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We compare two natural bases for the invariant space of a
tensor product of irreducible representations of A2, or sl(3).
One basis is the web basis, defined from a skein theory called
the combinatorial A2 spider. The other basis is the dual
canonical basis, the dual of the basis defined by Lusztig and
Kashiwara. For sl(2) or A1, the web bases have been discov-
ered many times and were recently shown to be dual canonical
by Frenkel and Khovanov.

We prove that for sl(3), the two bases eventually diverge
even though they agree in many small cases. The first dis-
agreement comes in the invariant space Inv((V + ⊗ V + ⊗ V −

⊗ V −)⊗3), where V + and V − are the two 3-dimensional rep-
resentations of sl(3); if the tensor factors are listed in the
indicated order, only 511 of the 512 invariant basis vectors
coincide.

1. Introduction.

Given a simple Lie algebra g over C and a finite list of finite-dimensional,
irreducible representations V1, V2, . . . , Vn, one can study different bases of
the tensor product representation

V1 ⊗ V2 ⊗ . . .⊗ Vn

or its invariant space

Inv(V1 ⊗ V2 ⊗ . . .⊗ Vn).

The quantum group Uq(g) has representations and vector spaces of invariants
which generalize these, and one can also study their bases, with or without
the intention of specializing to q = 1. (For simplicity, we will usually consider
Uq(g) as an algebra over C(q1/2), and we will only occassionally mention
Z[q±1/2] as a ground ring.) Lusztig’s remarkable canonical bases [6], which
are the same as Kashiwara’s crystal bases [2], extend to bases of these spaces
and have many important properties.

When g = sl(2), the Temperley-Lieb category [3, 1] gives another set of
bases for the invariant spaces. It was recently established that these bases
are dual canonical, i.e., dual in the sense of linear algebra to canonical bases
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[1]. The Temperley-Lieb category gives a particularly explicit, simple, and
useful definition of the dual canonical bases of invariants (dual canonical
invariants) which establishes further natural properties of these bases.

Reference [5] defines generalizations of the Temperley-Lieb category to
the three rank two Lie algebras A2

∼= sl(3), B2
∼= sp(4) ∼= so(5), and G2.

These generalizations are called combinatorial rank two spiders. The bases
they yield are called web bases and their individual basis vectors are called
webs. One may conjecture that these bases are also dual canonical. As
evidence for the conjecture, consider the following properties which the A2

web bases share with dual canonical invariants:
1: Let V1, V2, . . . , Vn be arbitrary irreducible representations of Uq(sl(3)).

Then there is a natural cyclic permutation operator

Inv(V1 ⊗ V2 ⊗ . . .⊗ Vn) → Inv(V2 ⊗ V3 ⊗ . . .⊗ Vn ⊗ V1),

and it sends basis webs to other basis webs. (Reference [6], Prop.
28.2.4, establishes this property for dual canonical invariants.)

2: The tensor product of two basis webs is a basis web. (For dual canon-
ical invariants, this is a corollary of Theorem 3.)

3: If two adjacent tensor factors of a basis web are dual 3-dimensional
representations, then contracting them produces a linear combination
of basis webs with coefficients in N[−q1/2,−q−1/2]. (Here N means the
non-negative integers; the property is conjectural for dual canonical
bases.)

4: Let V and V ′ be tensor products of arbitrary irreducible representa-
tions, and let V (λ) be the irreducible representation of highest weight
λ. Then Inv(V ⊗B) decomposes as

Inv(A⊗B) ∼=
⊕

λ

Inv(A⊗ V (λ))⊗ Inv(V (λ∗)⊗B).

This decomposition induces a grading by λ, which leads to two fil-
trations by the usual partial ordering on dominant weights. The web
basis refines the ascending filtration.

5: The web bases are dual canonical in small cases.
In this paper, we will disprove the conjecture. Let V + be the defining

3-dimensional representation of sl(3) and let V − be the dual representa-
tion, and let V + and V − also denote the corresponding representations of
Uq(sl(3)). Then:

Theorem 1. Every basis web in

Inv(V1 ⊗ V2 ⊗ . . .⊗ Vn),

where each Vi is either V + or V −, is dual canonical when n ≤ 12, except
for a single basis web in

Inv((V + ⊗ V + ⊗ V − ⊗ V −)⊗3)
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and its counterparts given by cyclic permutation of tensor factors.

To see the extent of early agreement between the two kinds of bases, note
that there are 35 permutations of six tensor factors of V + and six tensor
factors of V − which are inequivalent under sign flip, reversal of order, and
cyclic permutation. Each permutation yields a 513-dimensional vector space
of invariants. All 513 basis webs are dual canonical unless the V +’s and the
V −’s are in the arrangement stated in the theorem, in which case 512 of
them are. However, the fraction of basis webs that are dual canonical must
go to 0 exponentially as n →∞.

In comparing the two types of bases, we will often refer to the book by
Lusztig [6]. The results cited there are stated in terms of canonical bases,
but they can be translated to statements about dual canonical bases.
1.1. Acknowledgements.

The authors would like to thank Igor Frenkel for his attention to this
work.

2. The quantum group Uq(sl(3)).

The quantum group Uq(sl(3)) is an associative algebra over C(q1/2), where
q1/2 is an indeterminate, with generators Ei, Fi, Ki, and K−1

i for i = 1, 2,
and the following relations:

KiK
−1
i = K−1

i Ki = 1
KiKj = KjKi

KiEj = qaij/2EjKi

KiFj = q−aij/2FjKi

EiFi − FiEi = δij
Ki −K−1

i

q − q−1

E2
i Ej − [2]EiEjEi + EjE

2
i = 0 i 6= j

F 2
i Fj − [2]FiFjFi + FjF

2
i = 0 i 6= j.

Here δij is 1 when i = j and 0 when i 6= j, while aij = 3δij − 1 is the Cartan
matrix of sl(3). The quantity [n] is a quantum integer, defined by

[n] =
qn/2 − q−n/2

q1/2 − q−1/2
.

After clearing denominators in the relations, one obtains a Hopf algebra
over Z[q1/2, q−1/2]. For convenience, let v = −q1/2. (Our v is the negative
of the v in Reference [6].)

The algebra Uq(sl(3)) is a Hopf algebra with a certain standard coproduct
∆. In this paper, we will use a second coproduct ∆ which is more appropri-
ate for dual canonical bases. This coproduct takes the following values on
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generators:

∆(K±1
i ) = K±1

i ⊗K±1
i

∆(Ei) = Ei ⊗ 1 + K−1
i ⊗ Ei

∆(Fi) = Fi ⊗Ki + 1⊗ Fi.

We use this coproduct to understand V ⊗V ′ as a representation of Uq(sl(3)) if
V and V ′ are themselves representations. Also, in any representation, we will
say that e is an invariant vector if Xe = ε(X)e, where ε is a homomorphism
from Uq(sl(3)) to C(v) given on generators by

ε(Ei) = ε(Fi) = 0

ε(Ki) = 1.

The vector space of all invariants of V is denoted Inv(V ).
The two irreducible representations of the quantum group Uq(sl(3)) that

we will study are the 3-dimensional representations V + and V −. We choose
a basis e±−1, e

±
0 , e±1 of V ±; the action of Uq(sl(3)) on V + is given by:

K1(e+
1 ) = q1/2e+

1 K1(e+
0 ) = q−1/2e+

0 K1(e+
−1) = e+

−1

K2(e+
1 ) = e+

1 K2(e+
0 ) = q1/2e+

0 K2(e+
−1) = q−1/2e+

−1

E1(e+
0 ) = e+

1 F1(e+
1 ) = e+

0

E2(e+
−1) = e+

0 F2(e+
0 ) = e+

−1

and all other combinations such as E1(v1) are 0. Similarly, the action on
V − is given by:

K1(e−1 ) = e−1 K1(e−0 ) = q1/2e−0 K1(e−−1) = q−1/2e−−1

K2(e−1 ) = q1/2e−1 K2(e−0 ) = q−1/2e−0 K2(e−−1) = e−−1

E1(e−−1) = e−0 F1(e−0 ) = e−−1

E2(e−0 ) = e−1 F2(e−1 ) = e−0
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and all other combinations are 0. These actions are summarized by the
weight diagrams of V + and V −:

1

−1 01

q1/2

q−1/2

K1

1q−1/2 q1/2

K2

E2

F2

E1

F1

V +

−1

10 1

q−1/2

q1/2

K1

1 q1/2q−1/2

K2

F2

E2

F1
E1

V −

These bases for V + and V − are dual canonical because they satisfy the
conditions of bases at ∞ [6, 20.1.1].

3. The combinatorial A2 spider.

Strictly speaking, the combinatorial A2 spider is an abstract tensor category
given by generators and relations which is known to be isomorphic to the
category of intertwiners of Uq(sl(3)) [5]. However, in this paper, this iso-
morphism will be implicit and we will instead describe vectors of Uq(sl(3)),
called webs, which are associated to it.

Following Reshetikhin and Turaev [8], we denote invariants and equivari-
ants in the representation category of Uq(sl(3)) by means of planar graphs.
If V is a tensor product of V ±’s, an element of Inv(V ) may be denoted by
some graph with oriented edges, with vertices labelled by invariant tensors,
and with a univalent vertex for each tensor factor. For each factor of V +,
the edge is oriented towards the corresponding vertex, and for each factor
of V −, the edge is oriented away:

tu

+

+

−

−

−

+

As in this example, we abbreviate V + and V − by their signs. Sometimes
the signs or the orientations or both will be omitted in cases where they are
irrelevant or clear from context.
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If V and V ′ are two different tensor products, the equivalence Hom(V, V ′)
∼= Inv(V ∗ ⊗ V ′) will also be important. For example, a graph such as:

+

+ +

t

might denote an element of Hom(V −, V +⊗V +) just as well as an element
of Inv((V +)⊗3). Using this equivalence, compositions of homomorphisms are
in general denoted by concatenation and tensor products of homomorphisms
(or invariants) are denoted by juxtaposition, or disjoint union.

The combinatorial A2 webs can be constructed from four elementary in-
variants and the operations of tensor product and contraction. The four
invariants are

b+− = e+
1 ⊗ e−−1 + v−1e+

0 ⊗ e−0 + v−2e+
−1 ⊗ e−1

b−+ = e−1 ⊗ e+
−1 + v−1e−0 ⊗ e+

0 + v−2e−−1 ⊗ e+
1

t−−− = e−1 ⊗ e−0 ⊗ e−−1 + v−1e−0 ⊗ e−1 ⊗ e−−1 + v−1e−1 ⊗ e−−1 ⊗ e−0

+ v−2e−0 ⊗ e−−1 ⊗ e−1 + v−2e−−1 ⊗ e−1 ⊗ e−0 + v−3e−−1 ⊗ e−0 ⊗ e−1

t+++ = e+
1 ⊗ e+

0 ⊗ e+
−1 + v−1e+

0 ⊗ e+
1 ⊗ e+

−1 + v−1e+
1 ⊗ e+

−1 ⊗ e+
0

+ v−2e+
0 ⊗ e+

−1 ⊗ e+
1 + v−2e+

−1 ⊗ e+
1 ⊗ e+

0 + v−3e+
−1 ⊗ e+

0 ⊗ e+
1 .

The contraction operations are defined using the equivariant pairings σ+− :
V + ⊗ V − → C(q) and σ−+ : V − ⊗ V + → C(q), which are given by

σ+−(e+
−1 ⊗ e−1 ) =σ−+(e−−1 ⊗ e+

1 ) = 1

σ+−(e+
0 ⊗ e−0 ) = σ−+(e−0 ⊗ e+

0 ) = v

σ+−(e+
1 ⊗ e−−1) =σ−+(e−1 ⊗ e+

−1) = v2

and all other values on basis vectors are 0. Since the σ’s are equivariant,
they induce contractions

Inv(V ⊗ V ± ⊗ V ∓ ⊗ V ′) → Inv(V ⊗ V ′)

for arbitrary tensor products V and V ′.
The planar graphs corresponding to the b’s and t’s are:

+ + +

t
+++

− − −

t
−−−

+ −

b
+−

− +

b
−+
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while those corresponding to the σ’s are

+ −

σ
−+

− +

σ+−

If the b’s and t’s are understood as equivariant homomorphisms from the
ground field C(v) to the corresponding invariant spaces, they and the σ’s
can be composed to form planar graphs. For example, the graph

+ + − + − + +

denotes the tensor

(I ⊗ I ⊗ σ+− ⊗ I ⊗ b+− ⊗ σ−+ ⊗ I ⊗ I) ◦ (t+++ ⊗ t−−− ⊗ t+++).

Given the identities

(I ⊗ σ+−) ◦ (b−+ ⊗ I) = (σ−+ ⊗ I) ◦ (I ⊗ b+−) = I(1)

(I ⊗ σ−+) ◦ (b+− ⊗ I) = (σ+− ⊗ I) ◦ (I ⊗ b−+) = I,

the value of a planar graph as a tensor is invariant under isotopy of the
graph.

In the combinatorial A2 spider, a (monomial) web is defined as any com-
position of tensor products of b’s, t’s, and σ’s. Any such web is denoted
by an oriented graph in a disk with trivalent and univalent vertices, and
possibly closed loops, such that the edges are either all out or all in at the
trivalent vertices, and such that the univalent vertices are at the boundary
of the disk.

By the fundamental theorem of invariant theory, the set of all monomial
webs with any given boundary spans the corresponding set of invariants.
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Moreover, the following relations hold:

= [3]

− + = −[2] − +(2)

−+

− +

=
−+

− +

+
+−

+ −

Thus, the set of non-elliptic webs, i.e., webs such that all internal faces
have at least six sides, also spans. It is a fundamental result that the set of
non-elliptic webs is a basis of each invariant space [5]. These are the web
bases that we will compare to the dual canonical bases.

4. State sums.

In the given bases of V + and V −, the b, t, and σ tensors have matrices, and
any monomial web can be evaluated by the usual linear algebra method of
summing over indices of these matrices. Such an expansion is equivalent to
a state sum in the sense of statistical mechanics. Given a monomial web w,
we first divide each edge into segments whose edges are the points where the
edge has a horizontal tangent. A state is then a function from the segments
to the set {−1, 0, 1}. The weight of a state at each trivalent vertex or
horizontal tangent is a matrix entry of the corresponding b, t, or σ tensor.
A boundary state is a function from just those segments with univalent
vertices to {−1, 0, 1}. The weight of a boundary state is then defined as the
total weight of all extensions of the boundary state to a state of the entire
graph. The weights of the boundary state are then the coefficients of w
expanded in the tensor product basis.

We will abbreviate a state in a state sum by flow lines. A collection of
flow lines in a monomial web w is a subgraph that contains exactly two of
the three edges incident to each trivalent vertex. Each flow line is oriented;
this orientation need not agree with the orientation of w. Every segment of
an edge disjoint from a flow line has the state 0. If a flow line is oriented
downward along a segment, the segment has the state 1, while if it is oriented
upward, the segment has the state −1. In this way, flow lines represent
precisely those states with non-zero weight.
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A second convenience for computing state sums is to introduce the linear
endomorphisms

t++
− : V − → V + ⊗ V +

t−−+ : V + → V − ⊗ V −

t+−− : V − ⊗ V − → V +

t−++ : V + ⊗ V + → V −.

They may be defined as the webs:

+

++

t
++

−

−

−−

t
−−

+

+

+ +

t
+

−−

−

− −

t
−

++

(Note that here, as before, the signs of the tensor subscripts are opposite to
the signs at the bottom of the webs, because Hom(V, V ′) ∼= Inv(V ∗ ⊗ V ′).)
Their coefficients are given by:

t++
− e−1 = e+

1 ⊗ e+
0 + v−1e+

0 ⊗ e+
1

t++
− e−0 = e+

1 ⊗ e+
−1 + v−1e+

−1 ⊗ e+
1

t++
− e−−1 = e+

0 ⊗ e+
−1 + v−1e+

−1 ⊗ e+
0

and

t+−−(e−1 ⊗ e−0 ) = ve+
1 t+−−(e−0 ⊗ e−1 ) = e+

1

t+−−(e−1 ⊗ e−−1) = ve+
0 t+−−(e−−1 ⊗ e−1 ) = e+

0

t+−−(e−0 ⊗ e−−1) = ve+
−1 t+−−(e−−1 ⊗ e−0 ) = e+

−1.

As before, all combinations not listed are 0. The formulas for t−++ and t−−+

are the same; one just switches +’s and −’s. These endomorphisms have
graphs that are Y’s and λ’s; their weights may be abbreviated with flow
lines according to the following chart:

1 1 1 v
−1

v
−1

v
−1
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1 1 1 v v v

Figure (3).
For completeness, we give also give a chart of weights of the b’s and σ’s:

1 v
−1

v
−2 1 v v

2

Figure (4).
As an example of computing a state sum using flow lines, the following

are the only two non-zero states with boundary 0, 0, 0, 0, 0, 1,−1 in a certain
web w:

+ − + − + + + + − + − + + +

Since the weights of these states are v−1 and v−3, we therefore conclude that
the coefficient of

e+
0 ⊗ e−0 ⊗ e+

0 ⊗ e−0 ⊗ e+
0 ⊗ e+

1 ⊗ e+
−1

in w is v−1 + v−3 in the tensor product basis.
Finally, note that the weight of any state of any monomial web is either

a power of v or zero. Thus, weights cannot cancel in state sums, and any
state sum takes values in N[v, v−1].

5. From paths and strings to non-elliptic webs.

In order to compare the web and dual canonical bases, we must enumerate
non-elliptic webs by certain strings of elements of {−1, 0, 1}, namely those
that correspond to weight lattice paths confined to a Weyl chamber of sl(3).

More precisely, let S = s1, . . . , sn be a string of signs, and let J =
j1, . . . , jn be a string of states chosen from {−1, 0, 1}. Each vector esk

jk
has

a weight µk, and we may define a path 0 = π0, π1, π2, . . . , πn in the weight
lattice of sl(3) such that πk = µk + πk−1. The dominant Weyl chamber
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is defined as the subset of the weight lattice consisting of positive integral
linear combinations of the weights µ+ and µ− of e+

1 and e−1 . It is well-known
that, for fixed s1, . . . , sn, the number of strings j1, . . . , jn that produce a
lattice path in the dominant Weyl chamber from the origin to itself equals

dim Inv(V s1 ⊗ V s2 ⊗ . . .⊗ V sn).

Call such lattice paths dominant.
Given a sign string and a string of states, we define a web by inductive

rules called the growth algorithm:

different:

1 0

0 1

0 0

−1 1

0 −1

−1 0

1 −1

same:
1 0

1

0 −1

−1

1 −1

0

Initially, the web consists of parallel strands whose orientations are given by
the sign string. The rules indicate that if the state string admits a substring
of the type appearing at the top in one of the cases (taken from the top row
if the two signs are different and from the bottom row if they are the same),
we should concatenate the corresponding web and replace the substrings
with what appears at the bottom of the web. If none of the patterns at
the top appear anywhere, the growth algorithm stops. For example, the
growth algorithm converts the sign string + − + − + + + and the state
string 1, 1, 0, 0,−1, 0,−1 to the web:

+
1
−

1
+
0

−

0
+
−1

+
0

+
−1

In this case the growth algorithm continues until the sign and state strings
have length 0.

The validity of the growth algorithm rests on the following lemmas.

Lemma 1. Given any sign and state string, the web produced by the growth
algorithm does not depend on the order in which the substrings are replaced.

Proof. (Sketch) The proof is by induction. Order state strings by their
length; if two state strings have the same length, order them lexicographi-
cally. A minimal counterexample consisting of a sign string S and a state
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string J must have two different replaceable substrings that ultimately re-
sult in two different webs; given two such replacements r1 and r2, let w1

and w2 be the two webs that result, and let S1 and S2 and J1 and J2 be
the sign and state strings that result. The pairs (S1, J1) and (S2, J2) are
not counterexamples because J1 and J2 come before J ; therefore the growth
algorithm is order-independent for both of these strings. To obtain a con-
tradiction, it suffices to complete a diamond by finding a pair (S3, J3) which
can be obtained from either (S1, J1) or (S2, J2) by the growth algorithm, for
example:

+ − +
1 0 −1

(S, J)

+ − +

0 1 −1

(S1, J1)

+−+

01−1

(S2, J2)

+ − +

0 0

(S3, J3)

Figure (5).

If the replacements r1 and r2 have disjoint substrings, then we can trivially
complete the diamond by appling r2 after r1 and vice-versa. There is a short
list of cases in which they are not disjoint, and we can complete the diamond
on a case-by-case basis. Figure (5) gives one of the cases. �

Lemma 2. Any web produced by the growth algorithm is non-elliptic.

Proof. (Sketch) In the growth rules, an internal face can only be “born” with
a rule that produces an H. The only way to obtain a 2-sided face would be
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to close off the face immediately with a U. However, the indices that result
from attaching an H rule out this possibility.

A square face can be ruled out by a more complicated version of the same
reasoning. A square might hypothetically have one of four possible histories:

In the first three cases, the extra vertices may belong either to H’s or Y’s
produced by the growth algorithm at adjacent locations. Working backwards
from the final U, one quickly concludes that none of the histories are possible.

�

Lemma 3. If a sign and state string correspond to a dominant lattice path,
then the growth algorithm does not terminate until the strings have length 0.

Proof. (Sketch) The proof is again by induction on length and lexicographic
order. Observe that the growth algorithm only terminates at a non-decreas-
ing state string (and only then when all positions k such that jk = 0 have
the same sign sk). On the other hand, the state string of a dominant path
of length greater than 0 must begin with 1 and end with -1. Thus, it suffices
to show that a growth rule applied to a dominant path produces another
dominant path. None of the 14 growth rules change the endpoints of the
corresponding lattice path, and each of them either reduces the set of vertices
it visits or modifies it in a way that cannot lead to an excursion outside of
the dominant Weyl chamber. For example, a growth rule that produces a Y
replaces two consecutive steps of the path by one step:

1 0

1

�

The converse of Lemma 3 also holds [4].
The growth algorithm has a notable inverse for dominant paths. Let w

be a non-elliptic web. Given points P and Q on the boundary of w lying
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between endpoints, a minimal cut path is a transversely oriented arc from P
to Q which is transverse to w and which crosses as few strands as possible:

+ +

− −

− −

+ +

+ +

− −

The weight of a minimal cut path is aµ+ + bµ− if the cut path crosses a
strands whose orientations agree with that of the arc and b strands whose ori-
entations disagree. Although minimal cut paths are not necessarily unique,
their weights are [5]. Moreover, any two minimal cut paths are connected
by a sequence of H-moves:

++

−−

Now let w be a non-elliptic web with n endpoints that are linearly ordered
(rather than cyclically ordered) and lie above w, as might be produced by
the growth algorithm. Let P be a point below w, and let Q0, Q1, . . . , Qn

be points that alternate with the endpoints of w. Let πk be the weight of a
minimal cut path from P to Qk:

P

Q0Q1Q2 Q3 Q4Q5 Q6 Q7

The sequence 0 = π0, π1, . . . , πn = 0 is a dominant lattice path [5]. Each
successive difference πk−πk−1 is the weight of some esk

jk
, so we can reconstruct

both a sign string (which is given directly by the boundary of w) and a state
string from the web w. Call this procedure the minimal cut path algorithm.

Proposition 1. The minimal cut path and growth algorithms are inverses.



WEB BASES FOR sl(3) ARE NOT DUAL CANONICAL 143

Proof. For each fixed sign string S, let wS
J be the web produced by the

growth algorithm from the state string J = j1, . . . , jn, and let m(w) be the
state string produced by the minimal cut path algorithm from the basis web
w. We will show that m ◦ g = I. Since m is a bijection [5], it follows that
g ◦m = I also.

We extend the growth rules to create a system of flow lines and minimal
cut paths along with the basis web. The extension is given by the following
diagrams:

different:

1 0

0 1

0 0

−1 1

0 −1

−1 0

1 −1

same:
1 0

1

0 −1

−1

1 −1

0

Figure (6).

In each case, cut paths may merge, so that at any step after the first one, a
single cut path represented in the diagram may be replaced by many parallel
cut paths. In the final result, the cut paths are all minimal by the principle
that MIN CUT ≥ MAX FLOW. I.e., if the sum of the indices to the left of
a given cut path γ is m, then by conservation of flow, γ must cross at least
m flow lines. By construction, any strand that γ cross has flow on it and all
flow across γ is to the right; therefore γ must cross exactly m flow lines.

Since the chosen cut paths are minimal, it is routine to show by induction
on the number of steps in the growth algorithm that the minimal cut path
algorithm reconstructs the original state string. �

Remark. A well-known theorem in the theory of linear programming is
often summarized by the maxim MIN CUT = MAX FLOW. However, if
we applied this theorem directly, we would have to allow the possibility of
fractional flow lines. Thus, we have shown in our case that the maximal
flow in the linear sense can be achieved combinatorially without using flow
lines with forks.

Reference [5] demonstrated that the set of non-elliptic webs is a C(q)-
basis of Inv(V s1 ⊗ . . .⊗ V sn). Proposition 1 gives a way to index this basis
by dominant paths. Here we can obtain a stronger result. If S = s1, . . . , sn

is a sign string and J = j1, . . . , jn is a state string, define eS
J by:

eS
J = es1

j1
⊗ es2

j2
⊗ . . .⊗ esn

jn
.
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Theorem 2. The tensor wS
J expands as

wS
J = eS

J +
∑
J ′<J

c(S, J, J ′)eS
J ′

for some coefficients c(S, J, J ′) ∈ N[v, v−1], where the state strings J and J ′

are ordered lexicographically.

It follows that the non-elliptic webs are a Z[v, v−1]-basis of the invariant
spaces in which they live.

Proof. The result follows from the existence of the minimal cut paths. Recall
that the coefficients c(S, J, J ′) are state sums. For each k, the cut path γ

from P to Qk cuts m strands, where m =
∑k

`=1 j`. But if J ′ > J , we can
choose the first k such that jk 6= j′k; in this case, j′k > jk. The cut path
γ must cut at least

∑k
`=1 j′` > m flow lines in any state contributing to

c(S, J, J ′). But this is impossible, since γ only cuts m strands.
The case J ′ = J is more delicate. We claim that only one non-zero state

contributes to c(S, J, J), namely the state x constructed in Proposition 1.
Since MIN CUT = MAX FLOW by this proposition, every edge which in-
tersects any minimal cut path must carry flow in every non-zero state. The
claim follows if we can show that minimal cut paths meet every edge that
carries flow in the state x.

Consider two cut paths from P to adjacent endpoints Qk and Qk+1. If
we move the cut paths as close together as possible using H-moves, then by
a curvature argument [5], there are only three possibilities for the portion
of the web between them:

.

.

.

.

.

.

.

.

.

In each case, there are no edges with flow between the two cut paths. At
the same time, when one performs an H-move on a cut path, the path hops
over a single edge which does not carry flow. Thus, the set of all cut paths
intersects every edge with flow.

It remains to show that the weight of the state x is 1. This follows
from comparing the extended growth rules in Figure (6) to the weights in
Figures (3) and (4). �

Given a sign string S and a non-dominant state string J , the growth
rules produce a new sign string S′, a state string J ′, and a web wS

J ∈
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Hom(V S′
, V S). Theorem 2 generalizes to the vectors wS

J (eS′
J ′) to produce a

web basis for all of V S [4].

6. The dual canonical axioms.

In this section, we will give axioms that uniquely determine the dual canon-
ical bases of invariant spaces. The first axiom involves a certain operator
Θ ∈ Uq(sl(3))⊗̂Uq(sl(3)), where “⊗̂” is a certain topological tensor product
[1, 6]. For each tensor product V = V S , we define a v-antilinear endomor-
phism Φ = ΦS inductively by the rule

ΦSS′
(eS ⊗ eS′

) = Θ(ΦS(eS)⊗ ΦS′
(eS′

)),

where eS ∈ V S and eS′ ∈ V S′
. (By v-antilinearity, we mean that Φ is C-

linear and that Φ(ve) = v−1Φ(e).) The action of Φ on V + and V − is defined
by the stipulation that it fixes {v±i }. Remarkably, the properties of Θ imply
that this definition is consistent.

Theorem 3 (Lusztig). For any sign string S = s1, . . . , sn and any state
string J = j1, . . . , jn, there is a unique element

eS
♥J = es1

j1
♥es2

j2
♥ . . .♥esn

jn
∈ V S

which is invariant under Φ and such that

es1
j1
♥es2

j2
♥ . . .♥esn

jn
= eS

J +
∑
J ′

c(S, J, J ′)eS
J ′

with c(S, J, J ′) ∈ v−1Z[v−1] (the negative-exponent property).

Clearly, {eS
♥J} is a basis of V S , the dual canonical basis. It is less clear,

but nevertheless true, that the subset of {eS
♥J} indexed by dominant paths

is a basis of Inv(V S) [6, Sec. 27.2.5].
It remains to determine when wS

J = eS
♥J , i.e., when basis webs are dual

canonical.

7. Early agreement.

By inspection, the empty web w∅
∅ = 1 and the webs w−+

1,−1 = b−+ and w+−
1,−1 =

b+− have the negative-exponent property. They are therefore dual canonical,
because there must be a dual canonical vector in the one-dimensional space
of invariants in which they lie, and they do not retain the negative-exponent
property after rescaling. The same argument applies to t+++ and t−−−.

Proposition 2. Every basis web wS
J is invariant under Φ.

Proof. We will actually prove that every morphism made out of b’s, t’s,
and σ’s, in other words every (monomial) web interpreted arbitrarily as an
element of Hom(V S , V S′

), is equivariant under Φ. For this purpose, it is
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convenient to define Φ = Φ∅ for a 0-fold tensor product as v-conjugation;
Φ(v) = v−1.

Clearly, the identity I is equivariant.
Since the b’s and the t’s are dual canonical, they are invariant under Φ,

or equivariant as morphisms. Let us assume for a moment that the σ’s are
equivariant also. If L and L′ are both equivariant under both Φ, then so is
their composition if they can be composed. If they are also both equivariant
under the action of Uq(sl(3)), as any web is, then L⊗L′ intertwines Φ⊗Φ,
and it also intertwines Θ ∈ Uq(sl(3))⊗̂Uq(sl(3)). It therefore intertwines Φ.
The proposition follows by induction, decomposing an arbitrary web as a
tensor product or composition of simpler pieces.

The equivariance of σ’s follows from equations (1) and a reversal of the
previous argument. The map Φ intertwines the identity; pushing Φ from
right to left on the left side of the first equation, we conclude that

(I ⊗ (σ−+ ◦ Φ−+)) ◦ (b+− ⊗ I) = (I ⊗ (Φ∅ ◦ σ−+)) ◦ (b+− ⊗ I).

Because b+− is non-singular, this implies

σ−+ ◦ Φ−+ = Φ∅ ◦ σ−+.

The same argument applies to σ+−. �

For a general basis web wS
J , each state has some weight vn; call n the

exponent of the state. The web wS
J has a distinguished state with weight 1,

namely the unique state with boundary J . By Theorem 2, we can call this
state the leading state. It is dual canonical if and only if every non-leading
state has negative exponent. In the following discussion, let w be a basis
web which is not dual canonical and which has as few endpoints as possible.

Proposition 3. A minimal counterexample w is connected and does not
have a Y or a double H at the boundary:

w 6=

w
′

w 6=

w
′

Proof. Suppose, to the contrary, that w is the disjoint union of w′ and w′′.
A state of w restricts to a state of w′ and a state of w′′, and the weights
multiply. Since only one state of either w′ or w′′ has weight vn with n ≥ 0,
the same is true of w. Thus, w has the negative-exponent property.

Suppose that w has a Y at the boundary. Let w′ be w without the Y. By
inspection of t++

− and t−−+ , the Y has six possible states, three with weight
1 and three with weight v−1. At the same time, any state of w′ has negative
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exponent except for the leading state, which has exponent 0. Thus, the only
way that w can fail to have the negative-exponent property is if there are
two distinct states which have weight 1 on both w′ and the Y. But since the
three states of the Y have different states on the edge that it shares with
w′, this is not possible.

Suppose finally that w has a double H. The argument here is essentially
the same as for a Y, but more complicated. We arrange the double H as a
composition of one λ and two Y’s, as above. Then one can check on a case-
by-case basis that there it has no states with positive exponent and twelve
states with weight 1. These twelve states run through all nine possibilities
for the states of the two bottom edges, with three repeats. The three repeats
are 1 and 0; 1 and −1; and 0 and −1. Again let w′ be the remainder. If
w had two states with weight 1, then because w′ has the negative-exponent
property, the two states can only differ in the double H. Moreover, the states
at the bottom extend to the leading state of w′, so w′ can be constructed
using the growth rules. In particular, we can apply a growth rule to the
two edges of the double H to conclude that w′ has a Y here. Together, they
make a square:

w

w
′

The square is an elliptic face of w, a contradiction. �

Proposition 3 establishes the positive part of Theorem 1, since by a cur-
vature argument, a connected basis web with at least one vertex and with
no Y’s at the boundary must have at least six H’s, and no two of the H’s
can share vertices. Moreover, one can eliminate all but one web with twelve
vertices, a web which as it happens is the first counterexample.

8. Counterexamples.

It is easier to demonstrate that counterexamples eventually appear than to
find or verify any particularly small counterexamples. Consider a hexagon
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made of three λ’s and three Y’s that is part of some larger web:

v
−1

1

v v

11

If the hexagon has a closed, clockwise flow line, as indicated, then its overall
weight is v.

A large flat web locally resembles the tiling of the plane by regular
hexagons. The number of such hexagons can grow quadratically in the
length of the periphery, and we can put flow loops on one third of the
hexagons to form a valid state. In the limit, the exponent of any such
state must be positive. Thus, not all basis webs have the negative exponent
property.

The smallest counterexample is similar to the asymptotic ones:

− + + − − + + − − + + −

Figure (7).

One can compute the weight of this state by noting that, besides the com-
plete hexagon in the middle, the flow lines make three more hexagons divided
into halves, and in addition there are two right-ward pointing U-turns. Thus
the weight is v4v−4 = 1. If one rotates the web, another state with weight
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1 appears:
+ − − − + + − − + + − −

The fact that neither web is dual canonical is consistent with the fact that
both web bases and dual canonical bases are preserved by cyclic permutation
of tensor factors.

Theorem 4. The web
+ +

− −

− −

+ +

+ +

− −

−

+ +

− −

− −

+ +

+ +

− −

is dual canonical.

Proof. (Sketch) Removing an H from the counterexample w in Figure (7)
produces a non-counterexample w′ by Proposition 3. A hypothetical state x
with non-negative exponent must either have weight v or 1 on the H; in the
latter case, the state x must restrict to the leading state of w′ and yet differ
from the leading state of w. A combinatorial investigation reveals that the
second alternative is impossible. The only possibility for the local state for
each of the six H’s forces x to be the state given in Figure (7). Thus we
can subtract off another basis web, which happens to be dual canonical, to
eliminate this term and recover the negative-exponent property. �

9. What is to be done?

What can one conclude from the fact that the web bases are not dual canon-
ical? First, we argue that the web bases are nevertheless interesting. They
are useful for computing quantum link invariants, and they may be useful for
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computing 6j-symbols along the lines of Masbaum and Vogel’s computation
for sl(2) [7].

In light of Theorem 4, it is possible that web bases can somehow be
understood using perverse sheaves that are the same as those related to
canonical bases except for certain salient subsheaves or stalks.

10. Higher-rank spiders.

The main open problem concerning spiders and web bases is to generalize
the combinatorial rank two spiders to higher rank. If the web bases were
dual canonical, it would have given an immediate definition, albeit a very
different one from the one given in Reference [5]. Since it is not the case,
we outline a possible alternative approach to such a generalization.

Calculations in rank 2 spiders exhibit many elements of the Coxeter-
Weyl geometry of the corresponding affine Weyl group, this phenomenon
depends on the coincidence that the dimension of a web equals the rank of
the Lie algebra. Nevertheless, it is implausible that a higher-rank spider
would involve higher-dimensional webs, because quantum groups, irrespec-
tive of their rank, are fundamentally related to low-dimensional geometry
and topology. Moreover, the A1 or Temperley-Lieb spider has 2-dimensional
webs even though the Lie algebra has rank 1.

Informally, a large flat web in any of the three rank 2 spiders resembles the
Voronoi tiling of the plane associated to the weight lattice. More specifically,
if one generically immerses a disk in the plane of a weight lattice, then the
pull-back of the edges and vertices of the Voronoi tiling forms a valid non-
elliptic web:

.

.

.

· · ·

Similarly, in the rank 1 case, there is a weight-lattice Voronoi tiling of the
line by line segments. If one submerses a disk, the inverse image of the
endpoints of these line segments is some 1-manifold, which is then a basis
web in the A1 spider.

Thus, we may hypothesize that a web in a rank n spider resembles the
inverse image of a weight-lattice Voronoi tiling under an immersion of a
disk in Rn. An essential ingredient, which is present in the rank 1 and 2
cases, is that the codimension 1 faces of such a Voronoi tiling are labelled by
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fundamental irreducible representations. More concretely, if µ1 and µ2 are
two Voronoi adjacent points in the weight lattice, there is a unique dominant
weight λ which is conjugate to µ1 − µ2. The codimension 1 face separating
µ1 from µ2 pulls back under an immersion of a disk to an edge; this edge
might then be labelled by the representation V (λ).

For example, the weight lattice of the Lie algebra A3 = sl(4) is the BCC
lattice. The Voronoi region of a lattice point is a 14-side snub octahedron;
following the convention just described, the six-sided faces are labelled with
the defining representation V of sl(4) and its dual V ∗, while the four-side
faces are labelled by the six-dimensional representation

∧2 V . The incidence
of the faces suggests vertices of the form:

Here an oriented edge is one labelled by V or V ∗, while a double edge is
one labelled by

∧2 V .
Both of these hypothetical vertices correspond to invariant tensors which

are unique up to a scalar factor. One can then consider relations which these
tensors satisfy. These include some elliptic-looking relations such as:

= C

But there is also the relation:

=

Figure (8).
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This relation (and its dual) can perhaps be motivated by a homotopy of a
disk across a vertex of the Voronoi tiling. And there are the relations:

= + simpler terms

= + simpler terms

These relations appear to be related to the faces of the snub octahedron.
Despite these suggestive relations, we do not know how to put them into

a coherent whole. Some relations that one might predict from Voronoi ge-
ometry do not hold. For example, if one maintains that the structure of a
vertex in the Voronoi tiling predicts relation (8), then presumably it would
also predict a relation between the two webs:

However, these two webs are linearly independent.
Ideally, we would like an explicit presentation for the representation cate-

gory of a Lie algebra which is akin to the Serre relations for the Lie algebra
itself.
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