r→1

(1− r)αg(rζ) =: b(ζ) 6= 0 exists.

Proof. Let |ζ| = 1 be such that (4.4) holds. For r ∈ (0, 1) and z ∈ D let

(4.5) f(z, r) =
(

1− z + r

1 + rz

)α

g

(
z + r

1 + rz
ζ

)
.

Hence by (4.3)

|f(z, r)| ≤ 2αM

∣∣∣∣1− z + r

1 + rz

∣∣∣∣α
(

1−
∣∣∣∣ z + r

1 + rz

∣∣∣∣2
)−α

=
2αM |1 + rz|α|1− z|α

(1 + r)α(1− |z|2)α
≤ 4αM

(
|1− z|
1− |z|

)α

.(4.6)

Therefore as r → 1, f(z, r) is locally uniformly bounded in z. Also, by (4.4)
and (4.5) we have

(4.7) f(z, r) = (1− ζ̄w)αg(w) → b(ζ)

as r → 1, where w = ζ
z + r

1 + rz
. From the theorem of Montel we conclude

that (4.7) holds locally uniformly in z.
Let

ϕ(z) = (1− |z|2)α|g(z)|.
If ζ is such that (4.4) holds, then according to (4.5)

ϕ

(
z + r

1 + rz
ζ

)
=

(1− r2)α(1− |z|2)α

|1 + rz|2α

∣∣∣∣g( z + r

1 + rz
ζ

)∣∣∣∣→ (
1− |z|2

|1− z|

)α

|b(ζ)|

as r → 1. The convergence is locally uniform in z. Hence as z → ζ radially

ϕ(z) → 2α|b(ζ)| 6= 0,

but we can also find a curve γ ending at ζ along which the function ϕ tends
to 0. The Ambiguous Point Theorem of Bagemihl, [1], implies that the
number of points ζ for which this can happen is at most countable. This
finishes the proof.

Theorem 4. Let f ∈ N0. Then

(4.8) lim inf
r→1

(1− r2)Re
{

ζ
f ′′

f ′
(rζ)

}
< 2,

except possibly for countably many points ζ.
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Proof. Observe first that in light of (4.2), the quantity on the left hand side
of (4.8) is bounded by 2. Suppose ζ is such that we have equality in (4.8).
Then

lim
r→1

(1− r2)Re
{

ζ
f ′′

f ′
(rζ)

}
= 2.

Using (4.2) again we conclude that

lim
r→1

(1− r2)Im
{

ζ
f ′′

f ′
(rζ)

}
= 0,

hence

lim
r→1

(1− r2)
f ′′

f ′
(rζ) = 2.

But according to Lemma 3 applied to g = f ′′/f ′ and α = 1, the last equation
can only happen for countably many points ζ.

Lemma 4. Let

f(z) =
1
z

+ b0 + b1z + · · ·

be in N . Then for |ζ| = 1 and r ∈ (0, 1)

(4.9) |f(ζ)− f(rζ)| ≤
∫ 1

r
|f ′(sζ)|ds ≤ (1− r2)|f ′(rζ)|

r − 1− r2

2
Re
{

ζ
f ′′

f ′
(rζ)

} .

Remark. The right-hand side of (4.9) is rather similar to the extension
operator considered in [4].

Proof. Let |ζ| = 1 and let again

u(r) =
1√

(1− r2)|f ′(rζ)|
.

Then ((1− r2)u′(r))′ ≥ 0, hence for 0 < r < s < 1

(1− s2)u′(s) ≥ (1− r2)u′(r),

and therefore

u(s)− u(r) ≥ (1− r2)u′(r)(L(s)− L(r)).

Thus

(1− s2)|f ′(sζ)| = 1
u2(s)

≤ 1

u2(r)
[
1 + (1− r2)

u′

u
(r)(L(s)− L(r))

]2 ,
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or

|f ′(sζ)| ≤ (1− r2)|f ′(rζ)|L′(s)[
1 + (1− r2)

u′

u
(r)(L(s)− L(r))

]2

=
|f ′(rζ)|

(u′/u)(r)
d

ds

 −1

1 + (1− r2)
u′

u
(r)(L(s)− L(r))

 .

This implies ∫ 1

r
|f ′(sζ)|ds ≤ |f ′(rζ)|

(u′/u)(r)
,

which is equivalent to (4.9) since

(1− r2)
u′

u
(r) = r − 1− r2

2
Re
{

ζ
f ′′

f ′
(rζ)

}
.

�

Theorem 5. Let f ∈ N . Then

(4.10) lim inf
r→1

|f(ζ)− f(rζ)|
(1− r2)|f ′(rζ)|

< ∞

with the exception of at most countably many points ζ ∈ ∂D.

Proof. Without loss of generality we may assume that

f(z) =
1
z

+ b0 + b1z + · · · ,

since such a normalization can affect condition (4.10) at most at one bound-
ary point. Also, we may take b0 = 0. Then (4.10) follows directly from (4.8)
and (4.9) provided we can show that (4.8) still holds when f(z) = 1/z + · · · .
Let g = 1/f . Then g ∈ N0, hence it is either a rotation of L or else it is
bounded. In the latter, it is easy to see that (4.8) for g implies (4.8) for f ,
while if g = 1/L then (4.8) can be verified directly.

To conclude, we remark that if f(D) is a bounded quasidisc then

(4.11) lim sup
r→1

|f(ζ)− f(rζ)|
(1− r2)|f ′(rζ)|

< ∞

for all ζ. It is natural to ask whether a stronger form of Theorem 5 is true,
where (4.11) holds with at most countably many exceptions. �
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