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We study the homogeneous space of the quantum group
Uq(n) related to the subgroup Uq(n − m) (m < n), classify
its irreducible representations and get a formula for its in-
variant integral. We also study the double cosets Uq(n −
m)\Uq(n)/Uq(n − m) and the hypergroup structure associ-
ated with them.

1. Introduction.

If a group G acts on a set S transitively on the right, then one can view
S as G/K, where K is a subgroup of G. Thus a function on S can be
considered as a function on G, invariant with respect to the right shifts by
elements of K. It is especially interesting to consider bi-invariant functions
on G since they can be identified with the functions on the set of G-orbits
in S. If G is a locally compact group and K is its compact subgroup with
Haar measures µG and µK respectively, then the set B ⊂ L1(G,µG) of all
bi-invariant functions is an algebra with respect to the convolution and has
a natural hypergroup structure related to generalized translation operators
(see the survey [23] and the references given there):

Rhf(g) =
∫

K
f(gkh)dµK(k) = ∆(f)(g, h), g, h ∈ G.(1)

If the subalgebra B is commutative ( or, equivalently, the coproduct ∆ is
cocommutative) then (G,K) forms a Gel’fand pair [6]. In many cases the
characters of B are well known special functions of mathematical physics.
This explains the importance of the notion of a Gel’fand pair.

The case of a noncommutative subalgebra B has been studied in a number
of papers. In particular, a pair (SO(n), SO(m)) was considered in [8], [22].
It is known that the homogeneous space SO(n)/SO(m) can be regarded as
a Stiefel manifold Sn,n−m. The infinitesimal object for the corresponding
hypergroup structure was investigated in [15], [16].

A similar situation arises while considering functions on compact quantum
groups [29] (see also [20]). Here, for a pair of compact quantum groups
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(H1,H2) and a surjection π : H1 → H2, we also consider an algebra H of bi-
invariant elements and define a coalgebra structure on it [4], [24], [25], [26].
In this situation we say that H is endowed with a hypergroup structure. If
the coalgebra is cocommutative, we call (H1,H2) a Gel’fand pair [12], [24].
If, in addition to, the algebra is commutative, we call such a Gel’fand pair
strict [24], [25].

When algebra and coalgebra of bi-invariant elements are noncommuta-
tive, a corresponding hypergroup structure is more complicated. One of the
simplest examples of such a situation is given by the pair H1 = Uq(n), H2 =
Uq(n−m) (quantum unitary groups, m < n). For this pair we study a struc-
ture of a homogeneous space Sn,m

q = Uq(n)/Uq(n−m) which is a quantum
analogue of a Stiefel manifold. We give its description in terms of genera-
tors and relations of commutation, obtain a classification of its irreducible
representations and a formula for an invariant integral on it. These re-
sults generalize the results obtained in [14], [17], [21], [28] for m = 1. In
this case Sn,1

q are quantum spheres. We also investigate the double cosets
Uq(n −m)\Uq(n)/Uq(n −m) and the corresponding hypergroup structure.
In a special case m = 1 these and related questions were studied in [4], [7],
[11], [12], [24], [25], [26].

We are grateful to Prof. Yu.A. Chapovsky, A.A. Kaljuzhnui, A.U. Klimyk
and T.H. Koornwinder for many useful discussions. The second author is
grateful to Prof. C. Anantharaman and J. Renault for their kind hospitality
and support during his stay in Orleans, where this work was finished.

2. Preliminaries.

All modules, comodules, algebras, coalgebras, Hopf algebras [1], linear maps,
homomophisms, tensor products are considered over the field C of complex
numbers. Algebras (coalgebras) are associative (coassociative) unital (couni-
tal).

2.1. Quantum group GLq(n,C) [5], [14], [18], [19].
Let a Hopf algebra H := A(GLq(n,C)) be generated by letters tij (i, j ∈

{1, . . . , n}),det−1
q satisfying the following relations of commutation (q ∈ C):

tiktjk = qtjktik, tkitkj = qtkjtki (i < j),(2)

tiltjk = tjktil (i < j, k < l),(3)

tiktjl − qtiltjk = tjltik − q−1tjktil (i < j, k < l).(4)

det−1
q tij = tijdet−1

q .(5)
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The coproduct ∆ : H → H⊗H and counit ε : H → C act in the following
way:

∆(tij) =
∑

k

tik ⊗ tkj , ∆(det−1
q) = det−1

q ⊗ det−1
q ,

ε(tij) = δij , ε(det−1
q ) = 1.

The antipode S is a homomorphism S : H → H such that:

S(tij) = (−q)i−jξĵ

î
det−1

q ,

S(det−1
q ) = detq,

where
ξI
J =

∑
τ∈Pr

(−q)l(τ)tiτ(1)j1 · · · tiτ(r)jr

is the quantum minor determinant; k̂ = (1, · · · , k − 1, k + 1, · · · , n), detq =
ξ1,··· ,n
1,··· ,n I = (i1, · · · , ir); J = (j1, · · · , jr), Pr is the permutation group of

the set (1, · · · , r); l(τ) = (τ(1), · · · , τ(r)) is the number of inversions in τ .
The commutation relations (2), (3), (4) can be rewritten as

R(T⊗T) = (T⊗T)R,(6)

where T := (tij)i,j=1,...,n =
∑

i,j tijEij ∈ Mat(n,A(GLq(n,C))), T ⊗ T =∑
i,j,k,l tijtklEij ⊗ Ekl,R ∈ Mat(n,C) ⊗ Mat(n,C) is a so-called constant

R-matrix of type An−1 [9], [18]:

R = q
∑

i

Eii ⊗ Eii +
∑
i6=j

Eji ⊗ Eij + (q − q−1)
∑
i<j

Eii ⊗ Ejj ,

Eij are matrix units.

Remark 1. The quantum minor determinants satisfy the following rela-
tions:

∆(ξI
J) =

∑
#K=r

ξI
K ⊗ ξK

J , ε(ξI
J) = δIJ .

2.2. Quantum universal enveloping algebra Uq(gl(n,C)) [5], [14],
[18].

Let Ln be a free Z-module of rank n with a canonical basis (ε1, · · · , εn) :
Ln = ⊕n

k=1Zεk. We fix a symmetric bilinear form Ln × Ln → Z defined by
〈εi, εj〉 = δij . An element of Ln will be called an integral weight.

The quantum universal enveloping algebra Uq(gl(n,C)) is a C-algebra
defined by generators ek, fk (k ∈ {1, . . . , n}) and qλ (λ ∈ Ln) and the
following relations of commutation:

qλekq
−λ = q〈λ,εk−εk+1〉ek, q

λfkq
−λ = q−〈λ,εk−εk+1〉fk, λ ∈ Ln, k ∈ {1, ..., n}

eifj − fjei =
δij(qεi−εi+1 − q−εi+εi+1)

q − q−1
, i, j ∈ {1, . . . , n}
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e2i ej−(q+q−1)eiejei+eje2i = 0, f2
i fj−(q+q−1)fifjfi+fjf

2
i = 0, |i−j| = 1

eiej = ejei; fifj = fjfi |i− j| > 1

q0 = 1, qλqµ = qλ+µ λ, µ ∈ Ln.

This algebra has also a structure of a Hopf algebra with the following co-
product ∆, counit ε, and antipode S:

∆(qλ) = qλ ⊗ qλ, ε(qλ) = 1, S(qλ) = qλ

∆(ek) = ek ⊗ q−(εk−εk+1)/2 + q(εk−εk+1)/2 ⊗ ek, ε(ek) = 0, S(ek) = −q−1ek

∆(fk) = fk ⊗ q−(εk−εk+1)/2 + q(εk−εk+1)/2 ⊗ fk, ε(fk) = 0, S(fk) = −qfk.

Given two Hopf algebras A and H over C, we say that a C-bilinear form
〈a, φ〉 : H × A→ C is a pairing of Hopf algebras if it satisfies the following
conditions:

〈a, φψ〉 = 〈∆H(a), φ⊗ ψ〉, 〈a, 1〉 = εH(a)

〈ab, φ〉 = 〈a⊗ b,∆A(φ)〉, 〈1, φ〉 = εA(φ),

〈SH(a), φ〉 = 〈a, SA(φ)〉,
for any a, b ∈ H and φ, ψ ∈ A.

The following proposition can be found in [5], [19]:

Proposition 1. There exists a unique pairing of Hopf algebras Uq(gl(n,C))
and A(GLq(n,C)) (briefly GLq(n,C)), such that:

〈qλ, tij〉 = δijq
〈λ,εi〉 〈qλ,detm

q 〉 = qm〈λ,ε1+···+εn〉 (m ∈ Z)

〈ek, tij〉 = δikδj,k+1; 〈fk, tij〉 = δi,k+1δjk

〈ek,detm
q 〉 = 〈fk,detm

q 〉 = 0 (m ∈ Z).

Let V be a right GLq(n,C)-comodule (resp. left GLq(n,C)-comodule)
with a structure mapping RG : V → V ⊗ GLq(n,C) (resp. LG : V →
GLq(n,C) ⊗ V ), then V has a left (resp. right) module structure over
Uq(gl(n,C)) defined by

a · v = (id⊗ a) ◦RG(v) (resp. v · a = (a⊗ id) ◦ LG(v))

∀a ∈ Uq(gl(n,C)) and v ∈ V.
In particular, GLq(n, c) is a bimodule over Uq(gl(n,C)). The actions of

the generators qλ, ek, fk are given by

qλtij = tijq
〈λ,εj〉; tijq

λ = tijq
〈λ,εi〉;

ektij = ti,j−1δj,k+1; tijek = δikti+1,j ;
fktij = ti,j+1δjk; tijfk = δi,k+1ti−1j .
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2.3. Quantum G-spaces and relative invariants [14].
Let G be a quantum group with a coordinate ring A(G). Then a quantum

space X is called a quantum left A(G)-space if the coordinate ring A(X) of
X has a structure of a left A(G)-comodule LG : A(X) → A(G)⊗A(X) such
that LG is a C-algebra homomorphism. An element χ of A(G) is called a
linear character of G if

∆(χ) = χ⊗ χ, ε(χ) = 1.

For a given linear character χ of G, an element φ of A(X) is called a left
relative invariant with character χ if LG(φ) = χ⊗φ. The subspace of all left
relative G-invariants in A(X) with a character χ is denoted by

(G\X;χ) = (φ ∈ A(X) : LG(φ) = χ⊗ φ).

The notions of right G-space and right relative G-invariants are defined
similarly. If χ = 1, the subalgebras of all right- and left- invariants are called
quantum homogeneous spaces and denoted by X\G and G/X respectively.
In the similar way one can define a subalgebra of bi-invariants:

G\X/G = {φ ∈ A(X) : RG(φ) = φ⊗ 1, LG(φ) = 1⊗ φ}.

2.4. Corepresentations of GLq(n,C) [14].
In what follows, we use an abbrevation ξJ = ξj1...jr (resp. ξJ = ξj1...jr)

to refer to a quantum r-minor determinant ξ1...r
j1...jr

(resp. ξj1...jr
1...r ) where J =

(j1 < · · · < jr).
For each positive integer r with r ∈ {1, · · ·n}, we define the fundamental

weight Λr by Λr = ε1+ · · ·+εr. Let λ be an integral weight in Ln in the form
λ = Λm1 + · · ·+ Λml

, 0 ≤ ml ≤ · · · ≤ m1 ≤ n. This condition is equivalent
to stating that λ is written as λ = λ1ε1 + · · ·+λnεn with 0 ≤ λn ≤ · · · ≤ λ1.

For such λ, let T = (Trs; 1 ≤ r ≤ n, 1 ≤ s ≤ λr) be a family of elements
in (1, . . . , n). If T satisfies the conditions

Tr−1,s < Tr,s for 1 ≤ s ≤ l, 2 ≤ r ≤ ms,(7)

Tr,s−1 ≤ Tr,s for 1 ≤ r ≤ n, 2 ≤ s ≤ λr,(8)

then T is called a semi-standard tableau of shape λ with labels in (1, . . . , n).
We denote the totality of all semi-standard tableaus T =(Tr,s) by SSTabn(λ)
and define the standard monomial ξT indexed by T as the product of quan-
tum minor determinants

ξT = ξJ1 . . . ξJl
∈ GLq(n,C),

where Js = (T1,s, . . . , Tms,s) for s ∈ {1, . . . l}.
Suppose now that q is not a root of unity.
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Proposition 2. If 0 ≤ λn ≤ · · · ≤ λ1, then the standard monomials ξT =
ξJ1 . . . ξJl

indexed by the semi-standard tableaus T in SSTabn(λ) form a
C-basis for a right GLq(n,C)-comodule denoted by V R(λ).

In a similar way one can construct a left irreducible GLq(n,C)-comodule
V L(λ). We say that an integral weight λ in Ln is dominant if λn ≤ · · · ≤ λ1.

Proposition 3. (1) If λ is dominant, then the monomials (detq)−mξT in-
dexed by semi-standard tableaus T in SSTabn(λ+m(ε1 + · · ·+ εn)) form a
basis for the right GLq(n,C)-comodule V R(λ) for any m ∈ Z with λn ≥ −m.

(2) Any finite-dimensional irreducible right (resp. left) GLq(n,C)- co-
module is isomorphic to V R(λ) for some dominant integral weight λ in Ln.

(3) Any finite-dimensional right and left GLq(n,C)-comodule is completly
reducible.

Proposition 4. The coordinate ring A(CLq(n,C)) is decomposed into the
direct sum of irreducible two-sided GLq(n,C)-comodules:

A(GLq(n,C)) = ⊕λW (λ)(9)

where the two-sided GLq(n,C)-comodule W (λ)is isomorphic to the tensor
product of the left and right irreducible GLq(n,C)-comodules V L(λ) and
V R(λ):

W (λ) ∼ V L(λ)⊗ V R(λ),
and the summation runs over all dominant integral weights λ in Ln.

2.5. Invariant integral [14], [29], [21], [27].

Definition 1. A linear functional ν : GLq(n,C) → C is called right-inva-
riant (resp. left-invariant) integral if

(ν ⊗ id) ◦∆(φ) = ν(φ) · 1 (resp. (id⊗ ν) ◦∆(φ) = 1 · ν(φ))

for all φ ∈ GLq(n,C). A bi-invariant integral is called a Haar integral.

Proposition 5. There exists a unique Haar integral h with h(1) = 1 and it
is the projection ν : ⊕λW (λ) →W (0).

2.6. Quantum group Uq(n) and quantum homogeneous space Uq(n−
1)\Uq(n) [14], [28].

The definition of a Hopf *-algebra can be found in [20], [19]:

Definition 2. A Hopf algebra H is a Hopf *-algebra if it is equipped with
a conjugate linear mapping ∗ : H → H, such that:

(1) 1∗ = 1; (φψ)∗ = ψ∗φ∗.

(2) ε(φ∗) = ε(φ); ∆ ◦ ∗ = (∗ ⊗ ∗) ◦∆; (∀φ, ψ ∈ H).
(3) ∗ ◦ ∗ = id; ∗ ◦ S ◦ ∗ ◦ S = id.
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Now we define the “compact real form” Uq(n) of GLq(n,C) by introducing
an involution in the Hopf algebra GLq(n,C), if q is real, q /∈ {−1, 0, 1}. The
anti-homomorphism ∗ acts on A(GLq(n,C)) in the following way:

t∗ij = S(tji) ∀i, j ∈ {1, . . . , n} (det−1
q )∗ = detq.

One can check that T∗T = TT∗ = 1, where T∗ = ((t∗ji)n
i,j=1), and that

A(Uq(n)) = A((GLq(n,C)), ∗) is a Hopf ∗-algebra.

Definition 3. The above Hopf ∗-algebra is the algebra of polynomials on
the quantum unitary group Uq(n). Sometimes we denote it briefly Uq(n). The
algebra of polynomials on the quantum group SUq(n) is a Hopf ∗-algebra
specified by the condition detq = 1 with the same ∆, ε, S, ∗.

For 1 ≤ m < n we define an epimorphism γm : A(Uq(n)) → A(Uq(n−m))
of Hopf ∗-algebras by:

γm(tij) = sij (1 ≤ i, j ≤ n−m);

γm(tkl) = δkl1 (k or l > n−m); γm(det−1
q ) = det−1

q .(10)

Proposition 6. The algebra Uq(n − 1)\Uq(n) is generated by tnk and
t∗nk (1 ≤ k ≤ n), satisfying the following relations:

tnitnj = qtnjtni, qt
∗
nit

∗
nj = t∗njt

∗
ni (1 ≤ i < j ≤ n),

t∗njtni = qtnit
∗
nj , 1 ≤ i, j ≤ n

t∗nktnk = tnkt
∗
nk + (1− q2)

∑
l<k

tnlt
∗
nl(1 ≤ k ≤ n)

n∑
k=1

tnkt
∗
nk = 1.

The structure of the quantum homogeneous space Uq(n)/Uq(n − 1) is
similar.

2.7. Double cosets of quantum groups [4], [24], [25].
Let Hi = (Hi, di, 1i,∆i, εi, Si) (i = 1, 2) be two Hopf algebras, where di

is a product, 1i is a unit, ∆i is a coproduct, εi is a counit, Si is an antipode
in Hi. Let γ : H1 → H2 be an epimorphism of Hopf algebras, i.e. it is an
algebra epimorphism such that (γ⊗γ)◦∆1 = ∆2◦γ, ε1 = ε2◦γ, γ◦Si = S2◦γ.

With respect to the coactions

LH2 = (γ ⊗ id) ◦∆1, LH2 : H1 → H2 ⊗H1

(resp., RH2 = (id⊗ γ) ◦∆1, RH2 : H1 → H1 ⊗H2)
H1 is a left (resp., right) H2-comodule. Define the sets H2\H1, H1/H2, H2\
H1/H2 of left-, right- and bi-invariants in H1 with respect to H2 exactly as
in 2.3.
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Remark 2. a) Since LH2 and RH2 are homomorphisms, the above sets are
unital subalgebras of H1.

b) A straightforward verification shows that:

∆1(H2\H1) ⊂ H2\H1 ⊗H1,∆1(H1/H2) ⊂ H1 ⊗H1/H2,

∆1(H2\H1/H2) ⊂ H2\H1 ⊗H1/H2.

c) From ∆1 ◦ S1 = σ ◦ (S1 ⊗ S1) ◦ ∆1 (here σ(a ⊗ b) = b ⊗ a), one can
deduce that

S1(H2\H1) ⊂ H2\H1, S1(H1/H2) ⊂ H1/H2,

S1(H2\H1/H2) ⊂ H2\H1/H2.

Let ν2 be an invariant integral on H2 (it exists if H2 is associated with a
compact quantum group [29]). Introduce a new coproduct on H2\H1/H2:

∆ := (id⊗ ν2 ◦ γ ⊗ id) ◦ (∆1 ⊗ id) ◦∆1.(11)

This is a generalization of (1) for Hopf algebras case.
We denote the restrictions of ε1, S1, to H2\H1/H2 by the same letters.

Proposition 7. Let a mapping ∆ be defined by (11). Then:
a) ∆ maps H2\H1/H2 into H2\H1/H2 ⊗H2\H1/H2;
b) ∆ is coassociative, i.e.

(id⊗∆) ◦∆ = (∆⊗ id) ◦∆;

c) ε1 is a counit on H2\H1/H2 with respect to ∆:

(ε1 ⊗ id) ◦∆ = (id⊗ ε1) ◦∆ = id;

d) if ν1 is a left- (resp., right-) invariant integral on H1, then its restric-
tion to H2\H1/H2 is left- (resp., right-) invariant with respect to ∆:

(ν1 ⊗ id) ◦∆(h) = ν1(h)11

(resp., (id⊗ ν1) ◦∆(h) = ν1(h)11);
e) the following relation holds:

∆ ◦ S1 = σ ◦ (S1 ⊗ S1) ◦∆;

f) if both H1, H2 are Hopf ∗-algebras and γ is their ∗-epimorphism, then
H2\H1, H1/H2, H2\H1/H2 are unital ∗-algebras, ∆ ◦ ∗ = (∗ ⊗ ∗) ◦∆ and
∆ maps the cone of positive elements of H2\H1/H2 to the cone of positive
elements of its tensor product.

Now recall that if H1 is a Hopf *-algebra associated with a compact quan-
tum group, then [29] H1 can be represented as

H =
∑
α

dα∑
i,j=1

Cuα
i,j ,(12)
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where uα
i,j are matrix elements of dα-dimensional unitary corepresentation

of H1 (dα <∞ for all α running over some discrete set Q̂) and there exists
an invariant integral ν on H, which is a state and such that α-sum in (12)
defines an orthogonal decomposition in the sense of the inner product given
by 〈f, g〉 := ν(f · g∗) after a suitable choice of an orthonormal basis for each
representation space. In this case, the comodules H2\H1, H1/H2 as well as
H2\H1/H2 may be given by

H2\H1 =
∑
α

d′α∑
i=1

dα∑
j=1

Cuα
i,j , H1/H2 =

∑
α

dα∑
i=1

d′α∑
j=1

Cuα
i,j ,

H2\H1/H2 =
∑
α

d′α∑
i,j=1

Cuα
i,j

where d′α ≤ dα for all α. One can see that

∆(uα
i,j) =

d′α∑
k=1

uα
i,k ⊗ uα

k,j .(13)

3. Quantum Stiefel manifold Uq(n)/Uq(n−m).

3.1.
For studying the structure of the quantum space Uq(n)/Uq(n −m), de-

compose Uq(n) into a direct sum of irreducible Uq(n−m)-comodules.

Definition 4. A dominant integral weight µ ∈ Li is said to be subordinated
to a dominant integral weight ν ∈ Lj (1 ≤ i < j ≤ n) if

νk+j−i ≤ µk ≤ νk (∀ 1 ≤ k ≤ i).(14)

In this case we write µ ≺ ν.

Lemma 1. Let λ be a dominant integral weight in Ln, V R(λ) be an ir-
reducible right Uq(n)-comodule of the weight λ. Considering V R(λ) as a
right Uq(n − m)-comodule (1 ≤ m ≤ n) with a coaction RUq(n−m) :=
(id⊗ γm)RUq(n), we have a decomposition:

V R(λ) ∼ ⊕µn−mKλ
µn−mV

R(λ, µn−m),(15)

where µn−m runs over the set of all dominant integral weights in Ln−m

subordinated to λ, V R(λ, µn−m) is an irreducible Uq(n−m)-comodule of the
weight µn−m, Kλ

µn−m ≥ 1 is its multiplicity, ∼ means an isomorphism.

Proof. For m = 1 the result has been obtained in [14]:

V R(λ) = ⊕µn−1V R(λ, µn−1).(16)
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Every Uq(n − 1)-subcomodule V R(λ, µn−1) of V R(λ) is isomorphic to an
irreducible right Uq(n − 1)-comodule V R(µn−1) with weight µn−1. By this
isomorphism and a decomposition of V R(µn−1) similar to (16), on the second
step we have

V R(λ) = ⊕µn−1 ⊕µn−2 V R(λ, µn−1, µn−2) ∼ ⊕{µ}n−2V R(λ, {µ}n−2),

where {µ}n−2 is the collection of the weights {µn−1, µn−2} with µn−2 ≺
µn−1. V R(λ, {µ}n−2) is a Uq(n − 2)-subcomodule of the right Uq(n − 2)-
comodule V R(λ), and V R(λ, {µ}n−2) is isomorphic to an irreducible right
Uq(n − 2)-comodule of the weight µn−2. On the m-th step of this process
one gets a decomposition:

V R(λ) = ⊕{µ}n−mV R(λ, {µ}n−m),

where {µ}n−m runs over the set of all collections of the dominant integral
weights {µ}n−m = {µn−1, · · · , µn−m}, µi ∈ Li, with µi−1 ≺ µi.

Here V R(λ, {µ}n−m) is a Uq(n−m)-subcomodule of the right Uq(n−m)-
comodule V R(λ) and it is isomorphic to an irreducible Uq(n−m)-comodule
of the weight µn−m. There are several collections {µ}n−m “leading” from λ to
µn−m; the number of these collections defines the corresponding multiplicity
Kλ

µn−m (the formula for computation of this number is quite complicated).

3.2.
In a usual way, one can give a definition of the highest vector of the

weight µn−i in the irreducible Uq(n − i)-comodule V R(λ, µn−i). It can be
constructed as follows. Remind that the basis in V R(λ) is formed by all
possible standard monomials ξT indexed by the semi-standard tableaus T
in SSTabn(λ).

(1) Let a tableau T be such that ξT is the highest vector of an irreducible
Uq(n−i)-comodule. This is possible if and only if ek ·ξT = 0 ∀k ∈ {1, . . . , n−
i− 1}. Since ek · ξj1···js = ξj1···jp−1···js , if some jp = k+ 1, and ek · ξj1···js = 0,
if j1, · · · , js 6= k + 1 (j1 ≤ · · · ≤ js ≤ n), then one gets that

ek · ξJs = 0, ∀k ∈ {1, · · · , n− i− 1},
if Js = (1, · · · , ps, jps+1, · · · , js), where 1 ≤ ps ≤ n− i, jps+1, · · · js ≥ n− i.
So the above structure of the lines of the tableau T is necessary. After that
it remains to check that for such a tableau we also have:

qεk · ξT = qµn−i
k ξT , εk ∈ Ln−i,∀k = 1, n− i.

(2) If a tableau T has the above property, one can get a collection of
tableaus T (n−i)(1 ≤ i ≤ n) (each of them is obtained by removing from
T its elements Trs exceeding n − i). Every r-column of the tableau T (n−i)

has, obviously, the height µn−i
r = card{1 ≤ s ≤ λr|Trs ≤ n − i}, and it is

clear that µn−i = 0 if r ≥ n − i. So, µn−i =
∑n−i

r=1 µ
n−i
r εr ∈ Ln−i, and the



QUANTUM STIEFEL MANIFOLD 189

collection of the weights {µ}n−i satisfies the condition of subordination. Let
us show that the monomial ξT (n−i) is the highest vector of the weight µn−i

in the irreducible Uq(n− i)-comodule.
In fact, according to the construction of T (n−i), one has ek · ξT (n−i) = 0

∀k ∈ {1, · · · , n − i − 1}. Now it is sufficient to show that qεk · ξT (n−i) =
qµn−i

k ξT (n−i) ∀k ∈ {1, · · · , n− i}. Taking into consideration the formulae qεk ·
tij = qδkj tij , q

εk ·ξJ = q〈εk,ΛJ 〉ξJ and qεk ·ξT (n−i) = q
〈εk,Λ

Jn−i
1

+···+Λ
Jn−i

s
〉
ξT (n−i)

= qµn−i
k ξT (n−i) . Considering a line J and the corresponding line J (n−i), we

have qεk · ξJ = q〈εk,ΛJ 〉ξJ = q〈εk,Λ
J(n−i) 〉ξJ ∀k ∈ {1, · · · , n − i}. This means

that qεk · ξT = q
〈εk,Λ

Jn−i
1

+···+Λ
Jn−i

s
〉
ξT = qµn−i

k ξT .
So one gets that ξT (corresponding to the semi-standard tableau T with

the above property) is the highest vector of the weight µ(n−i)
r in the irre-

ducible Uq(n− i)-comodule V R(λ). The epimophism γi : Uq(n) → Uq(n− i)
maps ξT to ξT (n−i) and in this way generates an isomorphism of irreducible
Uq(n− i)-comodules.

Remark 3. Lemma 1 and the mentioned construction of the highest vector
can be applied also to left comodules.

3.3.
In what follows we consider the homogeneous space Uq(n)/Uq(n − m),

i.e., the subcomodule V R(λ) of comodule Uq(n) of the weight µn−m = 0.
From inequalities 0 = µn−m

1 ≥ µn−m−1
2 ≥ · · · ≥ µ1

n−m ≥ λn−m+1 ≥ · · · ≥ λn

we obtain λn ≤ 0. The condition µn−m = 0 means that the tableaus T ∈
SSTabn(λ) do not contain the numbers 1, · · · , n−m. Using Proposition 3,
we can proceed to the case λn ≥ 0. The new weights can be written as:
λ̃ = λ−λm(ε1 + · · ·+ εn), µ̃n−m = µn−m−λn = −λn. That is why the new
tableaus T ∈ SSTabn(λ − λn(ε1 + · · · + εn)) corresponding to the highest
weights of this comodule will already contain the numbers 1, · · · , n − m.
Moreover, each of them should contain a rectangle block beginning from the
first line and the first column, every its line containing a completely ordered
set 1, · · · , n−m, the number of its columns being equal to −λn.

Consider now the generators vT = detλn
q ξT of the above Uq(n − m)-

comodule. Since the number of lines of T containing the numbers 1, · · · , n−
m equals to −λn, then these generators can be written in the form: vT =
det−1

q ξT1 · · · det−1
q ξT−λn

ξT−λn+1
· · · ξTλ1−λn

, where Ti are lines of T. By the
definition of ∗ we have: det−1

q ξTi = sgnq(Ti, T
c
i )(ξIi

T c
i
)∗ and then vT =

(ξI1
T c
1
)∗ · · · (ξI−λn

T c
−λn

)∗ · ξT−λn+1
· · · ξTλ1−λn

. Here T c
i is the complement of Ti

to the set (1, · · · , n), Ii is the line (p, · · · , n), p is the length of the Ti, and
sgnq(I, J) = (−q)l(I,J), l(I, J) = #{(i, j) : i ∈ I, j ∈ J, i > j}.
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The lines T−λn+1, · · · , Tλ1−λn do not contain the numbers 1, · · · , n −m
by the construction.

The comodule generated by the vectors vT is the Uq(n−m)-subcomodule
of the weight µn−m = 0 in Uq(n − m)-comodule V R(λ). We denote it by
V R(λ)0n−m. There is an isomorphism W (λ)/Uq(n−m) ∼ V L(λ)⊗V R(λ)0n−m

and Uq(n)/Uq(n−m) ∼ ⊕λV
L(λ)⊗V R(λ)0n−m, where λ runs over the set of

all weights such that µn−m = 0 ≺ λ. This isomorphism imposes a restriction
on lower indices of the minors generating W (λ)/Uq(n−m).

Thus, the algebraic generators of Uq(n)/Uq(n−m) are the minors ξi1,···ir
j1,···jr

and (ξi1,···ir
j1,···jr

)∗ (1 ≤ i1 < · · · < ir ≤ n; n−m+1 ≤ j1 < · · · < jr ≤ n; 1 ≤ r ≤
m). These minors are polynomials in tij ; t∗ij (1 ≤ i ≤ n, n−m+1 ≤ j ≤ n).

The result of our considerations can be summarized as follows:

Theorem 1. 1) The quantum homogeneous space Sn,m
q = Uq(n)/Uq(n−m)

is the algebra generated by tij , t∗ij (1 ≤ i ≤ n, n−m+ 1 ≤ j ≤ n) satisfying
the following relations:

tiktjk = qtjktik, tkitkj = qtkjtki (i < j) tiltjk = tjktil (i < j, k < l)

tiktjl − qtiltjk = tjltik − q−1tjktil (i < j, k < l)(17)

t∗ikt
∗
jk = q−1t∗jkt

∗
ik, t∗kit

∗
kj = q−1t∗kjt

∗
ki (i < j) t∗ilt

∗
jk = t∗jkt

∗
il (i < j, k < l)

t∗ikt
∗
jl − q−1t∗ilt

∗
jk = t∗jlt

∗
ik − qt∗jkt

∗
il (i < j, k < l)(18)

qtlpt
∗
lp + (q − q−1)

∑
m>p

tlmt
∗
lm = qt∗lptlp + (q − q−1)

∑
r<l

t∗rptrp

tijt
∗
is = qt∗istij + (q − q−1)

∑
p<i

t∗pstpj (s 6= j)

qtlpt
∗
jp + (q − q−1)

∑
m>p

tlmt
∗
jm = t∗jptlp (l 6= j)

tkjt
∗
ps = t∗pstkj (k 6= p, j 6= s)(19)

n∑
i=1

tilt
∗
ij = δlj .(20)

2) The relations (17), (18), (19), (20) form the full system of relations
between the generators tik, t∗ik (1 ≤ i ≤ n, n−m+1 ≤ k ≤ n) of the algebra
Sn,m

q .
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Proof. 1) It was explained already that the algebra Sn,m
q is generated by

tik, t
∗
ik (1 ≤ i ≤ n, n−m+1 ≤ k ≤ n). We shall prove the formulae (17)-(20)

using the matrices T = (tij)n
i,j=1 and T∗ = (t∗ji)

n
i,j=1.

The formula (20) follows from the equation TT∗ = T∗T = I (see 2.6).
The formula (17) follows from the Equation (6): (T ⊗ T)R = R(T ⊗ T),
where T⊗T = (T⊗ I)(I ⊗T). Multiplying both sides by (T∗ ⊗ I) on the
left, one gets (I ⊗T)R = (T∗ ⊗ I)R(T⊗ I)(I ⊗T); multiplying both sides
by I ⊗T∗ on the right, one gets (I ⊗T)R(I ⊗T∗) = (T∗ ⊗ I)R(T⊗ I).

The coordinate form of this formula gives us (19). And, finally, multiply-
ing the last line by the I⊗T∗ on the right and by the T∗⊗I on the left, one
gets R(I⊗T∗)(T∗⊗ I) = (I⊗T∗)(T∗⊗ I)R or R(T∗⊗T∗) = (T∗⊗T∗)R.
From this formula we obtain (18).

2) It is known that monomials in tik, t
∗
ik (1 ≤ i ≤ n, 1 ≤ k ≤ n) having

the lexicographic order form a basis in Uq(n) [14], [18]. Similarly one can
show, using the relations (17),(18), (19),(20), that monomials in tik, t∗ik (1 ≤
i ≤ n, n −m + 1 ≤ k ≤ n) having the lexicographic order form a basis in
Sn,m

q . This allows us to identify the algebra generated by the above letters
and relations with certain subalgebra of Uq(n). After that it is clear that
there is no nontrivial polynomial in tik, t∗ik (1 ≤ i ≤ n, n−m+ 1 ≤ k ≤ n)
equal to 0.

Remark 4. The similar facts are valid for Uq(n−m)\Uq(n). In the classical
case q = 1 the homogeneous space above is called a Stiefel manifold. That
is why in what follows we call Sn,m

q = Uq(n −m)/Uq(n) a quantum Stiefel
manifold.

4. Irreducible representations of Sn,m
q .

4.1.
Recall some basic facts referring to representations of the algebra of poly-

nomials on the quantum group SUq(n) [20], [19]. The algebra of polynomi-
als on SUq(2) has the following irreducible representations: one-dimensional
χφ(s11) = eiφ, χφ(s22) = e−iφ, χφ(s12) = χφ(s21) = 0 (φ ∈ [0, 2π)) and an
infinite-dimensional ρ0 in l2(Z+) : ρ0(s11)e0 = 0, ρ0(s11)ek = (1−q2k)1/2ek−1

k ≥ 1; ρ0(s21)ek = −qkek; ρ0(s22) = ρ0(s11)∗; ρ0(s12) = −qρ0(s21) (from
here on we consider only q ∈ (0, 1)).

The representations of SUq(n) can be constructed using the above rep-
resentations of SUq(2). Let ψi : Uq(sl(2)) → Uq(sl(n)) be the inclusion of
the quantum enveloping algebras such that ψi(e) = ei; ψi(f) = fi; ψi(qε) =
qεi 1 ≤ i ≤ n − 1. Then ψ∗

i : SUq(n) → SUq(2) and πi = ρ0ψ
∗
i are the

irreducible ∗-representations of SUq(n). By this construction, πi(tii) and
πi(ti+1,i+1) contain the shift operators, πi(ti,i+1) and πi(ti+1,i) are diagonal
and πi(tk,l) = δkl1 for all other generators.



192 G.B. PODKOLZIN AND L.I. VAINERMAN

Let Sn 3 ω = τi1 · · · τik be a decomposition of some element ω of the
permutation group, which has the least possible number of transpositions
τj = (j, j + 1). The representation πω = πi1 ⊗ · · · ⊗ πik corresponds to the
element ω (recall that if H is a Hopf algebra, ρ1 is a representation of its
algebra H, A is a right comodule algebra over H with respect to the coaction
RA : H → H ⊗ A, ρ2 is a representation of the algebra A, then one can
construct a new representation of the algebra H: ρ1⊗ ρ2 := (ρ1⊗ ρ2) ◦RA).

Proposition 8. The ∗-representations πω are irreducible and any irre-
ducible ∗-representation of SUq(n) is equivalent to some πω up to a one-
dimensional tensor factor.

Remark 5. A similar statement is also valid for Uq(n). The only difference
is that the set of one-dimensional representations of the group SUq(n) is
(n− 1)−parametric and of the group Uq(n) is n−parametric.

4.2.
One can construct an irreducible ∗-representation of the quantum Stiefel

manifold Sn,m
q = Uq(n)/Uq(n−m) = SUq(n)/SUq(n−m) using these facts.

Let us consider cosets Sn/Sn−m of the permutation group Sn with respect
to the subgroup Sn−m. Chose from every coset an element having the least
possible length ω = τj1 · · · τjl

.

Theorem 2. Representations πω of Sn,m
q corresponding to elements ω of the

least possible length, among the representatives of the class from Sn/Sn−m,
are irreducible.

Proof. Let us consider the structure of elements of Sn (resp., Sn/Sn−m) and
the structure of the corresponding representations of Uq(n) (resp., S−qn,m).
An arbitrary element of Sn can be written as follows:

ω = τi1 · · · τn−1τi2 · · · τn−2 · · · τik · · · τn−k,

(1 ≤ k ≤ n− 1, i1 ≤ · · · ≤ n− 1, · · · , ik ≤ · · · ≤ n− k),
(in particular, the greatest element ω0 ∈ Sn has the form:

ω0 = τ1τ2 · · · τn−1τ1 · · · τn−2 · · · τ1τ2τ1).
The corresponding series of representations of Uq(n)

πω,φ̄ = πi1 ⊗ · · · ⊗ πn−1 ⊗ πi2 ⊗ · · · ⊗ πn−2 ⊗ · · · ⊗ πik ⊗ · · · ⊗ πn−k ⊗ κφ̄,

is parametrized by one-dimensional representations κφ̄. Here one-dimensio-
nal representations κφ̄ correspond to the greatest torus in Uq(n).

Respectively, an arbitrary representative of a class from Sn/Sn−m having
the least possible length can be written as follows:

ω = τi1 · · · τn−1τi2 · · · τn−2 · · · τik · · · τn−k (1 ≤ k ≤ m),
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(in particular, the greatest element from Sn/Sn−m, the representative of the
class ω0Sn−m having the least possible length, is

ωm = τ1τ2 · · · τn−1τ1 · · · τn−2 · · · τ1 · · · τn−m).

The corresponding series of representations of Sn,m
q

πω,φ̄ = πi1 ⊗ · · · ⊗ πn−1 ⊗ πi2 ⊗ · · · ⊗ πn−2 ⊗ · · · ⊗ πik ⊗ · · · ⊗ πn−k ⊗ κφ̄,

is parametrized by one-dimensional representations corresponding to the
greatest torus in Sn,m

q .
Now let us show that every representation πω is irreducible. The irre-

ducibility of this representation follows from the fact that for any tensor
component of πω(·) one can find such a generator t of Sn,m

q for which this
tensor component of πω(t) containes the shift operator. More precisely, one
can see that for any tensor component of πω(·) with a number from the group
{il, . . . , n − l} (l = 1, . . . , k) it is possible to find such a generator t from
the group {t1,n−l+1, . . . , tn,n−l+1} for which this tensor component of πω(t)
containes the shift operator. Let us show the typical consideration support-
ing this statement. Let us consider, for example, the greatest representation
πωm . Then

πωm(tin) = π1(tii)⊗· · ·⊗πi−1(tii)⊗πi(ti,i+1)⊗· · ·⊗πn−1(tn−1,n)⊗π1(tnn)⊗· · ·
⊗πn−2(tnn)⊗ · · · ⊗ π1(tnn)⊗ πn−m(tnn) (1 ≤ i ≤ n).

The operator πi−1(tii) containes the shift operator by the construction. The
operators πj(tj,j+1) (i ≤ j ≤ n− 1) are diagonal and all the others are unit
operators. Hence, the above statement is true for the tensor components
of πωm(·) with numbers from the group {1, . . . , n − 1}. Similarly one can
consider all other cases. Thus, the proof is completed.

Theorem 3. Each irreducible ∗-representation ρ of Sn,m
q is equivalent (up

to a one-dimensional tensor factor) to one of the representations πω, where
ω has the least possible length among the representatives of the class from
Sn/Sn−m.

Proof. Continue ρ up to the representation of the quantum group SUq(n)
in the following way: ρ(tij) = ρ(t∗ij) = δij1 (1 ≤ j ≤ n−m, 1 ≤ i ≤ n). It is
irreducible because it is irreducible on the subalgebra. Then, according to
Proposition 8, it is equivalent to the representation πi1 ⊗ · · · ⊗ πik ⊗ κφ (κφ

is one-dimensional representation).
Let us consider the permutation ω = τi1 · · · τik corresponding to this rep-

resentation. The representation ρ and, consequently, πω are irreducible
on Sn,m

q . Then let us show that πω is irreducible only if ω has the least
possible length. Consider a transposition τs ∈ Sn−m, a representation
πω ⊗ πs = πi1 ⊗ · · · ⊗ πik ⊗ πs and its action on the generators tik (1 ≤
i ≤ n, n−m+ 1 ≤ k ≤ n) of Sn,m

q : πω ⊗ πs(tik) =
∑n

r=1 πω(tir)⊗ πs(trk).
But πs(trk) = δrk1 (1 ≤ r ≤ n, n −m + 1 ≤ k ≤ n) by the construction of
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the representations πs (s ≤ n −m − 1). So πω ⊗ πs(tik) = πω(tik) ⊗ 1 and
this representation is not irreducible. Thus we have proved that the length
of ω should be the least possible.

4.3.
Let us consider now the set of representations πω,φ̄ = πω ⊗ κφ̄, where κφ̄

are one-dimensional representations of Sn,m
q and ω ∈ Sn/Sn−m.

Theorem 4. For the representations of Sn,m
q we have:

∩ω∈Sn/Sn−m,φ̄Kerπω,φ̄ = 0.

Proof. Let ∩ω∈Sn/Sn−m,φ̄Kerπω,φ̄ = L. It was shown in the proof of Theorem
3 that (πω,φ̄ ⊗ πσ)(x) = (πω,φ̄ ⊗ 1)(x) ∀σ ∈ Sn−m ∀x ∈ Sn,m

q . So for x ∈
L we have (πω,φ̄ ⊗ πσ)(x) = 0. Taking all σ ∈ Sn−m, one can obtain all
the representations of Uq(n). Thus, L = ∩γ∈Sn,φ̄Kerπγ,φ̄ = 0, because πγ,φ̄

(γ ∈ Sn) give all the representations of Uq(n), and it is known [28] that the
intersection of their kernels is 0.

Now one can construct a C∗−algebra C(Sn,m
q ) of the quantum Stiefel

manifold Sn,m
q , considering the completion of Sn,m

q with respect to the C∗-
norm

|| · || = supω,φ̄||πω,φ̄(·)||.

Remark 6. The C∗−algebra C(Uq(n)) of the quantum group Uq(n) was in-
troduced in a number of papers, for example, in [18], [29]. The C∗−algebra
C(Sn,1

q ) was introduced in [17], [18], [28].

5. Invariant integral.

5.1.
The existence and the uniqueness of the invariant integral νn on Uq(n) are

known (2.5, 2.6). Our aim is to obtain a formula for its calculation as well
as a similar formula for an invariant integral νn,n−m on Sn,m

q (i.e., a linear
functional on Sn,m

q such that (id ⊗ νn,n−m) ◦ ∆(f) = νn,n−m(f)1 for every
f ∈ Sn,m

q ). We shall do it by induction in n. For this we use the formula for
the invariant integral νn,n−1 on Sn,1

q = SUq(n)/SUq(n−1) = Uq(n)/Uq(n−1)
which has been obtained in [28]:

νn,n−1(f) = (2π)−1

∫ 2π

0
tr(πω1,φ(f)Q)dφ,

where ω1 is the greatest element in Sn/Sn−1, Q : l2(Z+)⊗(n−1) →
l2(Z+)⊗(n−1) is a linear operator

Q(em1 ⊗ · · · ⊗ emn−1) = Q(m1, . . . ,mn−1)em1 ⊗ · · · ⊗ emn−1 ,
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where Q(m1, . . . ,mn−1) =
∏n−1

j=1 (1− q2(n−j))−1q2
Pn−1

j=1 mj(n−j). One can see
that the operator Q is equal to the operator

π1(t∗12t12)(1− q2)−1 ⊗ π2((t∗23t23)
2)(1− q4)−1 ⊗ · · ·

· · · ⊗ πn−1((t∗n−1,ntn−1,n)n−1)(1− q2(n−1))−1

and its trace equals to 1.

Lemma 2. The formula for the invariant integral on Uq(n) is:

νn(f) = (2π)−n

∫
T0

tr[πω0,φ̄(f)(⊗n−1
k=1Qk)]dφ̄,

where Qk = ⊗n−k
i=1 πi(t∗i,i+1ti,i+1)i(1−q2i)−1, T0 is the greatest torus in Uq(n).

The formula for the invariant integral on Sn,m
q is:

νn,n−m(f) = (2π)−m

∫
Tm

tr[πωm,φ̄(f)(⊗m−1
k=1 Qk)]dφ̄,

where Qk are the same as above, Tm is the greatest torus in Sn,m
q .

Proof. The induction step is given by the following equality:

νn = (νn,n−1 ⊗ νn−1)(id⊗ γ1)∆,

where γ1 : Uq(n) → Uq(n−1) is an epimorphism, a map Pr = (id⊗νn−1)(id⊗
γ1)∆ is exactly a projector from Uq(n) on Sn,1

q such that (id⊗Pr)∆ = ∆◦Pr

[4], [24], [25], [26]. In fact, by the properties of Pr and νn,n−1, one can see
that the right-hand side of the above equality is exactly a right-invariant
integral on Uq(n). Since such an integral is unique (see 2.5), the above
equality is true.

The base of the induction is the following expression for an invariant
integral on Uq(1) : ν1(t) = 0, ν1(1) = 1. Now, using the formula for νn,n−1,
we obtain the statements of the lemma.

Corollary 1. The invariant integrals νn and νn,n−m are the faithful states
on the corresponding C∗-algebras C(Uq(n)) and C(Sn,m

q ).

Remark 7. The statement of the above corollary was obtained in [13] by
different considerations.

5.2.
The construction of the invariant integral allows us to prove the following:

Theorem 5. For the series of the greatest representations πωm,φ̄ of Sn,m
q

the following statement holds:

∩φ̄Kerπωm,φ̄ = 0.
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Proof. Let ∩φ̄Kerπωm,φ̄ = L 3 v. Since L is a ∗-ideal, then vv∗ ∈ L, and we
get πωm,φ̄(vv∗) = 0. But at the same time, vv∗ is a strictly positive element,
hence νn,n−m(vv∗) > 0. This contradiction proves the theorem.

The above theorem allows us to state that the representation

Rn(f) = ⊕
∫

Tm

πωm,φ̄(f)dφ̄

is the faithful representation of C∗ algebra C(Sn,m
q ).

This result generalizes the construction of the faithful representation for
Sn,1

q [28].

6. Double cosets Uq(n−m)\Uq(n)/Uq(n−m).

6.1.
The definition of Uq(n−m)\Uq(n)/Uq(n−m) as the intersection of Uq(n−

m)\Uq(n) and Uq(n)/Uq(n−m) along with the results of Section 3 allow to
describe the hypergroup structure on it more precisely than in Section 2.7.
First, a straightforward corollary of Subsection 3.3 and Theorem 1 is given
by the following:

Lemma 3. The algebra Uq(n−m)\Uq(n)/Uq(n−m) is generated by the gen-
erators tij , t∗ij (n−m+1 ≤ i, j ≤ n) for which the relations of commutation
(17), (18), (19) hold.

Moreover, this algebra has the following comodule decomposition:

Uq(n−m)\Uq(n)/Uq(n−m) ∼ ⊕λV
L(λ)0n−m ⊗ V R(λ)0n−m,

where λ is an integral dominant weight such that µn−m = 0 ≺ λ.

Remark 8. We can also consider an algebra Uq(n−m1)\Uq(n)/Uq(n−m2).
This algebra is generated by generators tij , t∗ij (n−m1 +1 ≤ i ≤ n, n−m2 +
1 ≤ j ≤ n) for which the relations of commutation (17), (18), (19) hold.

6.2.
One can introduce a new coproduct on the algebra Uq(n−m)\ Uq(n)/Uq(n

−m): ∆̃ := (id ⊗ νn−m ⊗ id)(id ⊗ γm ⊗ id)(∆ ⊗ id)∆, where νn−m is the
invariant integral on Uq(n−m), γm is the epimorphism from Uq(n) to Uq(n−
m) and ∆ is the coproduct on Uq(n).

Lemma 4. The coproduct ∆̃ “respects” the comodule structure of Uq(n −
m)\Uq(n)/Uq(n−m) = ⊕λUq(n−m)\W (λ)/Uq(n−m):

∆̃ : Uq(n−m)\W (λ)/Uq(n−m) →

Uq(n−m)\W (λ)/Uq(n−m)⊗ Uq(n−m)\W (λ)/Uq(n−m).
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Proof. The coproduct ∆ acts on W (λ)/Uq(n − m) in the following way:
∆ : W (λ)/Uq(n −m) → W (λ) ⊗W (λ)/Uq(n −m) and hence (∆ ⊗ id)∆ :
Uq(n−m)\W (λ)/Uq(n−m) → Uq(n−m)\W (λ)⊗W (λ)⊗W (λ)/Uq(n−m).
It was shown earlier that W (λ) can be decomposed into the direct sum as
the right Uq(n−m)−comodule: W (λ) = ⊕µn−m≺λW (λ, µn−m).

In the similar way W (λ) can be decomposed as the left Uq(n−m)−como-
dule: W (λ) = ⊕µn−m≺λW (µn−m, λ).

Then one has: (id⊗ γm ⊗ id)(∆⊗ id)∆ : Uq(n−m)\W (λ)/Uq(n−m) →
⊕µn−m≺λUq(n−m)\W (λ, µn−m)⊗W (µn−m)⊗W (µn−m, λ)/Uq(n−m). One
uses the fact that νn−m(W (µn−m)) = 0 if µn−m 6= 0 and W (0) = C;
W (λ)/Uq(n−m) = W (λ, 0); Uq(n−m)\W (λ) = W (0, λ).

After that (id⊗ νn−mγm⊗ id)(∆⊗ id)∆ : Uq(n−m)\W (λ)/Uq(n−m) →
Uq(n−m)\W (λ, 0)⊗W (0)⊗W (0, λ)/ Uq(n−m) = Uq(n−m)\W (λ)/Uq(n−
m)⊗ Uq(n−m)\W (λ)/Uq(n−m).

6.3.
Theorem 2 allows to get the following statement referring to representa-

tions of double cosets:

Lemma 5. (i) Representations πj1⊗· · ·⊗πjl
corresponding to the elements

ω of the least possible length (among the representatives of the class from
Sn−m\Sn/Sn−m) are irreducible representations of the double cosets Uq(n−
m)\Uq(n)/Uq(n−m).

(ii) The series of greatest representations of Uq(n−m)\Uq(n)/Uq(n−m)

π
mωm,φ̄ = πn−m⊗πn−1⊗πn−m−1⊗· · ·⊗πn−2⊗· · ·⊗πn−2m⊗· · ·⊗πn−m⊗κφ̄

is parametrized by the greatest torus in Uq(n−m)\Uq(n)/Uq(n−m). Here
mωm are the greatest elements of double cosets Sn−m\Sn/Sn−m.

(iii) The representation Rn(f) = ⊕
∫
Tm

πωm,φ̄(f)dφ̄ is the faithful repre-
sentation of C∗ algebra generated by Uq(n−m)\Uq(n)/Uq(n−m).

Finally, Lemma 2 gives a formula for the invariant integral on Uq(n −
m)\Uq(n)/Uq(n−m) which is the restriction of νn,n−m on this algebra. The
mentioned formula shows that the invariant integral is the faithful state on
the C∗-algebra generated by the double cosets.
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