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A classical theorem of Hurewitz says that the isometry
group of a closed 2-dimensional hyperbolic manifold acts faith-
fully on its first homology group. The analogous theorem in
dimension 3 is false. In this paper we consider the class of
3-manifolds which are cyclic branched coverings of knots in
the 3-sphere S3. We characterize the isometry group actions
which are homologically faithful in the case of p-fold cyclic
coverings of knots when p is sufficiently large. This charac-
terization is given in terms of the knot polynomials.

1. Introduction.

A classical theorem of Hurewitz says that the isometry group of a closed 2-
dimensional hyperbolic manifold acts faithfully on its first homology group.
The analogous theorem in dimension 3 is false. In this paper we consider
the class of 3-manifolds which are cyclic branched coverings of knots in the
3-sphere S3. We give necessary and sufficient conditions, in terms of the
knot polynomials, for the effectiveness of the isometry group action on the
first homology group in the case of hyperbolic manifolds which are p-fold
cyclic coverings of knots when p is sufficiently large.

The special properties of homologically trivial actions on a CW-complex
have been studied by mathematicians since the 30’s with the pioneering
work of Paul Smith. The technique of Smith’s exact sequences has later
been generalized by Borel in his Princeton seminar. In Section 3 we shall
specialize to the 3-dimensional case some of these classical results. More
generally homologically trivial actions on manifolds can be addressed by the
methods of the general theory of transformation groups. However the point
of this paper is that the 3-dimensional case has some special features which
are worth to be written.

The most elementary class of homologically trivial actions on hyperbolic
3-manifolds are finite group actions on homology 3-spheres (see [27] and
references therein). More interestingly, one can use Dehn surgery on knots
to construct homologically trivial actions on hyperbolic 3-manifolds which

155

http://pjm.math.berkeley.edu/pjm
http://dx.doi.org/10.2140/pjm.1999.188-1


156 LUISA PAOLUZZI AND MARCO RENI

are not homology 3-spheres: We will briefly discuss this construction in Sec-
tion 2 and Section 4. In this paper we are mainly interested in the class of
3-manifolds which are cyclic coverings of knots in S3. The starting point
of our work are the classical homology invariants which have been used to
classify knots since the beginning of knot theory. The most popular among
these invariants is the Alexander polynomial and its application is often suc-
cessful to distinguish knots with few crossings and find their periods. More
recently, mathematicians have turned their attention to other kinds of knot
polynomials to deal with those cases where abelian invariants do not work.
However the classical homology invariants seem to be more appropriate to
our purposes.

We will often make use of the following two facts which are well-known:
i) The Alexander polynomial of a periodic knot (see Section 2 for precise

definitions and statements) satisfies the so-called Murasugi conditions [21].
These conditions can be explicitly computed and have been used to test
periods of knots [4]. It has been conjectured and proved in some cases [8]
that Murasugi conditions for a knot polynomial ∆ are also sufficient to find
a periodic knot with Alexander polynomial ∆. Further work on periodicity
conditions on Alexander polynomials can be found in [22], [23], [29].

ii) If M is a p-fold cyclic branched covering of a knot in S3, then the first
homology group of M has some well-known properties. For example, if p is
prime then H1(M,Z p) = 0 [12]. If p is odd and prime, Plans [24] has shown
that H1(M,Z) is a direct double isomorphic as an abelian group to G ⊕ G
(see also [9], [14]). There have been also various attempts of classifying
algebraically the class of groups which occur as homology groups of cyclic
coverings of knots [5] and this classification has finally been completed in
[6] and [7]. See also [11] for periodicity phenomena in the homology groups
of cyclic coverings of knots.

Our main Theorems are the following:

Theorem 5. Let M be a p-fold cyclic branched covering of a knot K in
S3 for some p prime. Suppose that:

i) M is hyperbolic and not a homology 3-sphere.
ii) K has neither cyclic nor free periods.

There exists a number N depending on K such that if p > N , then the
orientation-preserving isometry group of M acts faithfully on the first ho-
mology group of M .

We make a brief comment about the number N which appears in the
statement of the Theorem. As it will be explained later in this introduction,
if the order of the covering is sufficiently high, it follows from Thurston’s the-
ory that the isometry group of M consists of the set of lifts of the isometries
of K. The constant N for which this phenomenon occurs is not universal
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and depends on the knot K. It is possible [28] to give a numerical estimate
of N in terms of geometric quantities related to the knot.

Theorem 6. Let M be a p-fold cyclic branched covering of a knot K in
S3 for some p prime. Denote by q1, . . . , qs the prime cyclic periods of K
and by K1, . . . ,Ks their fixed-point sets in S3. Suppose that:

i) M is hyperbolic and not a homology 3-sphere.
ii) K has no free periods.
iii) The linking number lk(K,Ki) (i = 1, . . . , s) is 1.

There exists a number N depending on K such that if p > N , then the
orientation-preserving isometry group of M acts faithfully on the first ho-
mology group of M if and only if the knot K does not satisfy the M-condition
for the primes q1, . . . , qs.

Theorem 6 is a special case of a more general theorem (Theorem 4) which
is proved in Section 4. Despite the long statement, the hypotheses of The-
orem 6 are quite general. We make now several comments to explain these
hypotheses.
- The M-condition appearing in the statement of Theorem 6 comes from
the Murasugi conditions and we postpone its precise definition to Section 2:
It is a computable condition on a knot polynomial.
- It is possible to work out a corresponding M-condition also in the case that
lk(K,Ki) is not 1. However this condition is more involved and algebraically
complicated. Moreover, in the case lk(K,Ki) = 1, we are able to provide
concrete examples of knots satisfying the M-condition.
- The hypothesis ii) that K has no free periods is not restrictive, since we
shall prove in Section 4 (Theorem 3) that given a 3-manifold which is the
cyclic covering of a knot with a free period, it comes down to the case of a
cyclic covering of a knot with a cyclic period (we postpone precise definitions
to Section 2).
- The only essential condition in Theorem 6 is that the order p of the covering
is sufficiently large. This is in fact the limit of the present investigation. The
problem we are faced with, is that if a hyperbolic 3-manifold M is presented
as the cyclic covering of a knot K, then its isometry group is not known a
priori by simply looking at the knot itself. In fact every isometry of K lifts
to an isometry of M , but, in general, there exist isometries of M which do
not descend to K. The isometries which do not descend to K are said hidden
to K. Now, if the order of the covering is sufficiently high, it follows from
Thurston’s theory ([17], [26], [28]) that hidden isometries do not exist and
we can solve the problem of the existence of homologically trivial actions
on M , by only looking at the knot and its homology invariants. However,
for low order coverings, hidden isometries, in general, do exist [28] and
the structure of the isometry group is only partially understood [26]. This
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phenomenon is investigated in more detail in Section 8 where we prove also
a partial result for the case of actions by hidden isometries.

The paper is organized as follows:
In Section 2 we give some examples of homologically trivial actions on 3-

manifolds and state the M-condition. In Section 3 we discuss some classical
theorems of transformation group theory for the 3-dimensional case. In
Section 4 we prove our more general theorem. In Sections 5 and 6 we prove
Theorem 5 and 6. In Section 7 we discuss some examples of knots which
satify the M-condition. In Section 8 we discuss the phenomenon of hidden
isometries.

2. Preliminaries and statement of M-condition.

A knot K in S3 is said to have cyclic period n if there is a diffeomorphism
f of the pair (S3,K) of order n which preserves the orientation of both K
and S3 with non-empty fixed-point set a circle disjoint from K. By the
positive solution of the Smith conjecture [20] the fixed-point set of such
a diffeomorphism is unknotted and the diffeomorphism is equivalent to a
rotation around its fixed-point set. A knot K is said to have free period n
if there is a diffeomorphism of the pair (S3,K) of order n which preserves
the orientation of both K and S3 with empty fixed-point set.

If K is a hyperbolic knot, that is its complement admits a complete Rie-
mannian structure with constant negative curvature, as a consequence of
Mostow’s Rigidity Theorem, any periodic diffeomorphism of (S3,K) can be
chosen to be an isometry on S3 −K. More generally, if M is a hyperbolic
3-manifold with finite volume, then the mapping class group of M (which
is called the symmetry group of M) is finite and isomorphic to the isometry
group of M . We shall be concerned only with the orientation-preserving
symmetry group of K, that is with free or cyclic periods or invertibility (a
hyperbolic knot is invertible if there is an involution of (S3,K) preserving
the orientation of S3 with non-empty fixed-point set a circle intersecting
K into two points). Thus the orientation-preserving symmetry group of K
is isomorphic to a dihedral group Dn of order 2n or the cyclic group Z n

according if K is invertible or not.

It is quite easy to construct homologically trivial actions on hyperbolic
3-manifolds by using Dehn surgery on a knot in S3.

Recall the process of Dehn surgery. Let K ⊂ S3 be a knot, T a regular
neighbourhood of K and M the closed complement of T . On ∂T = ∂M
(a 2-torus) we have two distinguished simple closed curves: A meridian m
which bounds a disk in T and generates H1(M); a longitude l which is
trivial in H1(M). Let V be a full torus with meridian m̄ bounding a disk
in V . Identify ∂M with ∂V by a homeomorphism h mapping m̄ to mplq for
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p, q ∈ Z and gcd(p, q) = 1. The closed orientable 3-manifold

Mp,q := M ∪h V

is said to be obtained by p/q-surgery on K.

Let now K ⊂ S3 be a knot with period n > 1 and f the diffeomorphism
of the pair (S3,K) of order n. The map f acts homologically trivially on M
and, since it is orientation-preserving, then [16, Lemma 5.2] it extends to an
orientation-preserving periodic map, say fp,q of Mp,q for any pair (p, q). The
map fp,q fixes setwise the core of the added solid torus and has the same
period n has f (because any isotopy of Mp,q fixing setwise the core of the
added solid torus restricts to an isotopy of S3 −K). Note that

H1(Mp,q) ∼= H1(M)/< mplq > ∼= Zp.

In particular H1(Mp,q) is generated by the image of the curve m in Mp,q:
Therefore fp,q acts homologically trivially on Mp,q. This construction can be
made hyperbolic: If K is hyperbolic, then, by Thurston’s Hyperbolic Dehn
Surgery Theorem ([31] and [25, Section 10.5]), for all but finitely many
(p, q), the manifold Mp,q is also hyperbolic.

Another application of the Dehn surgery construction above will be de-
scribed at the beginning of Section 4. The case of manifolds which are
presented as cyclic branched covering of knots is much more difficult and it
is the subject of the rest of the paper. Let now M be a cyclic p-fold branched
covering of a knot K in S3 and denote by ∆ the Alexander polynomial of
K. A classical result of Fox [10] says that

order H1(M) =

∣∣∣∣∣
p−1∏
i=0

∆(ρi)

∣∣∣∣∣
where ρ is a primitive pth root of unity. The convention in the formula
above is that the order of an infinite group is 0. Thus H1(M) has infinite
order if and only if some root of ∆ is a primitive pth root of unity.

Let us now state the M-condition for a periodic knot. Let K be a knot
with cyclic period q and g a cyclic diffeomorphism of (S3,K) of order q.
Denote by K ′ the fixed-point set of g and by G the group generated by g.
As we have seen above the topological space underlying the quotient S3/G
is homeomorphic to S3; let K̄ and K̄ ′ be the projections of K and K ′ to
this quotient. Denote by ∆, ∆̄ and ∆L the Alexander polynomials of K, K̄
and L := K̄ ∪ K̄ ′. Let λ := lk(K̄, K̄ ′) be the linking number of K̄ and K̄ ′.
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Define ρλ(t) :=
∑λ−1

i=0 t
i. The following relations are proved in [21]:

a) ρλ(t)∆(t) =
q−1∏
j=0

∆L(t, θj)

b) ρλ(t)∆̄(t) = ∆L(t, 1)

where equalities are thought up to invertible elements in the ring of Laurent
polynomials with coefficients in Z[θ], respectively Z, and θ is a primitive
qth-root of unity. In the case λ = 1, which we shall be mainly concerned
with, the relations above assume the simplified form:

a) ∆(t) =
q−1∏
j=0

∆L(t, θj)

b) ∆̄(t) = ∆L(t, 1).

By applying Fox’s formula to ∆ and ∆̄ we have that the orders of the first
homology groups of the p-fold cyclic branched coverings M and M̄ of K,
respectively K̄, are:

order H1(M) =

∣∣∣∣∣∣
p−1∏
i=0

q−1∏
j=0

∆L(ρi, θj)

∣∣∣∣∣∣
order H1(M̄) =

∣∣∣∣∣
p−1∏
i=0

∆L(ρi, 1)

∣∣∣∣∣ .
We shall say that a knot K of cyclic period q satisfies the M-condition for
the number p if

order H1(M̄) = order H1(M)
that is if and only if:

M− condition:

∣∣∣∣∣∣
p−1∏
i=0

q−1∏
j=1

∆L(ρi, θj)

∣∣∣∣∣∣ = 1.

The last item of this Section is the statement of the MM-condition, which
we shall need only for the more general Theorem 4, but not for the spe-
cial cases of Theorem 5 and 6. The generalization of the Fox’s formula
above to the case of coverings of links with more than one component is not
straightforward and has been done by Mayberry and Murasugi [18]. Before
discussing this generalization, we briefly explain what we mean by cyclic
coverings of links with more than one component, because there are in the
literature different definitions of the same concept. Let L be a link in S3

with ν components K1, . . . ,Kν . Each epimorphism ψ : π1(S3 − L) −→ Z n

factors through H1(S3 − L) which is a free abelian group on ν generators.
These generators can be chosen to be ν meridianal curvesm1, . . . ,mν around



TRIVIAL ACTIONS 161

K1, . . . ,Kν . Each epimorphism ψ defines a n-fold unbranched covering of
S3 − L and a n-fold branched covering of L obtained by glueing some solid
tori to S3−L along its boundary components. We say that the branched cov-
ering is a cyclic branched covering of L if each mi is mapped to a generator
of Z n (this is always the case if n is a prime number). A particular special
case, which we call strictly-cyclic is that all mi are mapped to the same
generator of Z n: These coverings have first been considered by Hosokawa
[15].

We can now state the MM-condition for a knot. We first recall the
notation above. Let K be a knot with cyclic period p and g a cyclic dif-
feomorphism of (S3,K) of order p. Denote by K ′ the fixed-point set of g
and by G the group generated by g. The topological space underlying the
quotient S3/G is homeomorphic to S3; let K̄ and K̄ ′ be the projections of
K and K ′ to this quotient. Denote by ∆, ∆̄, ∆̄′ and ∆L the Alexander
polynomials of K, K̄, K̄ ′ and L = K̄ ∪ K̄ ′. Let ψ : H1(S3 − L) −→ Z p an
epimorphism such that, for some fixed meridians m and m′ around K̄ and
K̄ ′ we have ψ(m) = h and ψ(m′) = hr+1 where h is a generator of Z p and
r a positive integer 0 ≤ r ≤ p − 2. Denote by Q the p-fold cyclic branched
covering of L corresponding to ψ. Define the modified Alexander polynomial
∆̃L of L as ∆̃L(s, t) = ∆L(s, t) if s 6= 1 and t 6= 1; ∆̃L(1, t) = ∆̄′(t) and
∆̃L(s, 1) = ∆̄(s). Then Mayberry and Murasugi showed [18, Corollary 4.5.1
and Theorem 10.1] that:

order H1(Q) = p

∣∣∣∣∣
p−1∏
i=0

∆̃L(ρi, ρi+r)

∣∣∣∣∣
where ρ is a primitive pth root of unity. We know (see above) that the order
of the first homology group of the p-fold cyclic branched covering of M is

order H1(M) =

∣∣∣∣∣∣
p−1∏
i=0

p−1∏
j=0

∆L(ρi, θj)

∣∣∣∣∣∣ .
The MM-condition for a knot of period p is that

order H1(Q) = p order H1(M)

that is:

MM− condition:

∣∣∣∣∣∣
p−1∏
i=0

p−1∏
j=0

∆L(ρi, θj)

∣∣∣∣∣∣ =

∣∣∣∣∣
p−1∏
i=0

∆̃L(ρi, ρi+r)

∣∣∣∣∣
for at least one value of r with 0 ≤ r ≤ p− 2.
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3. Homologically trivial actions on 3-manifolds.

In this Section we apply transfer arguments and Smith’s exact sequences
to the case of cyclic groups acting on a 3-manifold. One has to distinguish
carefully between the case when a group acts freely and the case with non-
empty fixed-point set.

We first fix some common notation. Let M be a compact 3-manifold on
which a finite group G acts smoothly and orientation-preservingly. Denote
by M/G the quotient orbifold and by MG the underlying topological space.
Note that if G acts freely thenM/G = MG. In the following it will be impor-
tant to distinguish between M/G and MG and between their fundamental
groups, so we briefly recall this notion.

To define the fundamental group of an orbifold, one constructs the uni-
versal covering orbifold in the same way as one constructs universal cover-
ing spaces and the same uniqueness holds. Recall that a continuous map
f : X −→ Y is a covering if any point y ∈ Y has a neighbourhood U such
that f−1U is the disjoint union of sets Vλ for λ ∈ Λ such that f |Vλ −→ U is
a homeomorphism. If X and Y are orbifolds and f : X −→ Y is an orbifold
map, one defines an orbifold covering in the same way except that one allows
f | : Vλ −→ U to be the natural quotient map between two quotients of Rn

by finite groups, one of which is a subgroup of the other. There are general
arguments for showing that any orbifold has a universal covering orbifold.
As with coverings in the ordinary sense, the orbifold is the quotient of this
universal covering by the action of a group, which is called the orbifold fun-
damental group of the orbifold. For more information about this topic see
[25, Chapter 13].

We denote by H1(MG) the homology of the quotient space MG and by
H1(M/G) the abelianized of the orbifold fundamental group of M/G. Again
if G acts freely the two groups coincide.

We first prove the following:

Theorem 1. Let M be a compact 3-manifold and G a finite cyclic group
acting smoothly on M . Then G acts homologically trivially on M if and
only if H1(M/G) is an extension of a normal subgroup H ∼= H1(M) by a
cyclic subgroup F ∼= G.

We remark that Theorem 1 can be obtained by a standard application
of a Cartan-Leray spectral sequence [3]. We prefer however to exhibit an
elementary proof of this result which makes use only of group theory. In the
proof of this Theorem it is not essential that we are dealing with manifolds
of dimension 3.

Lemma 1. Let M be a compact 3-manifold and G a finite group acting
smoothly on M . Denote by H1(M)G the subgroup of elements of H1(M)
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which are fixed by G for the induced action of G on the first homology group
of M . Let π be the set of prime numbers which divide |G| and π′ the set of
prime numbers not contained in π. We have H1(M)G ∼= Zk1 ⊕T 1

π ⊕T 1
π′ and

H1(MG) ∼= Zk2 ⊕ T 2
π ⊕ T 2

π′, where ki, i = 1, 2, are the first Betti numbers,
while T i

π ⊕ T i
π′, i = 1, 2, are the torsion parts. Then T 1

π′
∼= T 2

π′ and k1 = k2.

Proof. It follows from a transfer argument [2, page 119, 2.2] that there
exist two homomorphisms π∗ : H1(M)G −→ H1(MG) and µ∗ : H1(MG) −→
H1(M)G such that

π∗µ∗ = |G| : H1(MG) −→ H1(MG)

µ∗π∗ = |G| : H1(M)G −→ H1(M)G

where |G| stands for multiplication times |G|. Lemma 1 follows from the re-
mark that the restriction of |G| to T 1

π′ and T 2
π′ is an isomorphism because |G|

and |T 1
π′ | respectively |T 2

π′ | are relatively prime. The same kind of argument
proves that k1 = k2.

Proof of Theorem 1. Let us first suppose that G is a p-group. Assume that
G acts homologically trivially. We have the following short exact sequence
of groups

1 −→ π1(M) −→ π1(M/G) −→ G −→ 1.
Since G is abelian we have that π1(M) contains the first commutator sub-
group of π1(M/G). In particular the above sequence induces the following

1 −→ π1(M)/π1(M)(1) −→ π1(M/G)/π1(M)(1) −→ G −→ 1

where π1(M)(1) is the first commutator subgroup of π1(M) so that π1(M)/
π1(M)(1) = H1(M). Moreover π1(M)(1) is normal in π1(M/G) so the quo-
tient makes sense. We thus see that π1(M/G)/π1(M)(1) is the extension of
an abelian group by a cyclic group acting trivially on it. Since any element
of this extension can be written as a product of an element in the normal
abelian subgroup times a power of a counterimage of a generator of the
cyclic group, then [30, page 17, 2.26] the extension is abelian. This implies
that the first commutator subgroup π1(M/G)(1) of π1(M/G) is contained in
π1(M)(1). But it is also true that π1(M)(1) ⊂ π1(M/G)(1) and we conclude
that π1(M)(1) ∼= π1(M/G)(1), that is, π1(M/G)/π1(M)(1) = H1(M/G).
From the last short exact sequence above we conclude that if G is a p-group
acting homologically trivially on M , then H1(M/G) is an extension of a
normal subgroup H ∼= H1(M) by a cyclic subgroup F ∼= G.

Suppose now that G is a cyclic group. If G acts homologically trivially
on M , then all its p-Sylow subgroups (which are cyclic) act homologically
trivially on M , since G is the direct product of its p-Sylow subgroups. Con-
sider the sequence of coverings of M/G associated to the p-Sylow subgroups
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of G. All we need to show is that the p-Sylow subgroups must act homo-
logically trivially on their associated covering and conclude by an inductive
argument. Let |G| = pr1

1 p
r2
2 · · · prk

k , with p1 < p2 < · · · < pk. Let M0 := M
and Mi := Mi−1/Z p

ri
i

, i = 1, . . . , k. The Theorem is proved for the ho-
mologically trivial action of Z p

r1
1

over M0. Then we have that H1(M1) is
an extension of H1(M0) by Z p

r1
1

. Now the group Z p
r2
2

acts trivially on the
normal subgroup H1(M0). But it must also act trivially on Z p

r1
1

since the

order of the group of its automorphisms is pr1−1
1 (p1 − 1).

This finishes the proof of the first part of Theorem 1.
The reverse implication is actually trivial.
This finishes the proof.

Theorem 1 characterizes H1(MG) only in the case that G acts freely on
M , because in this case H1(MG) = H1(M/G) (see above). On the other
side, if G acts on M with non-empty fixed-point set, then H1(MG) and
H1(M/G) are different, in general. Howewer we can prove the following (it
is essential that the dimension of the manifold is 3):

Theorem 2. Let M be a closed 3-manifold and G a finite cyclic group of
prime order p acting smoothly and orientation-preservingly on M . Suppose
that G acts with non-empty fixed-point set and that H1(M) has finite order
prime with p. Then G acts homologically trivially on M if and only if

H1(MG) ∼= H1(M).

Lemma 2. Let M be a closed 3-manifold, G a finite cyclic group of prime
order p acting smoothly and orientation-preservingly on M . Suppose that
H1(M) has finite order and that its order is prime with p. If G acts on M
with non-empty fixed-point set, then

H1(MG; Z p) ∼= {0}.

Remark. We shall be able to extend Lemma 2 to the case that p divides
the order of H1(M) in Section 4 by considering a specific 3-dimensional
situation.

Proof. By hypothesis the order of H1(M) is finite and prime with p. Hence
M is a Z p-homology 3-sphere. It follows from classical Smith’s theory [2,
Theorem 5.1, page 129] that Fix(G) is a Z p-homology sphere. Since G
acts on M orientation-preservingly, then Fix(G) has dimension 1 and we
conclude that Fix(G) ∼= S1. Consider a toral neighbourhood U of Fix(G) in
M invariant by the G-action. Let M ′ be the closed complement of U . The
manifold MG is obtained by glueing a solid torus to M ′

G := M ′/G (observe
that G acts freely on M ′). It follows from Lemma 1 that H1(MG) is finite.
Consider the following diagram in homology
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0−−−→ Z⊕ Z −−−→ H1(M ′)⊕ Z −−−→ H1(M) 0−−−→y(p,1)

y(π∗,∼=)

y
0−−−→ Z⊕ Z −−−→ H1(M ′

G)⊕ Z −−−→ H1(MG) 0−−−→

where Z ⊕ Z ∼= H1(∂U), Z ∼= H1(U) and the vertical maps are induced
by projection. Notice that the 0 horizontal maps are due to the fact that
the groups H1(M) and H1(MG) are finite; moreover, considering the usual
short exact sequence of fundamental groups and the abelianizing, it is easy to
convince oneself that the image of the map π∗ has index p in H1(M ′

G). Since,
by hypothesis, H1(M) has no p-torsion, a diagram-chase argument shows
that H1(MG) cannot have p-torsion as well. Remark that the important
fact here is that the first vertical map is multiplication times p on the first
factor, i.e. a standard meridian winds up p times along itself.

This finishes the proof of Lemma 2.

Proof of Theorem 2. This is now an easy consequence of Lemmata 1 and 2.

4. Cyclic coverings of knots.

In this Section we specialize to the case of a 3-manifold M which is a cyclic
covering of a knot K in S3.

We first give an example of a homologically trivial action on the 2-fold
covering of a hyperbolic knot, which is a direct application of the results of
Section 3 and the Dehn surgery construction we have described in Section
2.

Let K ⊂ S3 be an invertible hyperbolic knot with orientation-preserving
symmetry group Dn for n ≥ 2 (such examples for n = 2, 4 can be found
already in the class of 2-bridge knots [4]). In particular K admits at least
two distinct inversions, say t1 and t2. As we have seen in Section 2, for all
but finitely many surgery coefficients, the manifold M obtained by Dehn
surgery on K is hyperbolic and ti (i = 1, 2) extends to an involution t̄i of
M . We can also assume that M is not a homology 3-sphere. It is known
[19] that the quotient M/t̄i is a 3-orbifold with underlying topological space
S3 and singular set a link with singular index 2. It follows from Lemma 1
that t̄i acts fixed-point freely on H1(M). But there exists a unique fixed-
point free action of Z2 on a finite abelian group, sending each element to its
inverse. Thus t̄1 and t̄2 induce the same action on H1(M) and their product
t̄1t̄2 acts homologically trivially on M .

More generally, if a hyperbolic 3-manifold M is the 2-fold branched cov-
ering of two inequivalent knots, then there are two distinct isometries of M
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which induce the same action on H1(M) and their product acts homolog-
ically trivially on M (an example of a hyperbolic 3-manifold which is the
2-fold branched covering of 4 inequivalent knots can be found in [28]).

The case of n-fold cyclic coverings of knots with n > 2 is more complicated
and it is subject of the rest of this section.

Let M be a cyclic covering of a knot K in S3. As we have explained in
the Introduction, we first study only diffeomorphisms of M which are not
hidden to K, that is they descend to diffeomorphisms of K. So the question
we are concerned with is the following: Let g be a diffeomorphism of M
of finite order descending to a diffeomorphism of K. Give necessary and
sufficient conditions for g to act homologically trivially on M .

We distinguish two possible cases according if g descends to a diffeomor-
phism of K which acts freely or not. Accordingly, this section is divided into
two parts. In the first part we show that the free case can always be reduced
to the fixed-point one. In the second part we show that if g descends to a
diffeomorphism of K with non-empty fixed-point set, then g acts homologi-
cally trivially on M if and only if either K satisfies the M-condition or the
MM-condition. The main theorem of this section is Theorem 4.

i) Free case.

The case of free actions is reduced to the case of actions with fixed-points
by the following:

Theorem 3. Let M be a p-fold cyclic branched covering of a knot K in
S3 and g̃ an orientation-preserving finite order diffeomorphism of M which
descends to a free diffeomorphism of (S3,K). If g̃ acts homologically triv-
ially on M , then there exists a 3-manifold M ′ obtained by Dehn surgery on
M which is a p-fold cyclic branched covering of a knot K ′ in an integral
homology 3-sphere such that g̃ extends to a finite order diffeomorphism g̃′ of
M ′ acting homologically trivially on M ′ with non-empty fixed-point set.

Proof. The construction which follows is a minor application of a method
due to Hartley [13].

Let g be the diffeomorphism of (S3,K) which is covered by g̃. Let T ⊂ S3

be a knot such that T ∩ K = ∅ and T is invariant under g. Denote by
G the group generated by g, by Q the quotient manifold S3/G, by T̄ the
projection of T , by K̄ the projection of K. Since G acts freely and is cyclic
(see Theorem 1) we have that H1(Q) ∼= G. As a cycle the projection T̄
of T represents a generator of H1(Q), otherwise T would have more than
one component. Denote by Y the closed complement in Q of a tubular
neighbourhood N(T̄ ) of T̄ such that ∂N(T̄ ) ∩ K̄ = ∅. By [13, page 92]
H1(Y ) ∼= Z and the generator of H1(Y ) may be represented by a curve in
∂N(T̄ ). Thus there exist infinitely many surgery coefficients on T̄ such that
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the surgered manifold is a homology 3-sphere. Denote by Q′ a homology 3-
sphere obtained by Dehn surgery on T̄ ⊂ Q, by T̄ ′ the core of the added solid
torus and by K̄ ′ the image of K̄ in Q′. In particular Q′−T̄ ′ is homeomorphic
to Q − T̄ . Let Σ be the G-fold cyclic covering of Q′ branched over T̄ ′.
Then Σ [13, page 92] is a homology 3-sphere obtained by Dehn surgery on
T ⊂ S3 and the diffeomorphism g extends to a diffeomorphism g′ of Σ fixing
pointwise the preimage T ′ of T̄ ′. Denote by K ′ the image of K in Σ. The
p-fold cyclic branched covering M ′ of Σ branched along K ′ is obtained by
equivariant Dehn surgery of M on the preimage (possibly disconnected) T̃
of T in M . Finally the diffeomorphism g′ lifts to a diffeomorphism g̃′ of M ′

with fixed-point set the preimage T̃ ′ of T ′ in M ′.

Up to now we have proved that there exists a 3-manifold M ′ obtained by
Dehn surgery on M which is a p-fold cyclic branched covering of a knot K ′

in a integral homology 3-sphere such that g̃ extends to a diffeomorphism g̃′

of M ′. We now show that if g̃ acts homologically trivially on M , then g̃′

acts homologically trivially on M ′.

To fix ideas, suppose that T̃ has r components. By [14] H1(M) ⊕ Zr ∼=
H1(M − T̃ ) where the second factor Zr is generated by some meridianal
curves in the boundary ∂N(T̃ ) of an equivariant regular neighbourhood
N(T̃ ) of T̃ . Since g̃ is orientation-preserving, then it acts homologically
trivially on ∂N . By hypothesis we know that it acts homologically trivially
on M ; therefore it acts trivially on H1(M − T̃ ). Again for M ′ we have
H1(M ′)⊕Zr ∼= H1(M ′−T̃ ′) ∼= H1(M−T̃ ) and the action of g̃′ onH1(M ′−T̃ ′)
coincides with the action of g̃ on H1(M − T̃ ). Thus g̃′ acts homologically
trivially on M ′. Note that the roles of M and M ′ can be interchanged so
that g̃ acts homologically trivially if and only if g̃′ does.

This finishes the proof.

Remark. If M is hyperbolic, then M ′ in the statement of Theorem above
can be chosen to be hyperbolic. This follows by applying Thurston’s Hy-
perbolic Dehn Surgery Theorem to the construction. In fact we know that
(see the notation above) there exists infinitely many surgery coefficients on
T̄ in Q such that the surgered manifold Q′ is a homology 3-sphere. If we
suppose that Q − T̄ is hyperbolic, by Thurston’s Hyperbolic Dehn surgery
Theorem, the resulting surgered manifold Q′ is hyperbolic except for finitely
many surgery coefficients.

ii) Fixed-point case.

We want to prove the following:

Theorem 4. Let M be the p-fold cyclic branched covering of a knot K in
S3 which has cyclic period q for some primes p and q, p odd. Denote by G
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the cyclic group of diffeomorphisms of (S3,K) of order q, by K ′ its fixed-
point set, by E the group of diffeomorphisms of M generated by the lifts of
G. Suppose that:

i) M is hyperbolic and not a homology 3-sphere.
ii) The linking number lk(K,K ′) is 1.

Then:
- Case: p 6= q; the group E acts faithfully on H1(M) if and only if K does
not satisfy the M-condition for the number p;
- Case: p = q; the group E acts faithfully on H1(M) if and only if K satisfies
neither the M-condition nor the MM-condition.

The hypothesis in i) that M is hyperbolic is not essential for the proof
of Theorem 4. This hypothesis is requested only to guarantee that E is a
finite group.

Proof of Theorem 4. Denote by C the cyclic group of covering transfor-
mations of the covering M −→ (S3,K). The group C ∼= Zp fixes pointwise
the preimage K̃ of K in M and acts locally as a group of rotations around
K̃. On the other side, since lk(K,K ′) = 1 by hypothesis, the preimage K̃ ′

of K ′ in M is connected. Given a generator g of G, there exists a lift g̃ of
g to M which fixes pointwise K̃ ′. Moreover g̃ fixes setwise the fixed-point
set K̃ of C and its restriction to K̃ is a rotation of order q. Thus g̃ and C
commute and we have a direct sum E ∼= C ⊕ G̃ where G̃ ∼= G acts on M
with fixed-point set K̃ ′. We shall denote by MG̃ and ME the topological
spaces underlying M/G̃ and M/E. By the positive solution of the Smith’s
conjecture, K ′ is unknotted and the action of G on S3 is equivalent to a
rotation around K ′. We conclude that ME

∼= S3 and that MG̃ is the p-fold
cyclic branched covering of S3 along the projection K̃ ′ of K ′ to ME .

a) The group C does not act homologically trivially on M .
It follows from Theorem 1 that the cyclic group C of covering trans-

formations acts homologically trivially on M if and only if H1(M/C) is a
p-extension of H1(M). But M/C is a 3-orbifold with underlying topologi-
cal space S3 and singular set the knot K with singular index p. Therefore
H1(M/C) ∼= Z p and, since we know by hypothesis that M is not a homology
3-sphere, we conclude that the group C does not act homologically trivially
on M .

b) If G̃ acts homologically trivially on M , then H1(M/G̃) is an extension of
a normal subgroup H ∼= H1(M) by a cyclic subgroup F ∼= G̃.

This is simply Theorem 1.

c) The group H1(M/G̃) maps onto H1(MG̃) with kernel of order either q or
1.
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The group G̃ acts locally as a group of rotations around K̃ ′. Let U be
a tubular neighbourhood of K̃ ′ which is invariant under the action of G̃.
Denote by M ′ the closed complement of U . The orbifold M/G̃ is obtained
by glueing to M ′

G̃
:= M ′/G̃ along the boundary a 3-orbifold with underlying

topological space a solid torus and singular set the core of the torus with
singular order q. The 3-manifold MG̃ is obtained by glueing to M ′

G̃
a solid

torus. As a consequence of Seifert-Van Kampen theorem for fundamental
groups, the group H1(MG̃) is obtained from H1(M ′

G̃
) by adding a relation

x = 1 for some x ∈ H1(M ′
G̃
). On the other side the group H1(M/G̃) is

obtained from H1(M ′
G̃
) by adding a relation xq = 1. More precisely

π1(M/G̃) ∼= π1(M ′
G̃
)/〈xq〉 −→ π1(MG̃) ∼= π1(M ′

G̃
)/〈x〉 −→ 1

and abelianizing
H1(M/G̃) −→ H1(MG̃) −→ 1.

Since we are quotienting out one q-torsion element at the most in an abelian
group, it follows that H1(M/G̃) surjects onto H1(MG̃) with kernel of order
either q or 1.

d) If G̃ acts homologically trivially on M , then H1(MG̃) ∼= H1(M).
It follows from the discussion preceding a) that both M and MG̃ are p-

fold cyclic branched coverings of knots in S3. Since p is an odd prime, we
can apply Plans’s Theorem [24] to M and MG̃. Thus both H1(M) and
H1(MG̃) are direct doubles. Assume that G̃ acts homologically trivially on
M . Because of Lemma 1, it is enough to prove that H1(M) and H1(MG̃)
have isomorphic q-torsion parts. Since they are both direct doubles such
torsion parts must be of the form:

(∗)
k⊕

i=1

(Z qri ⊕ Z qri ).

From b) we deduce that the q-torsion part of H1(M) has index q in the q-
torsion part of H1(M/G̃) which in its turn by c) surjects onto the q-torsion
part of H1(MG̃) with kernel of index q (or 1). Since both q-torsion parts we
are studying must be of the form (∗), we deduce that they are isomorphic.

e) If H1(MG̃) ∼= H1(M), then G̃ acts homologically trivially on M .

Because of Lemma 1, it is sufficient to show that the action of G̃ on the
q-torsion part of H1(M) is homologically trivial. Decompose the q-torsion
part of H1(M) and H1(M)G̃ (see Lemma 1 for this notation) as a direct sum
of cyclic groups. By the proof of Lemma 1 (the transfer argument) and since,
by hypothesis, H1(M) ∼= H1(MG̃), we see that the cyclic subgroups in the
decomposition for H1(M)G̃ must have index 1 or q in the cyclic subgroups
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of the decomposition for H1(M). But if an element of order q acts trivially
on a subgroup of index at most q, it must fix the whole group.

f) Case: p 6= q; the group E acts faithfully on H1(M) if and only if K does
not satisfy the M-condition for the number p.

If p 6= q, then E is isomorphic to a cyclic group of order pq and it acts
faithfully on H1(M) if and only if both C and G̃ do not act homologically
trivially on M . It follows from a) and e) that E acts faithfully on H1(M) if
and only if H1(M) ∼= H1(MG̃). By the proof of Lemma 1 this is true if and
only if the order of H1(M) is equal to the order of H1(MG̃). This is exactly
the M-condition for the knot K and the number p.

g) Case: p = q; the group E acts faithfully on H1(M) if and only if K
satisfies neither the M-condition nor the MM-condition for the number p.

In this case E ∼= C ⊕ G̃ ∼= Zp ⊕Zp and any element of E with non-empty
fixed-point set lies either in C or in G̃. We have seen in e) and f) that G̃
acts homologically trivially on M if and only if K satisfies the M-condition
for the number p. Suppose now that G̃ does not act homologically trivially
on M . Then E acts unfaithfully on H1(M) if and only if there is some finite
subgroup F̃ ⊂ E projecting to G and acting homologically trivially on M .
Denote by M/F̃ the quotient orbifold and by MF̃ its underlying topological
space. As we have seen above F̃ has to act freely on M and MF̃ is a cyclic
p-fold branched covering of the link K̄ ∪ K̄ ′ in ME

∼= S3 (K̄ and K̄ ′ are the
projections of K and K ′ to ME). By applying Theorem 1, we deduce that
F acts homologically trivially on M if and only if the order of H1(MF̃ ) is p
times the order of H1(M). This is exactly the MM-condition (Section 2)
for K and the number p.

This finishes the proof of Theorem 4.

5. Proof of Theorem 5.

If the order p of the covering is sufficiently large, as a consequence of
Thurston’s theory, then the isometry group of M fixes setwise the preimage
K̃ of K and descends to the symmetry group of K. In fact the cyclic group
C of covering transformations acts locally as a group of rotations around
its fixed-point set which is the preimage K̃ of K in M . It follows from
Thurston’s theory ([31] and [17]) that K̃ is the unique shortest geodesic
of M . Thus any isometry of M fixes setwise K̃ and normalizes C in the
isometry group of M . Since, by hypothesis, K has no cyclic or free periods,
the orientation-preserving symmetry group of K is trivial or isomorphic to
Z 2 according if K is not invertible or it is. Thus the orientation-preserving
isometry group Iso+(M) of M either coincides with the cyclic group Z p of
covering transformations or it is a dihedral group Dp of order 2p. In the first
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case it follows from Theorem 1 that the cyclic group C of covering trans-
formations acts homologically trivially on M if and only if H1(M/C) is a
p-extension of H1(M). But M/C is a 3-orbifold with underlying topologi-
cal space S3 and singular set the knot K with singular index p. Therefore
H1(M/C) ∼= Zp and, since we know by hypothesis that M is not a homology
3-sphere, we conclude that Iso+(M) ∼= C acts faithfully on H1(M). In the
second case let N be the subgroup of Iso+(M) acting homologically trivially
on M . By the first part of the proof we know that C ∩N = {0}; thus N is
a proper normal subgroup of Iso+(M). But Iso+(M) ∼= Dp and this implies
that N is trivial.

6. Proof of Theorem 6.

By repeating the same argument as in the proof of Theorem 5, we know that
neither the cyclic group of covering transformations of M nor any isometry
of M which descends to an inversion of K act homologically trivially on
M . Thus Iso+(M) acts faithfully on M if and only if no isometry of prime
order descending to a cyclic symmetry of K acts homologically trivially on
M . By taking p greater than max(q1, . . . , qs) the Theorem follows now from
Theorem 4.

7. Examples.

In this section we will give some examples of periodic knots which satisfy
the M-condition.

Periodic knots which satisfy the M-condition are rare and to construct
them we rely on the following Theorem:

Theorem 7 (Davis-Livingston). A knot polynomial ∆ which is congruent
to 1 modulo n is the Alexander polynomial of a knot of cyclic period n.

The proof of this Theorem can be found in [8, Corollary 1.2]. In this paper
the authors investigate the following question: Given a knot polynomial
∆ and an integer n, find necessary and sufficient conditions on ∆ for the
existence of a knot of cyclic period n with Alexander polynomial ∆. They
are able to give a complete answer to this question in the case that the
linking number between the knot and the fixed-point set of its cyclic periodic
transformation is 1 (compare with the hypotheses of Theorem 4 and 6).
In particular, given a knot polynomial congruent to 1 modulo n, Davis
and Livingston construct explicitly a knot K of cyclic period n with the
properties which we now describe. We repeat some notation from Section 2.
If K is a knot with cyclic period n and g a cyclic diffeomorphism of (S3,K)
with order n with fixed-point set K ′, we have seen above that the topological
space underlying the quotient S3/G, where G is the group generated by g, is
homeomorphic to S3; let K̄ be the projection of K to this quotient. Denote
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by ∆ and ∆̄ the Alexander polynomials of K respectively K̄. Then Davis
and Livingston prove that given a knot polynomial congruent to 1 modulo
n, there exists a knot with cyclic period n such that the linking number
lk(K,K ′) is 1 and ∆ = ∆̄. Thus the orders of the first homology groups
of the p-fold cyclic branched coverings M and M̄ of K, respectively K̄, are
equal and the M-condition is automatically satisfied for these knots for the
number n. There is no matter in reproducing here the drawings of [8] which
are quite complicated. We have verified by the help of Weeks’ SnapPea
program that the easiest examples of [8] are hyperbolic.

8. Hidden isometries.

In this Section we want to discuss the problem of hidden isometries (see
Section 1) for cyclic coverings of a knot and state some (partial) results in
this direction.

Let M be a hyperbolic p-fold cyclic branched covering of a knot K in
S3. Every symmetry of K lifts to an isometry of M but, in general, the full
isometry group of M contains the set of lifts of isometries of K as a proper
subgroup. We say that an isometry of M is hidden to K if it does not
descend to a symmetry of K. The structure of the full isometry group of M
cannot be understood completely from K in presence of hidden isometries
(see [26] and [28] for a discussion of this topic). If the order p of the
covering is sufficiently large, as a consequence of Thurston’s theory, there
are no isometries of M hidden to K. In fact the cyclic group C of covering
transformations acts locally as a group of rotations around its fixed-point
set which is the preimage K̃ of K in M . It follows from Thurston’s theory
that K̃ is the unique shortest geodesic of M . Thus any isometry of M fixes
setwise K̃ and normalizes C in the isometry group of M . Therefore any
isometry of M descends to a symmetry of K and, in this case, there are
no hidden isometries. This motivates the hypotheses of Theorems 5 and 6,
namely taking the order of the covering sufficiently large. On the other side,
for low order coverings, hidden isometries may occur ([28]).

About homologically trivial actions of hidden isometries, we have the
following result:

Theorem 8. Let M be the p-fold cyclic branched covering of a knot K for
some odd prime p. Let g be an orientation-preserving isometry of prime odd
order, say q. Suppose that:

i) M is hyperbolic and not a homology 3-sphere.
ii) H1(M) has finite order.
iii) The order of H1(M) and q are relatively prime.

If g is hidden to K, then g does not act homologically trivially on M .



TRIVIAL ACTIONS 173

Proof. We argue by contradiction. We prove some intermediate steps a),
b), c), d) under the hypothesis that g acts homologically trivially on M and
we reach a contradiction in e).

Since M is hyperbolic, the group Iso(M) of isometries of M is finite.
Denote by Iso+(M) the orientation-preserving subgroup of Iso(M). Let N
be the subgroup of isometries of M which act homologically trivially on M .
The group N is normal in Iso(M). Since g acts homologically trivially on
M , then the cyclic group G ∼= Zq generated by g is a subgroup of N .

a) The Sylow q-subgroup of Iso+(M) is either cyclic or the direct sum of two
cyclic groups.

Denote by Sq the Sylow q-subgroup of Iso+(M). Since q is prime with the
order of H1(M) by hypothesis, then M is a Zq-homology 3-sphere. If Sq acts
freely on M , it follows from [2, page 148, Theorem 8.1] and [3, page 157,
Theorem 9.5] and the fact that q is odd that Sq is cyclic. Else, suppose that
there is an isometry of order a power of q with non-empty fixed-point set F
and that Sq is not cyclic. In this case we shall prove that Sq is the direct sum
of two cyclic groups (see [27] for a similar argument). By Smith’s theory,
the fixed-point set of an orientation-preserving isometry of prime odd order
of M is either empty or a Zq-homology 1-sphere and in the latter case, the
only possibility is that the fixed-point set is S1. Denote by S̄q the maximal
cyclic subgroup of Sq fixing pointwise F . By [30, page 88, 1.5] either S̄q is
normal in Sq or there exists a subgroup S̄x

q in the normalizer NSq(S̄q) of S̄q

in Sq conjugate to S̄q and distinct from it.
Suppose first that there exists a subgroup S̄x

q in the normalizer NSq(S̄q) of
S̄q in Sq conjugate to S̄q and distinct from it. Because S̄x

q is in the normalizer
of S̄q it fixes setwise the fixed-point set F of S̄q.

Remark 1. The orientation-preserving isometries which fix setwise a 1-
sphere either fix the curve pointwise, act as rotations on it or as reflections
so the normalizer of a cyclic group fixing pointwise a 1-sphere is a subgroup
in the semidirect product of Z 2 (the reflection) and Z a⊕Z b (the isometries
which fix the sphere pointwise and the rotations) for some positive integers
a and b where Z 2 acts on Z a⊕Z b by sending each element onto its inverse.

Since q is odd and both S̄q and S̄x
q are subgroups of NSq(S̄q), then we

have an abelian subgroup S̄q ⊕ S̄x
q . Moreover S̄x

q fixes pointwise the curve
x(F) image of F and x(F) is distinct from F .

Now consider the group S̄x2

q . The group S̄x
q ⊕ S̄x2

q is conjugate to S̄q ⊕ S̄x
q

and abelian. Both S̄q and S̄x2

q fix setwise the fixed-point set x(F) of S̄x
q and

Remark 1 implies that S̄q ⊕ S̄x
q = S̄x

q ⊕ S̄x2

q .

Remark 2. Assume that there exist two distinct simple closed curves fixed
pointwise by two distinct non-trivial elements in a direct double Z q ⊕ Z q.
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In this case, if an element in the direct double has non-empty fixed-point
set, then such fixed-point set coincides with one of these two curves by [1,
page 175, Theorem 2.3].

Now S̄x2

q has non-empty fixed-point set x2(F) and, by Remark 2, either
x2(F) = F or x2(F) = x(F). If x2(F) = x(F), then S̄q = S̄x

q which
is impossible. Hence x2(F) = F which implies S̄q = S̄x2

q . Therefore x2

belongs to the normalizer of (S̄q) and since x has odd order, we conclude
that x is in the normalizer of S̄p which is a contradiction. So this case is
impossible.

Therefore S̄q is normal in Sq and we conclude by applying Remark 1.

b) The group G acts freely on M . Moreover G is normalized by the cyclic
group C ∼= Zq of covering transformations of the covering M −→ (S3,K).

Denote by S′q the Sylow q-subgroup of N containing G. The group S′q is
normalized by (a subgroup of Iso(M) conjugate to) C because all q-Sylow
subgroups of N are conjugate in N and N is normal. Suppose first that
G has non-empty fixed-point set F . Since g is orientation-preserving by
hypothesis and M a Zq-homology 3-sphere, then F ∼= S1. According to the
proof of a), if S′q is the direct sum of two cyclic groups, since p is odd C
must fix both cyclic groups. This means that C normalizes the cyclic group
containing G. Thus, in any case, if g had non-empty fixed-point set, the
elements of C would leave it invariant acting as rotations (or the identity)
on it. But this is impossible, because we have supposed that g is hidden to
K and thus it does not commute with the elements of C. We conclude that
G acts freely on M and, by the proof of a), that S′q is cyclic. Moreover the
subgroup G of prime order q is characteristic in S′q and it is normalized by
C.

c) Denote by M/G the quotient manifold. Then H1(M/G) ∼= H ⊕ F where
H ∼= H1(M) and F ∼= G. Moreover C descends to a group of isometries C̄
of M/G and the induced action on H1(M/G) is fixed-point free.

It follows from Theorem 1 and b) that H1(M/G) is an extension of a
normal subgroup H ∼= H1(M) by a cyclic subgroup F ∼= G. Moreover, since
we know by hypothesis that the order q of G and the order of H1(M) are
relatively prime, we conclude [30, page 231, 8.5] that H1(M/G) is a direct
sum H1(M/G) ∼= H ⊕ F .

This finishes the first part of the proof.
Denote by E ⊂ Iso+(M) the group generated by G and C. It follows

from b) that the group G is normal in E and that E splits as a semidirect
product of G and C. Since, by hypothesis, G is hidden to K, then no non-
trivial element of G commutes with C, that is C acts fixed-point freely by
inner conjugation on G − {1}. The covering M −→ M/E factors through
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the covering M −→ MG = M/G and the factor group C = E/G descends
to a cyclic group of isometries C̄ ∼= C of M/G with non-empty fixed-point
set. The group C̄ acts on H1(M/G) and we claim that this action is fixed-
point free (apart from the identity element). Suppose, on the contrary, that
x ∈ H1(M/G) is fixed by C̄. If x belonged to H, then C would fix some
non-trivial element of H1(M), which is impossible because C cannot act
homologically trivially on M . In fact, by Theorem 1, C acts homologically
trivially on M if and only if M is an integral-homology 3-sphere, which
is not by hypothesis. If x were in F , then C would fix some non-trivial
element of G which is also impossible because we have shown above that C
acts fixed-point freely (by conjugation) on G.

d) Denote by E ⊂ Iso+(M) the group generated by G and C, by M/E the
quotient orbifold and by ME the underlying topological space. Then ME is
a homology 3-sphere.

It follows from c) that C̄ is a p-group acting on M/G and that the induced
action on H1(M/G) is fixed-point free. Moreover C̄ acts on M/G with non-
empty fixed-point set (this fixed-point set is the projection to M/G of the
fixed-point set of C in M). Finally note that the order of H1(M/G) is prime
with p because both the order of H and the order of F are (the order of
H is prime with p by [12], the order of F is prime with p because we have
proved in b) that the Sylow q-subgroup Sq of Iso+(M) is cyclic and C does
not commute with C). By applying Lemma 1 and the fact that C̄ acts
fixed-point freely on H1(M/G) = H1(MG), we conclude that H1(ME) has
only possibly got p-torsion. It follows now from Lemma 2 that ME is an
integral homology 3-sphere.

e) G does not act homologically trivially on M .
If G acts homologically trivially on M , then c) and d) above hold. Thus

MG is a p-fold cyclic branched covering of a knot in the integral homology
3-sphere ME . By Plans’s Theorem [24] and the hypothesis that q is odd,
it follows that H1(MG) is a direct double. But this contradicts c) because
H1(MG) = H1(M/G) ∼= H ⊕ F and the order of F ∼= G is prime with the
order of H ∼= H1(M) by hypothesis.

This finishes the proof.
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