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It is known that the entropy distance between two Gauss-
ian measures is finite if, and only if, they are absolutely con-
tinuous with respect to one another. Shepp (1966) charac-
terized the correlations corresponding to stationary Gaussian
measures that are absolutely continuous with respect to the
Wiener measure. By analyzing the entropy distance, we show
that one of his conditions, involving the spectrum of an asso-
ciated operator, is essentially extraneous, providing a simple
criterion for finite entropy distance in this case.

1. Introduction.

Let C[1 − τ, 1 + τ ] (where 0 < τ < 1) denote the space of continuous
functions on [1− τ, 1 + τ ]. A standard Brownian motion observed between
times 1 − τ and 1 + τ induces on C[1 − τ, 1 + τ ] the Wiener measure W τ .
As a Gaussian measure, it is characterized by its correlation R(t, s) = t ∧ s
for t, s ∈ [1− τ, 1 + τ ], and by its vanishing mean.

A Gaussian measure, Qτ , on C[1 − τ, 1 + τ ] is stationary if its mean
is constant and its correlation is a Töeplitz function. That is, with X ∈
C[1− τ, 1 + τ ] being the sample path,

µt
d= EQτ

Xt ≡ const. t ∈ [1− τ, 1 + τ ],

and

S(t, s) d= EQτ
XtXs − µ2 = S(t− s) t, s ∈ [1− τ, 1 + τ ],

where S denotes both the correlation S(t, s), and the auto-correlation S(r)
with r = t − s ∈ [−2τ, 2τ ]. Krein [4] showed that S(r) can always be
extended to R as a continuous positive-definite function, thereby providing
an extension of Qτ to a stationary Gaussian measure, Q, on C(R).

We would like to characterize the stationary measures Qτ which are ab-
solutely continuous with respect to W τ . Since the measures are Gaussian,
this question can be settled in terms of the mean µ and the correlation
S of Qτ . Furthermore, for τ < 1, the Brownian paths bt and bt + µ with
t ∈ [1−τ, 1+τ ] induce measures that are absolutely continuous with respect
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to one another, and therefore the constant mean of Q is irrelevant to the
question of absolute continuity.

Shepp provides the following necessary and sufficient conditions for a sta-
tionary Gaussian measure Qτ0 with correlation S to be absolutely continuous
with respect to W τ0 [5]:

(i) On (0, 2τ0), S′ is absolutely continuous and S′′ satisfies∫ 2τ0

0
S′′(t)2(2τ0 − t) dt <∞.

(ii) S+(0) = −1/2 (the derivative from the right).
(iii) −1 /∈ σ(F ), where σ(F ) is the spectrum of the integral operator defined

by the kernel

F
d=

∂

∂ s

∂

∂ t

[
S(t− s)− S(t)S(s)

S(0)
− t ∧ s

]
t, s ∈ [0, 2τ0].

Shepp gives an example showing that (iii) is essential:

S(r) d=
1
4
− |r|

2
for − 2τ0 ≤ r ≤ 2τ0.

Here (i) and (ii) hold for any τ0 > 0, but (iii) is valid only if τ0 < 1
2

(τ0 ≤ 1
2 is required for S to be positive-definite). Indeed, with τ0 = 1

2 and
X ∈ C[1 − τ0, 1 + τ0], we have X1/2 = −X3/2 a.s. dQ, thus ruling out
absolute continuity with respect to W τ0 . However, a closer look at this
example yields two interesting facts for τ0 = 1

2 :
• There exists only one positive-definite extension of S from [−2τ0, 2τ0]

to R ([4]).
• S′′ does not exist at r = 2τ0.

Both observations turn out to be the rule whenever (iii) is violated. This
allows us to rid ourselves of the third condition in Shepp’s theorem by paying
a small price: (i) and (ii) suffice for absolute continuity for τ < τ0. The
precise statement is:

Theorem 1. If Qτ0, a stationary Gaussian measure with correlation S, is
absolutely continuous with respect to W τ0 (0 < τ0 < 1), then (i) and (ii)
hold. If, on the other hand, (i) and (ii) hold, then for any 0 < τ < τ0, Qτ is
absolutely continuous with respect to W τ .

Remarks.
• A simple scaling argument shows that the time interval can be centered

about any point (not necessarily 1).
• Condition (ii) guarantees that the measure Q is supported on paths

with the same quadratic variation as that of Brownian motion. This
must be so, as it is an “almost sure” property of the Brownian path.
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We next provide a brief overview of the proof which is entirely different
from Shepp’s; it relies on our ability to estimate the entropy distance between
Qτ and W τ . Let P and Q be Gaussian measures on C[1 − τ, 1 + τ ]. It is
known that the entropy distance between P and Q, H(P,Q), is finite if
and only if the two measures are absolutely continuous with respect to one
another; in that case:

H(P,Q) = EP

(
log

dP

dQ

)
+ EQ

(
log

dQ

dP

)
,

where EP is the expectation under the measure P and dP
dQ is the Radon-

Nikodym derivative of P with respect to Q (see e.g. [3]).
Let Pn and Qn be the restrictions of P and Q to n + 1 equally spaced

points in [1− τ, 1 + τ ], with correlations Rn and Sn. Then

H(P,Q) = lim H(Pn, Qn).

Let Kn be a root of Rn, i.e., Rn = KnK∗
n, and let Tn = K−1

n SnK−∗
n , with

K−∗ being a short for (K−1)∗. If λn
i are the eigenvalues of Tn, then

H(Pn, Qn) =
1
2

n∑
i=0

(λn
i − 1)2

λn
i

.

Thus, H(W τ0 , Qτ0) <∞ implies

sup
τ≤τ0

lim
∑

(λn
i − 1)2 <∞.(1)

In the case of W τ0 (R = t ∧ s), R−1
n is essentially a second order difference

operator so we can choose Kn so that K−1
n is basically a first order difference

operator. Thus, the typical entry in Tn = K−1
n SnK−∗

n is a second order
difference of the sampled Töeplitz correlation Sn. Add to this the identity

lim
∑

(λn
i − 1)2 = lim Tr (Tn − I)2,

and you will understand how (1) implies the existence of S′ and S′′ on
(0, 2τ0) as in (i) and (ii) of Theorem 1.

This is the easier half of that theorem. As for the other half, with our
choice of Kn we can readily show that (1) follows from (i) and (ii) of Theorem
1. It is left to prove that for τ < τ0, infi,n λn

i (τ) > 0 (this is the analogue of
Shepp’s third condition, which we omit). Indeed, if infi,n λn

i (τ) = 0, then
there exist λk −→ 0 and vk ∈ Rnk , such that

Tnk
vk = λkvk.

Appropriately embedded in H d= R ⊕ L2[0, 2τ ], vk converge strongly to a
non-zero limit (β, f) ∈ H with the property that almost surely dQ:

βX0 +
∫ 2τ

0
f(t)dXt = 0,
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where Q is a stationary extension of Qτ to C(R) and Xt is the sample path.
As we show, this implies that S has a unique positive-definite extension,
from [−2τ, 2τ ] to R. This unique extension has the property that S′′ /∈
L2(0, 2τ + ε) for any ε > 0, contradicting (i).

2. Proof of Theorem 1.

The space C0
d= C[1−τ0, 1+τ0], is equipped with the σ-field F generated by

the cylinder sets. Wiener measure (denoted by W ) is defined on that space,
so any measure Q that is absolutely continuous with respect to it must live
there. On the other hand, an application of Kolmogorov-Čensov shows that
a correlation S subject to (i) and (ii) of theorem 1 defines a probability
measure Q on C0.

Remark. Since the mean of Q is irrelevant to our problem it may be as-
sumed to vanish.

Let P and Q be Gaussian measures on C0. For 0 < τ ≤ τ0, let P τ , Qτ

and Fτ be the restrictions of P , Q, respectively F , to C[1 − τ, 1 + τ ]. Let
Fτ

n be the σ-field obtained by sampling the paths on [1− τ, 1 + τ ] at n + 1
equally spaced points. Let P τ

n and Qτ
n be the restrictions of P τ and Qτ to

that σ-field. Let

Hτ
n

d= H(P τ
n , Qτ

n).

Since Fτ is generated by
⋃
Fτ

n, it follows that H(P τ , Qτ ) = lim Hτ
n [3].

A first step is to express the entropy Hτ
n in terms of the (n + 1)× (n + 1)

sampled correlations, Sτ
n and Rτ

n.

Claim 2.1. Let R and S be the m×m correlation matrices of the 0-mean
Gaussian measures P , respectively Q on Rm, and let K be a root of R so
that R = KK∗. Then

H(P,Q) =
1
2

Tr(K−1SK−∗ + K∗S−1K − 2I).

Proof.

EQ log
dQ

dP
= EQ log

{√
det R√
det S

exp
[
−1

2
〈(

S−1 −R−1
)
x,x

〉]}

= −1
2

log det R−1S − 1
2
EQ

〈(
S−1 −R−1

)
x,x

〉
,

with x ∈ Rm.
If A is any m×m matrix, then

EQ 〈Ax,x〉 = EQ
∑
i,j

aijxixj =
∑

i

∑
j

aijsji = Tr AS,
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so

EQ log
dQ

dP
= −1

2
log det R−1S +

1
2

Tr(R−1S − I).

The same applies to EP log dP
dQ so the entropy is:

H =
1
2

Tr(R−1S + S−1R− 2I).

The claim follows from Tr AB = Tr BA. �

Let K be a root of Rτ
n as above and put

T
d= K−1SK−∗.(2)

Then T is symmetric, positive definite, and T−1 = K∗S−1K, so from claim
2.1,

Hτ
n =

1
2

Tr(T + T−1 − 2I).

In terms of the (positive) eigenvalues λn
i = λn

i (τ), of T :

Hτ
n =

1
2

n∑
i=0

(λn
i − 1)2

λn
i

.

For 0 < τ ≤ τ0, Hτ ≤ H
d= Hτ0 , and since Hτ = lim Hτ

n , it follows that

H <∞ only if lim
n

∑
i

(λn
i − 1)2 ≤ C <∞,(3)

where C is a constant which depends on τ0. Note that

n∑
i=0

(λn
i − 1)2 = Tr (T − I)2 =

∑
i6=j

t2ij +
∑

i

(tii − 1)2.(4)

Let δ = δτ
n = 2τ/n be the mesh of the partition. Returning to the case of

R = t ∧ s and a stationary correlation S = S(t− s), we choose

K
d=



√
1− τ 0 0 0 . . . 0√
1− τ

√
δ 0 0 . . . 0√

1− τ
√

δ
√

δ 0 . . . 0
...

...
. . .√

1− τ
√

δ
√

δ . . .
√

δ 0√
1− τ

√
δ
√

δ . . .
√

δ
√

δ


.
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It is easy to verify that Rτ
n = KK∗ and that

K−1 =



1√
1−τ

0 0 0 . . . 0
− 1√

δ
1√
δ

0 0 . . . 0
0 − 1√

δ
1√
δ

0 . . . 0
...

. . .
0 0 . . . − 1√

δ
1√
δ

0
0 0 . . . − 1√

δ
1√
δ


.

It follows that, with Sk = S(kδ),

T =



S0
1−τ

1√
1−τ

S1−S0√
δ

1√
1−τ

S2−S1√
δ

1√
1−τ

S3−S2√
δ

. . . 1√
1−τ

Sn−Sn−1√
δ

∗ 2S0−S1
δ

2S1−S0−S2
δ

2S2−S1−S3
δ . . . 2Sn−1−Sn−2−Sn

δ

∗ ∗ 2S0−S1
δ

2S1−S0−S2
δ . . . 2Sn−2−Sn−3−Sn−1

δ

∗ ∗ ∗ 2S0−S1
δ

. . .
...

. . . 2S1−S0−S2
δ

∗ ∗ ∗ ∗ 2S0−S1
δ



(5)

where the ∗’s are filled in according to the symmetry of T (note the
Töeplitz n× n sub-matrix). Using (4) we get:

(6)
n∑

i=0

(λn
i − 1)2 =

(
S0

1− τ
− 1
)2

+ n

(
2
S0 − S1

δ
− 1
)2

+ 2
1

1− τ

n∑
k=1

(Sk − Sk−1)2

δ

+ 2
n−1∑
k=1

(
2Sk − Sk−1 − Sk+1

δ

)2

(n− k).

Assume now that Qτ0 is absolutely continuous with respect to W τ0 . Using
(3) and the last equation, with δ = 2τ0/n, we find:

M0 = sup
τ≤τ0

sup
n

n

(
2
S0 − S1

2τ/n
− 1
)2

<∞,(7)

M1 = sup
n

n∑
k=1

(Sk − Sk−1)2
1
δ

<∞,(8)



THE WIENER AND STATIONARY GAUSSIAN MEASURES 101

and

M2 = sup
n

n−1∑
k=1

(
2Sk − Sk−1 − Sk+1

δ

)2

(n− k) <∞.(9)

It follows from (7) that S is continuous from the right at 0, and since it
is symmetric and positive definite, S is also uniformly continuous on its
domain (see e.g. [1], p. 191).

Claim 2.2. S is an absolutely continuous function.

Proof. Let

Sn(r) d=
∑

k

S(kδ)1[kδ,(k+1)δ)(r),

and

fn(r) d=
Sn(r + δ)− Sn(r)

δ
.

It follows from (8) that, with δ = 2τ0/n as before,
∫ 2τ0
0 fn

2 ≤ M1, so there
exists a subsequence fnk

converging weakly in L2 to some function f . If for
any smooth compactly supported ϕ on (0, 2τ0),∫ 2τ0

0
fϕ = −

∫ 2τ0

0
Sϕ′,(10)

then standard Sobolev type arguments show that S is absolutely continuous
(and S′ = f). To prove (10), note that for sufficiently large n (ϕ being
compactly supported),∫ 2τ0

0
fnk

(t)ϕ(t) dt =
∫ 2τ0

0

Snk
(t + δ)− Snk

(t)
δ

ϕ(t) dt

= −
∫ 2ε0

0
Snk

(t)
ϕ(t)− ϕ(t− δ)

δ
dt.

Since S is continuous and ϕ is smooth, by letting k →∞ in the last equation
we get (10). �

It is a corollary of the last claim and (7) that S+(0) = −1
2 , as in (ii) of

the theorem.

Claim 2.3. S′ is absolutely continuous on (0, 2τ0) and
∫ 2τ0
0 S′′(t)2(2τ0 −

t) dt <∞.

Proof. With a slight abuse of notation, define

S′n(r) d=
∑

k

(
1
δ

∫ (k+1)δ

kδ
S′(η) dη

)
1[kδ,(k+1)δ)(r),
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and let

gn(r) d=
S′n(r + δ/2)− S′n(r − δ/2)

δ

=
∑

k

S((k + 1)δ) + S((k − 1)δ)− 2S(kδ)
δ2

1[kδ,(k+1)δ)(r).

Since, by (9),∫ 2τ0

0
gn(t)2(2τ0 − t) dt

=
∑[

S((k + 1)δ) + S((k − 1)δ)− 2S(kδ)
δ2

]2

(2τ0 − kδ) ≤M2,

there exists a subsequence {gnk
} that converges weakly to a limit g in

L2 ((2τ0 − t)dt). Hence, for every proper subinterval I ⊂ (0, 2τ0), {gnk
}

converges weakly in L2(I, dt). Again,∫ 2τ0

0
gϕ = −

∫ 2τ0

0
S′ϕ′(11)

will show S′ is absolutely continuous with g = S′′. For sufficiently large n,∫ 2τ0

0
gnk

ϕ = −
∫ 2τ0

0
S′nk

(t)
ϕ(t + δ/2)− ϕ(t− δ/2)

δ
dt.

Since S′nk
−→ S′ in L1 and ϕ is smooth, we get (11) by letting k → ∞.

Finally, by its definition, g ∈ L2 ((2τ0 − t)dt); in particular, we get (i) of
Theorem 1. �

This proves half of Theorem 1. Assume now that S satisfies (i) and (ii)
of Theorem 1.

Claim 2.4. For any τ ≤ τ0,

sup
n

∑
i

(
λn

i (τ)− 1
)2 ≤ ( S0

1− τ
− 1
)2

+
∫ 2τ

0
S′′(t)2(2τ − t) dt

+
2

1− τ

∫ 2τ

0
S′(t)2 dt <∞.

Proof. Note that, with T = Tn(τ) = (tij)0≤i,j≤n,
n∑

i=1

t2i0 + t20i =
2

1− τ

n∑
i=1

(Si − Si−1)
2 1

δ
≤ 2

1− τ

∫ 2τ

0
S′(t)2 dt.(12)

Let

S̄(r) d= S(r)−
(

1− |r|
2

)
.
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Then S̄ is an even function, with absolutely continuous derivative S̄′ on
(−2τ0, 2τ0), and S̄′′ ≡ S′′ on (0, 2τ0). It is not hard to verify that

tij = −1
δ

∫ iδ

(i−1)δ

∫ jδ

(j−1)δ
S̄′′(t− s) dt ds 1 ≤ i 6= j ≤ n,

tii − 1 = −1
δ

∫ iδ

(i−1)δ

∫ iδ

(i−1)δ
S̄′′(t− s) dt ds 1 ≤ i ≤ n.

(13)

Thus, for τ ≤ τ0 ∑
1≤i6=j≤n

t2ij +
n∑

i=1

(tii − 1)2

 ≤ ∫ 2τ

0

∫ 2τ

0
S̄′′(t− s)2 dt ds

=
∫ 2τ

0
S′′(t)2(2τ − t) dt <∞,

which together with (12) and (4) completes the proof of Claim 2.4. �

We next show that for τ < τ0, infi,n λn
i (τ) > 0. It follows that,

Hτ = lim
∑ (λn

i − 1)2

λn
i

≤ 1
infi,n λn

i (τ)
lim
∑

(λn
i − 1)2 <∞,

which completes the proof of Theorem 1.
Since S̄′′ ∈ L2([0, 2τ ]× [0, 2τ ]), it defines a compact integral operator on

L2(0, 2τ):

(S̄′′ ∗ f)(r) d=
∫ 2τ

0
S̄′′(r − t)f(t) dt.

Let H = Hτ
d= R ⊕ L2(0, 2τ). Define a bounded symmetric operator T τ :

(β, f) ∈ H 7→ H as follows:

T (β, f) d=
(

β
S(0)
1− τ

+
1√

1− τ

∫ 2τ

0
S′(t)f(t) dt,

β√
1− τ

S′ + f − S̄′′ ∗ f

)
.

Let Un be the n dimensional subspace of L2(0, 2τ) populated by functions
which are constant on the intervals [iδ, (i + 1)δ), δ = 2τ/n. For f ∈ Un and
X ∈ C[0, 2τ ], we define

∫ 2τ
0 f(t) dXt in the obvious manner. Letˆ: Un 7→ Rn

be the natural isometry between these spaces, i.e., for

f(t) =
n∑

i=1

fi1[(i−1)δ,iδ)(t) ∈ Un,

f̂
d=
(
f1

√
δ, f2

√
δ, . . . , fn

√
δ
)

.
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Let Q be a stationary extension of Qτ0 to C(R) corresponding to a positive-
definite extension of S from [−2τ0, 2τ0] to R. A straight forward computation
shows that for f ∈ Un and β ∈ R,〈

T (β, f̂), (β, f̂)
〉

Rn+1
= EQ

[
β√

1− τ
X0 +

∫ 2τ

0
f(t) dXt

]2

.

Remark. The last equation might deserve a second look: On the left hand
side we have T which was obtained from S and R, while on the right hand
side R does not appear explicitly.

It follows from (13) that,〈
T (β, f̂), (β, f̂)

〉
Rn+1

=
〈
T (β, f), (β, f)

〉
H

.

Thus, for β = 0 and f ∈ Un,

EQ

[∫ 2τ

0
f(t) dXt

]2

=
〈
T (0, f), (0, f)

〉
H
≤ ‖T ‖ |f |2L2 .

Hence the map

f 7→
∫ 2τ

0
f(t) dXt,

defined initially on
⋃

Un, can be extended uniquely as a bounded linear
map from L2(0, 2τ) into L2(Ω, dQ), where Ω = C0 is our probability space.
Furthermore, by continuity, for any f ∈ L2(0, 2τ) and β ∈ R,〈

T (β, f), (β, f)
〉
H

= EQ

[
β√

1− τ
X0 +

∫ 2τ

0
f(t) dXt

]2

.(14)

In particular, T is positive-definite.

Claim 2.5. Suppose that infi,n λn
i (τ) = 0, then there exists β ∈ R and

f ∈ L2(0, 2τ), not identically 0, with

β√
1− τ

X0 +
∫ 2τ

0
f(t) dXt = 0 a.s. dQ.(15)

Proof. Assuming the eigenvalues of Tn satisfy λn
0 (τ) ≤ λn

1 ≤ . . . λn
n, there

exists a sub-sequence nk such that

νk
d= λnk

0 −→ 0.

Let vk = (vk(0),vk(1), . . . ,vk(nk)) ∈ Rnk+1 be the corresponding normal-
ized eigenvectors, i.e.,

Tnk
vk = νkvk, |vk| = 1.

Let βk = vk(0) and let

fk
d= ̂(vk(1), . . . ,vk(nk)).
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Then ‖(βk, fk)‖H = 1, and without loss of generality you may assume that

(βk, fk) −→ (β, f) weakly in H.

Let I be the identity in H. The operator T 0
d= T − I is compact, by

inspection, so

T 0(βk, fk) −→ T 0(β, f) strongly in H.

It follows that

νk − 1 =
〈
T 0(βk, fk), (βk, fk)

〉
H
−→

〈
T 0(β, f), (β, f)

〉
H

,

or 〈
T 0(β, f), (β, f)

〉
H

= −1.

But T is symmetric and positive-definite, so the spectrum σ(T 0) ⊂ [−1,∞),
whence ‖(β, f)‖H = 1 and〈

T (β, f), (β, f)
〉
H

= 0.

The claim now follows from (14). �

Remarks.
• In hind sight (βk, fk) converge strongly to (β, f).
• S has a unique extension as a symmetric positive-definite function from

[−2τ, 2τ ] to R. Indeed, let ∆ be any spectral distribution function
corresponding to such an extension of S. Using the standard isometry
between L2(R,∆) and L2(Ω, Q), defined by

eitω ←→ Xt,

it follows from (15) that

β√
1− τ

+ iω

∫ 2τ

0
f(t)eiωt dt = 0,

where the equality is in L2(∆). Thus, there exists a non-trivial holo-
morphic function of exponential type ≤ τ , which vanishes in L2(∆).
Krein’s alternative says that in this case the stationary process gov-
erned by any extension of S must be completely predictable from any
interval of length 2τ [2] [see Sec. 4.8]. This implies that there exists
only one extension ([4] is helpful).

Claim 2.6. If (15) holds with a non-trivial f ∈ L2(0, 2τ), then there exists
τ ′ ∈ (τ, τ0), such that the eigenspace,

V
d=

{
g ∈ L2(0, 2τ ′) :

∫ 2τ ′

0
S̄′′(t− r)g(r) dr = g(t)

}
,

is infinite-dimensional.
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Proof. Since Q is stationary, it follows from (15) that for any δ > 0,

β√
1− τ

X2δ +
∫ 2τ

0
f(t) dXt+2δ = 0 a.s. dQ.(16)

Let

g(t) d=


β√
1−τ
− f(t) 0 ≤ t < 2δ

f(t− 2δ)− f(t) 2δ ≤ t < 2τ

f(t− 2δ) 2τ ≤ t < 2τ + 2δ

0 elsewhere.

Subtracting (15) from (16), we find∫ 2(τ+δ)

0
g(t) dXt = 0 a.s. dQ.

Fix τ ′ ∈ (τ, τ0) and choose δ > 0 so small that τ + δ < τ ′. By (14),

〈
T τ ′(0, g), (0, g)

〉
Hτ ′

= EQ

[∫ 2τ ′

0
g(t) dXt

]2

= 0.

For any α > 0 such that τ +δ +α < τ ′, let gα(t) d= g(t−α). By stationarity,

〈
T τ ′(0, gα), (0, gα)

〉
Hτ ′

= EQ

[∫ 2τ ′

0
g(t− α) dXt

]2

= 0.

But T τ ′ is symmetric and positive-definite, so

T τ ′(0, gα) = 0,

which implies

gα = S̄′′ ∗ gα.

These α-translates of g span an infinite dimensional subspace ⊂ V . �

The next lemma shows that V cannot be continuously embedded in
L∞(0, 2τ ′).

Lemma 2.7. Let U be an infinite-dimensional subspace of L2(0, T ), with
T <∞. Then U cannot be continuously embedded in L∞(0, T ).
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Remarks.
• Undoubtedly, this lemma is known. However having no citation to

provide, we give here a proof.
• T <∞ is crucial here. Assume without loss of generality that T = 1.

Proof. Let {ϕn} be an orthonormal set in U . If M
d= supn ‖ϕn‖∞ is infinite,

we are done, so assume M <∞. Let

An
d=
{

x ∈ [0, T ] : ϕn(x) >
1√
2

}
,

Bn
d=
{

x ∈ [0, T ] : ϕn(x) < − 1√
2

}
.

Let λ(A) be the Lebesgue measure of A. Then

λ(An ∪Bn) ≥ 1
2M2

= 2α > 0.

We can assume, without loss of generality, that λ(An) ≥ α for all n. Let
N

d= [n/α + 1] and let

ϕ(x) d=
N∑

k=1

1Ak
(x).

Then ∫ 1

0
ϕ(x) dx ≥ Nα.

Necessarily,

λ

({
x :

N∑
k=1

1Ak
≥ n

})
> 0,

whence there are n indices, k1, . . . , kn, such that

λ (Ak1 ∩Ak2 ∩ · · · ∩Akn) > 0.

Now ∥∥∥∥∥∥
n∑

j=1

1√
n

ϕkj

∥∥∥∥∥∥
∞

>

√
n

2
but

∥∥∥∥∥∥
n∑

j=1

1√
n

ϕkj

∥∥∥∥∥∥
2

= 1,

which completes the proof. �

The proof that infi,n λn
i (τ) > 0 is now complete: else, by Claims 2.5 and

2.6 there exists τ ′ ∈ (τ, τ0) and an infinite dimensional eigenspace V as
described in Claim 2.6. Hence by the last lemma, there exist a sequence
fn ∈ V such that,

‖fn‖L2 = 1, fn = S̄′′ ∗ fn and ‖fn‖∞ > n.
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But this implies S̄′′ /∈ L2(0, 2τ ′), contradicting the assumption that (i) holds.
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