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J. Arroyo, M. Barros, and O.J. Garay

We present a new method to obtain Willmore–Chen sub-
manifolds in spaces endowed with warped product metrics and
fibers being a given homogeneous space. The main points are:
First the invariance of the variational problem of Willmore–
Chen with respect to the conformal changes in the ambient
space metric. Second, the principle of symmetric criticality
which allows us to relate the problem with that for generalized
elastic curves in the conformal structure on the base.

We obtain some applications of our method, including one,
to get a rational one parameter family of Willmore tori in the
standard 3-sphere shaped on an associated family of closed
free elastic curves in the standard hyperbolic 2-plane.

We also get a 3-dimensional Riemannian manifold which is
foliated with leaves being nontrivial Willmore tori.

We start by recalling that Willmore–Chen submanifolds in a Riemannian
manifold (M, g) are the critical points of the Willmore–Chen functional W,
which is defined by

W(N) =
∫

N
(α2 + τe)

n
2 dv,(1)

where N is an n-dimensional compact submanifold immersed in M . The
mean curvature function and the extrinsic scalar curvature function of N
in (M, g) are α and τe respectively and dv denotes the volume element
relative to the induced metric by g in N . This functional is known to be
invariant under conformal changes of the metric g of M , [9]. When n = 2,
it coincides with the Willmore functional and then its critical points are
the Willmore surfaces. Minimal surfaces in the standard sphere (of any
dimension) are obvious examples of Willmore surfaces. Articles showing
different methods to construct examples of non-minimal Willmore surfaces
in spheres are known in the literature (see for example, [3, 7, 10, 12, 15])
even in spaces with no constant curvature (see, for example, [1, 2]).
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However the first non-trivial known examples of Willmore–Chen subman-
ifolds (of course with dimension greater than two, exactly they have dimen-
sion four) were obtained in [6].

The Euler-Lagrange equations associated with the Willmore functional,
in spaces of constant curvature, were computed in [16]. Now the nice family
of Willmore tori, in the standard 3-sphere, obtained in [15], can also be
directly obtained as a family of solutions of these Euler-Lagrange equations.
In fact, it is not difficult to see that these equations for Hopf tori reduce
to the Euler-Lagrange equations for certain elastic curves on the standard
2-sphere, [11].

Let (M1, g1) and (M2, g2) be two Riemannian manifolds with dimensions
n1 and n2 respectively. Given a positive function f on M1 (assume inf f > 0
if M1 is not compact) we define on M1 ×M2 the following metric

g = g1 + f2g2,(2)

where we omit the pulling back via the canonical projections of M onto its
factors. The Riemannian manifold (M, g) is called the warped product of
(M1, g1) (which is called the base) and (M2, g2) (which is called the fiber)
with warping function f , (see [8, 13] for details on the subject). The above
warped product is simply denoted by M1 ×f M2.

From now on (M, g) will denote a warped product with fiber (M2, g2)
being a homogeneous space. Let G be the group of isometries of (M2, g2).
The natural action of G on (M2, g2) is obviously transitive and it can be
extended to an action on (M, g) through isometries as follows

M ×G −→ M ; p.g = (p1, p2).g = (p1, p2.g),(3)

for any p = (p1, p2) ∈ M = M1 ×M2 and g ∈ G. The orbit of this action
through p = (p1, p2) ∈ M is given by

[p] = [(p1, p2)] = {p1} ×M2.

The (n2 + 1)-dimensional submanifolds in (M, g) which are G-invariant
are characterized in the following proposition whose proof is evident.

Proposition. Let N be an (n2 + 1)-dimensional submanifold in (M, g).
Then N is G-invariant if and only if there exists a curve γ in (M1, g1) such
that N = γ ×f M2.

To understand the following theorem better, we will say that a r-general-
ized elastica in a Riemannian manifold (P, h) is a curve, which is a critical
point of the functional



WILLMORE–CHEN TUBES 203

Fr(γ) =
∫

γ
(κ2)

r+1
2 ds,(4)

(κ denotes the curvature function of γ in (P, h)), defined on the manifold con-
sisting only of regular closed curves or curves which satisfy a given first order
boundary data. The Euler-Lagrange equations relative to this variational
problem were computed in [6] when r = 3. However the same computation
can be adapted for an arbitrary value of r. In particular, when r = 1, we
have the usual concept of free elastica in the sense of [11].

Theorem. Let (M, g) = M1 ×f M2 and (M2, g2) a compact homogeneous
space of dimension n2. Let γ be a closed curve immersed in (M1, g1). The
submanifold N = γ×f M2 is a Willmore–Chen submanifold in (M, g) if and
only if γ is a n2-generalized elastica in

(
M1,

1
f2 g1

)
.

Proof. Since the Willmore–Chen variational problem is invariant under con-
formal changes in the ambient space metric, we make the following change
of the metric g = g1 + f2g2 on M , just define

g̃ =
1
f2

g =
1
f2

g1 + g2.

Now the Willmore–Chen submanifolds in (M, g) are those in (M, g̃).
Moreover we can take advantage from the Riemannian product structure
of (M, g̃).

Let N be the smooth manifold consisting of the (n2 + 1)-dimensional
compact submanifolds in (M, g̃). The Willmore–Chen functional W : N −→
R is given by (1) and it certainly is invariant under the G-action (3) on
(M, g), that is W(N) = W(N, g) for any g ∈ G. We put NG to denote the
submanifold of N made up of those submanifolds which are G-invariant.
According to the Proposition, we have

NG = {γ ×M2/γ is a closed curve in M1}.

We also write C and CG to denote the sets of critical points of W and
W|NG

on N and NG respectively. The first one is nothing but the set of
Willmore–Chen submanifolds.

The principle of symmetric criticality , [14], can be applied here, conse-
quently we have

C ∩ NG = CG.

Next we obtain G-symmetric Willmore–Chen submanifolds by first com-
puting W on NG,
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W(γ ×M2) =
∫

γ×M2

(α2 + τe)
n2+1

2 ds dv2,(5)

where ds denotes the arc-length of γ in
(
M1,

1
f2 g1

)
and dv2 is the volume

element of (M2, g2). Having in mind that (M, g̃) is a Riemannian product, it
is not difficult to see that τe vanishes identically and α2 = 1

(1+n2)2
κ2, where

κ is the curvature function of γ in
(
M1,

1
f2 g1

)
. Therefore (5) can be written

as

W(γ ×M2) =
vol(M2, g2)
(1 + n2)1+n2

∫
γ
(κ2)

n2+1
2 ds,

which proves the statement.

From now on, we are going to get some applications of the above estab-
lished result. To get examples of Willmore tori in the standard 3-sphere
we proceed as follows. Let Ω be the open hemisphere, in the unit 2-sphere,
defined in R4 by x1 > 0 and x2 = 0. We denote its standard metric of
constant curvature 1, by go. Let f : Ω −→ R be the positive function de-
fined as the x1 projection. Then Σ = Ω× S1 is the unit 3-sphere where one
geodesic was removed. The standard metric ḡo on Σ is go + f2dt2, with the
obvious meaning. In others words, (Σ, ḡo) is the warped product of (Ω, go)
and (S1, dt2) with warping function f .

To better understand the next result, notice that Ω endowed with the
metric g = (1/f2)go is nothing but the standard hyperbolic 2-plane with
constant Gaussian curvature −1. Consequently we can apply the above
stated theorem to have:

Corollary 1. Let γ be an immersed closed curve in Ω. The torus Tγ =
γ × S1 is Willmore in Σ if and only if γ is a free elastica in the hyperbolic
plane (Ω, g).

The complete classification of free elastica in the standard hyperbolic
plane was achieved in [11]. Besides the m-fold cover ηm

o of the so called hy-
perbolic equator ηo (that is the geodesic circle of radius sinh−1(1) in (Ω, g)),
there exists an integer two parameter family of free elasticae in (Ω, g),
{ηm,n/m > 1 and 1

2 < m
n <

√
2

2 }, (see [11] for a geometrical descrip-
tion of this family). Therefore we obtain:

Corollary 2. There exist infinitely many Willmore tori in the standard 3-
sphere Σ. This family includes the following two subfamilies:

1) {Tηm
o

= ηm
o × S1/m is a non zero integer,} and

2) {Tηm,n = ηm,n × S1/m > 1 and 1
2 < m

n <
√

2
2 }.
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Remark. (1) The reader should compare the Willmore tori just obtained
in the standard 3-sphere with those obtained in [15]. Those came from
nonfree elasticae in the standard 2-sphere. To be precise, they are Hopf tori
shaped on elastic curves in the 2-sphere but the elasticity is constrainted
with a Lagrange multiplier λ = 4 (when one regards the Hopf map as a
Riemannian submersion). Also, these tori are conformal to those obtained
in [12].

(2) We also notice, (see once more [11]) that the total squared curvature
of any immersed closed curve in (Ω, g) satisfies∫

γ
κ2(s)ds ≥ 4π,(6)

and the equality in (6) holds if and only if γ is a circular free elastica in
(Ω, g), that is the hyperbolic equator ηo which is a geodesic in (Ω, go). Con-
sequently we obtain the following connection with the popular and well
known Willmore conjecture

W(Tγ) ≥ 2π2,(7)

and the equality in (7) holds if and only if Tγ is the Clifford torus in (Σ, ḡo).

The following construction combined with the above studied argument
allow us to give examples of Chen-Willmore submanifolds associated with
certain metrics defined on M = S1×S1×P , where P denotes any compact
homogeneous space (with a given metric ds2) of dimension, say r. We start
with any metric g on a torus T = S1×S1, as it is known that g is conformal
to some flat metric, say go, on T . In others words, there exists a positive
function f on T such that g = f2go. We consider M = T ×P endowed with
the metric g̃ = g + f2ds2 and so

(
M, 1

f2 g̃
)

is the Riemannian product of
the flat torus (T, go) and (P, ds2). Now for any closed free elastica γ in the
flat torus (T, go), the tube Υγ = γ × P is a Willmore–Chen submanifold in
(M, g̃).

Let R3 be the Euclidean 3-space endowed with its canonical metric <,>.
We define the following positive function on R3, f(p) = 1 + 1

2 |p|, where
the point p ∈ R3 is identified with its position vector (relative to some
origin in R3) and |p| =< p, p >

1
2 . We choose any compact, r-dimensional,

homogeneous space, say (P, ds2) as above. Then we have:

Corollary 3. There exists a rational one-parameter family of (r+1)-dimen-
sional Willmore–Chen submanifolds in M = R3×f P for any r-dimensional
compact homogeneous space (P, ds2).

Proof. In M with the metric <,> +f2ds2 we make a conformal change to
get 1

f2 <,> +ds2. Then (R3, 1
f2 <,>) is nothing but the once punctured
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3-sphere, Σ. Now we can use an argument similar to that used in [6], to
show the following statement: For any non-zero rational number q, there
exists a closed helix βq in Σ which is a r-generalized elastica in Σ. Then
we apply the main theorem to conclude that βq ×f P is a Willmore–Chen
submanifold in M .

The last application is dedicated to obtain a 3-dimensional Riemannian
manifold which admit a foliation with leaves being non-trivial Willmore
tori, we will call it a Willmore foliation and we will say that the manifold is
Willmore foliated.

We start from a plane immersed curve γ : I ⊂ R −→ R2 which we
assumed to be parametrized by arc-length s. Let M = γ×S1×S1 endowed
with the metric g = ds2 + f2

1 dt2 + f2
2 du2, where f1 and f2 are two positive

functions on γ. Certainly g is conformal to the Riemannian product metric
g̃ on M = N × S1 given by g̃ = go + du2, where go = dv2 + f2

1

f2
2
dt2 and

N = γ×S1. Notice that we made a change of parameters in γ, to be precise
we considered ds

dv = f1(s) on γ. Now a suitable choice of both f1 and f2 on
γ, allows us to regard (N, go) as a surface of revolution in R3.

On the other hand the elasticity of the parallels in a surface of revolution
was discussed in [5]. The following statement was proved there: Besides
the right cylinders (all whose parallels are geodesics and so trivially free
elastic curves), the only surfaces of revolution with all the parallels being
free elasticae are what were called the trumpet surfaces, such surfaces are
free of geodesic parallels, therefore we have, (see [5] for details):

Corollary 4. Let b and c be a couple of real numbers with c > 0 and I =(
−2

c , 0
)⋃ (

0, 2
c

)
. We define the plane curve (a trumpet) γ : I ⊂ R −→ R2

by

γ(s) =

(
c

4
s2,

s

2

√
1− c2

4
s2 − 1

c
arccos

cs

2
+ b

)
.

Let f1 and f2 be two positive functions on I with f1(s)
f2(s) = c

4s2. Then M =
γ × S1 × S1 endowed with the metric g = ds2 + f2

1 dt2 + f2
2 du2 admits a

nontrivial Willmore foliation with leaves being nontrivial Willmore tori.
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