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Guangfu Cao

In this paper, the Fredholm properties of some Toeplitz
operators on Dirichlet spaces be discussed, and the essential
spectra of Toeplitz operators with symbols in C1 or H∞

1 +C1

be computed.

1. Introduction.

Let D be the unit disk in the complex plane C, dA = 1
πdxdy be the normal-

ized area measure on D. L2,1 is the space of functions u : D → C, for which
the norm

‖u‖ 1
2

=

[∫
D

(∣∣∣∣∂u∂z (z)
∣∣∣∣2 +

∣∣∣∣∂u∂z̄ (z)
∣∣∣∣2
)
dA

] 1
2

<∞.

L2,1 is a Hilbert space with the inner product

〈u, v〉 1
2

=
〈
∂u

∂z
,
∂v

∂z

〉
L2(dA)

+
〈
∂u

∂z̄
,
∂v

∂z̄

〉
L2(dA)

.

The Dirichlet space, D, is the subspace of all analytic functions g in L2,1

with g(0) = 0. Let P be the orthogonal projection from L2,1 into D. P is
an integral operator represented by

P (u)(w) =
∫

D

∂u

∂z

∂K(z, w)
∂z

dA,

where K(z, w) =
∑∞

k=1
zkw̄k

k is the reproducing kernel of D (see R. Rochberg
and Z.J. Wu [5] and Wu [7]). Let G be a domain in C, define

C1(G) =
{
u|u, ∂u

∂z
,
∂u

∂z̄
∈ C(G)

}
,

C1(Ḡ) =
{
u|u, ∂u

∂z
,
∂u

∂z̄
∈ C(Ḡ)

}
,

and

H∞
1 (G) = {f ∈ H(G)|f ′ ∈ H∞(G)},
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where C(G)(or C(Ḡ)) and H(G) are respectively the set of continuous func-
tions on G(or Ḡ) and the one of analytic functions on G.

In [5] and [7], R. Rochberg and Z.J. Wu define the Toeplitz operator with
symbol µ as

Tµf =
∫

D
f ′(z)

∂K(z, w)
∂z

dµ (∀f ∈ D),

where µ is a measure on D. If dµ = ϕdA,ϕ ∈ L∞(D, dA), one can define

Tϕf =
∫

D
f ′(z)

∂K(z, w)
∂z

ϕdA.

We see easily that Tϕf 6= P (ϕf) in general, in fact, P (ϕf) may be undefined
for ϕ ∈ L∞(D, dA). However, it seems to be more natural that the Toeplitz
operators be defined as the form P (ϕf). In this paper, we try to define the
Toeplitz operators with some special symbols as following

Definition 1. Suppose ϕ ∈ C1(D), the operator

Tϕf(w) = P (ϕf)(w) = 〈ϕf,K〉 1
2

=
∫

D

∂(ϕf)
∂z

∂K(z, w)
∂z

dA(z)

is said to be the Toeplitz operator with symbol ϕ.

We will compute the spectra and essential spectra of these operators.

For convenience, we use frequently the notation
∼
Tϕ to denote the Toeplitz

operator with symbol ϕ on Bergman space.
By the way, our results are also true for Toeplitz operators on weighted

Dirichlet spaces Dα (α < 1). If α = 1
2 , then D 1

2
= D, the usual Dirichlet

space (c.f. [5], [7]).

2. Toeplitz operators with symbols in C1(D̄).

Throughout this paper, we use the symbol “〈., .〉” to represent the inner
product in L2(D, dA), and “〈., .〉 1

2
” to that in D.

Define the norm in C1(D̄) as

‖ϕ‖∗ = max
z∈D̄

max
{
|ϕ|,

∣∣∣∣∂ϕ∂z
∣∣∣∣ , ∣∣∣∣∂ϕ∂z̄

∣∣∣∣} , (∀ϕ ∈ C1(D̄)).

It is well-known that C1(D̄) is a norm-closed algebra relative to ‖.‖∗.

Lemma 1. For any ϕ ∈ C1(D̄), Hϕf =: (I−P )(ϕf) (∀f ∈ D) is a compact
operator from D to D⊥.
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Proof. For any f ∈ D, g ∈ D⊥

〈Hϕf, g〉 1
2

= 〈ϕf, g〉 1
2

=
〈
∂ϕ

∂z
f + ϕ

∂f

∂z
,
∂g

∂z

〉
+
〈
∂ϕ

∂z̄
f,
∂g

∂z̄

〉
=
〈
∂ϕ

∂z
f,
∂g

∂z

〉
+
〈
ϕ
∂f

∂z
,
∂g

∂z

〉
+
〈
∂ϕ

∂z̄
f,
∂g

∂z̄

〉
.

Note g⊥D, so ∂g
∂z⊥L

2
a (L2

a is the classical Bergman space on D). Let Pa is
the orthogonal projection from L2(D, dA) to L2

a, then for any f ∈ D and
g ∈ D⊥, we have〈

ϕf ′,
∂g

∂z

〉
=
〈

(I − Pa)(ϕf ′),
∂g

∂z

〉
=
〈
∼
Hϕf

′,
∂g

∂z

〉
,

where
∼
Hϕ is the Hankel operator from L2

a to L2
a
⊥ with symbol ϕ. Since

ϕ ∈ C1(D̄),
∼
Hϕ is a compact operator. Now assume that {fk} ⊂ D is a

sequence which converges weakly 0 and satisfies ‖fk‖D = 1, we prove first
that ‖fk‖L2 → 0 (k →∞). In fact, without loss of generality, assume fk(z) =∑∞

n=1 a
(k)
n zk, then a(k)

n → 0 (k →∞,∀n) by fk
w→ 0. Note ‖fk‖2

D = ‖f ′k‖2
L2 =

1, so
∑∞

n=1 |a
(k)
n |2n = 1 (∀k), thus

∑∞
n=1 |a

(k)
n |2 ≤ 1, furthermore, for any ε >

0, there is aN0 which is independent on k such that
∑∞

n≥N0+1 |a
(k)
n |2 1

n+1 <
ε
2 .

Fix such a N0, then

‖fk‖2
L2 =

∞∑
n=1

∣∣∣a(k)
n

∣∣∣2 1
n+ 1

≤
N0∑
n=1

∣∣∣a(k)
n

∣∣∣2 1
n+ 1

+
ε

2
.

Since a
(k)
n → 0 (∀n, k → ∞), there is a K0 such that for any k > K0,∑N0

n=1 |a
(k)
n |2 1

n+1 <
ε
2 , thus ‖fk‖2

L2 <
ε
2 (k > K0), hence ‖fk‖L2 → 0. Note

‖Hϕfk‖2
L2,1 = 〈Hϕfk,Hϕfk〉 1

2

≤
∥∥∥∥∂ϕ∂z fk

∥∥∥∥
L2

‖Hϕfk‖L2,1 +
∥∥∥∥∼Hϕf

′
k

∥∥∥∥
L2

‖Hϕfk‖L2,1

+
∥∥∥∥∂ϕ∂z̄ fk

∥∥∥∥
L2

‖Hϕfk‖L2,1

≤ ‖ϕ‖∗‖fk‖L2‖Hϕfk‖L2,1 +
∥∥∥∥∼Hϕf

′
k

∥∥∥∥
L2

‖Hϕfk‖L2,1

+ ‖ϕ‖∗‖fk‖L2‖Hϕfk‖L2,1 ,

we know easily that ‖Hϕfk‖L2,1 → 0. This shows that Hϕ is compact. �

Proposition 2. For any ϕ ∈ C1(D̄), Tϕ is a bounded operator on D.
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Proof. For any f, g ∈ D,

〈Tϕf, g〉 1
2

= 〈ϕf, g〉 1
2

=
〈
∂(ϕf)
∂z

, g′
〉

=
〈
∂ϕ

∂z
f, g′

〉
+ 〈ϕf ′, g′〉,

hence ∣∣∣〈Tϕf, g〉 1
2

∣∣∣ ≤ ∥∥∥∥∂ϕ∂z f
∥∥∥∥
L2

‖g′‖L2 + ‖ϕf ′‖L2‖g′‖L2

≤ ‖ϕ‖∗(‖f‖L2‖g‖D + ‖f‖D‖g‖D).

It is not difficult to check ‖f‖L2 ≤ ‖f‖D for any f ∈ D (since f(0) = 0 for
any f ∈ D), hence |〈Tϕf, g〉 1

2
| ≤ 2‖ϕ‖∗‖f‖D‖g‖D. This shows that ‖Tϕ‖ ≤

2‖ϕ‖∗. �

Remark. In general, ‖Tϕ‖ 6= ‖ϕ‖∗ even ϕ ∈ C1(D) ∩ A(D) (A(D) be
the disk algebra), it may be that ‖ϕ‖C1 < ‖Tϕ‖ < 2‖ϕ‖C1 . For instance, if
ϕ(z) = z, then ‖ϕ‖∗ = ‖ϕ‖∞ = 1, but ‖Tϕ‖ ≥

√
2.

Proposition 3. Let L∞,1 = {f ∈ L2,1|f, ∂f∂z ,
∂f
∂z̄ ∈ L∞(D, dA)}, then for

any ϕ ∈ L∞,1 and ψ ∈ C1(D̄) TϕTψ − Tϕψ ∈ K(D) (the compact operator
algebra on D.)

Proof. For any f, g ∈ D, as a direct computing, we see that

〈(TϕTψ − Tϕψ)f, g〉 1
2

=
〈
∂ϕ

∂z
Tψf,

∂g

∂z

〉
−
〈
∂ϕ

∂z
(ψf),

∂g

∂z

〉
+
〈
ϕ
∂(−Hψf)

∂z
,
∂g

∂z

〉
,

set g = (TϕTψ − Tϕψ)f, we have

‖(TϕTψ − Tϕψ)f‖2
D ≤ ‖ϕ‖∗[‖Tψf‖L2 + ‖ψ‖∗‖f‖L2

+ ‖Hψf‖L2,1 ]‖(TϕTψ − Tϕψ)f‖D.

Note for any sequence {fk} ⊂ D which converges weakly 0 and satisfies
‖fk‖D = 1 (certainly, Tψfk

w→0 in D), ‖Tψfk‖L2 → 0, ‖fk‖L2 → 0, hence

‖(TϕTψ − Tϕψ)fk‖D → 0

by Hψ is compact. Futhermore, TϕTψ − Tϕψ is compact. �

Lemma 4. For any ϕ ∈ L∞,1, T ∗ϕ − Tϕ̄ ∈ K(D).

Proof. Similar to the proof of Proposition 2, it is easy to see that Tϕ is
bounded for any ϕ ∈ L∞,1. Now assume ϕ ∈ L∞,1, then for any f · g ∈ D,
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〈(T ∗ϕ − Tϕ̄)f.g〉 1
2

= 〈∂f∂z ,
∂ϕ
∂z g〉 − 〈f, ∂ϕ∂z̄

∂g
∂z 〉. Thus

|〈(T ∗ϕ − Tϕ̄)f, g〉 1
2
| ≤

∥∥∥∥∂f∂z
∥∥∥∥
L2

∥∥∥∥∂ϕ∂z g
∥∥∥∥
L2

+ ‖f‖L2

∥∥∥∥∂ϕ∂z̄ ∂g∂z
∥∥∥∥
L2

≤ ‖ϕ‖∗‖g‖L2‖f‖D + ‖ϕ‖∗‖f‖L2‖g‖D,

where ‖ϕ‖∗ = esssupz∈D max{|ϕ(z)|, |∂ϕ∂z (z)|, |∂ϕ∂z̄ (z)|}. Hence for any {fk} ⊂
D, ‖fk‖ = 1, fk

w→ 0, we have

‖(T ∗ϕ−Tϕ̄)fk‖2
D ≤ ‖ϕ‖∗‖(T ∗ϕ−Tϕ̄)fk‖L2‖fk‖D+‖ϕ‖∗‖fk‖L2‖(T ∗ϕ−Tϕ̄)fk‖D.

Note (T ∗ϕ − Tϕ̄)fk
w→ 0, so ‖(T ∗ϕ − Tϕ̄)fk‖L2 → 0. Consequently, ‖(T ∗ϕ −

Tϕ̄)fk‖D → 0. This shows that T ∗ϕ − Tϕ̄ is compact. �

Remark. It is well-known that T ∗ϕ = Tϕ̄ for any ϕ ∈ L∞(D, dA) on
L2
a, but it is not difficult to check T ∗ϕ 6= Tϕ̄ in general. For example, if

ϕ(z) =
∑∞

n=1
zn

n2 , then ϕ ∈ H∞, but ‖ϕ′‖∞ = ∞, one can check easily that
Tϕ is unbounded, however, Tϕ̄ is always bounded for every ϕ ∈ H∞, so is
T ∗ϕ̄, hence T ∗ϕ̄ − Tϕ is unbounded.

Proposition 5. If ϕ ∈ C1(D̄) , then Tϕ is a compact operator on D if and
only if ϕ|∂D ≡ 0.

Proof. Assume ϕ|∂D ≡ 0, then
∼

T|ϕ|2 is a compact operator on L2
a(D, dA), so

for any {fk} ⊂ L2
a, fk

w→ 0, ‖fk‖L2 = 1, we have ‖
∼
T|ϕ|fk‖L2 → 0 (k → ∞).

If Tϕ is not compact on D, then there is a sequence {Fk} ⊂ D,‖Fk‖D = 1,
Fk

w→ 0 such that ‖TϕFk‖D 9 0, thus ‖ϕFk‖L2,1 9 0, furthermore〈
∂(ϕFk)
∂z

,
∂(ϕFk)
∂z

〉
+
〈
∂(ϕFk)
∂z̄

,
∂(ϕFk)
∂z̄

〉
9 0.

Note
∂(ϕFk)
∂z

=
∂ϕ

∂z
Fk + ϕ

∂Fk
∂z

,
∂(ϕFk)
∂z̄

=
∂ϕ

∂z̄
Fk,

thus 〈
∂(ϕFk)
∂z̄

,
∂(ϕFk)
∂z̄

〉
≤ ‖ϕ‖2

∗‖Fk‖2
L2 → 0,

and ∥∥∥∥∂(ϕFk)
∂z

∥∥∥∥2

L2

=
〈
∂ϕ

∂z
Fk,

∂ϕ

∂z
Fk

〉
+
〈
∂ϕ

∂z
Fk, ϕF

′
k

〉
+
〈
ϕF ′k,

∂ϕ

∂z
Fk

〉
+ 〈ϕF ′k, ϕF ′k〉.

Since ‖F ′k‖L2 = ‖Fk‖D = 1, and F ′k
w→ 0 in L2

a,

〈ϕF ′k, ϕF ′k〉 = 〈|ϕ|2F ′k, F ′k〉 = 〈T|ϕ|2F ′k, F ′k〉 → 0,
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consequently, ‖∂(ϕFk)
∂z ‖2

L2 → 0 by |〈∂ϕ∂z Fk,
∂ϕ
∂z Fk〉| ≤ ‖ϕ‖2

∗‖Fk‖2
L2 and

|〈∂ϕ∂z Fk, ϕF
′
k〉| ≤ ‖ϕ‖2

∗‖Fk‖L2‖F ′k‖L2 , and ‖Fk‖L2 → 0. This contradicts that
‖ϕFk‖L2,1 9 0. Hence Tϕ must be a compact operator on D.

Conversely, assume that Tϕ is compact on D. We need to prove that

ϕ|∂D = 0. Otherwise,
∼
T |ϕ| is not compact on L2

a(D), thus there is a sequence

{fk} ⊂ L2
a, ‖fk‖L2 = 1, fk

w→ 0 such that ‖
∼
T|ϕ|fk‖L2 9 0, thus ‖|ϕ|fk‖L2 9

0, that is
∫

D |ϕ|
2|fk|2dA 9 0. But Tϕ is compact on D, so for Fk =

∫ z
0 fkdw,

‖TϕFk‖D → 0, further ‖T ∗ϕTϕFk‖D → 0. Note T ∗ϕ−Tϕ ∈ K , so ‖T|ϕ|2Fk‖D →
0 (since Fk

w→ 0 in D and ‖Fk‖D = 1), thus 〈T|ϕ|2Fk, Fk〉 1
2
→ 0, hence〈

∂(|ϕ|2Fk)
∂z

, F ′k

〉
→ 0,

that is 〈
∂(|ϕ|2)
∂z

Fk, F
′
k

〉
+ 〈|ϕ|2F ′k, F ′k〉 → 0.

Note
〈|ϕ|2F ′k, F ′k〉 = 〈|ϕ|2fk, fk〉 =

∫
D
|ϕ|2|fk|2dA 9 0,

and ∣∣∣∣〈∂(|ϕ|2)
∂z

Fk, F
′
k

〉∣∣∣∣ ≤ ‖|ϕ|2‖∗‖Fk‖L2‖fk‖L2 → 0,

hence 〈T|ϕ|2Fk, Fk〉 1
2

9 0, this contradiction shows that ϕ|∂D ≡ 0. �

Remark. If ϕ /∈ C1(D̄), then Tϕ may be non-compact even ϕ ∈ C(D̄) and
ϕ|∂D = 0. For instance, let ϕ =

√
1− |z|2, then it is not difficult to check

Tϕ is not a compact operator. In fact, Tϕ is also a unbounded operator on
D.

Theorem 6. Suppose ϕ ∈ C1(D̄), then σe(Tϕ) = ϕ(∂D).

Proof. Without loss of generality, assume 0 ∈ ϕ(∂D), thus there is a ζ ∈ ∂D
such that ϕ(ζ) = 0. Write fk(z) = (1+zζ̄

2 )k, then fk
‖fk‖D

w→ 0, and ‖Tϕfk‖D
‖fk‖D ≤

‖ϕfk‖L2,1

‖fk‖D . Clearly

‖ϕfk‖2
L2,1 =

〈
∂ϕ

∂z
fk + ϕf ′k,

∂ϕ

∂z
fk + ϕf ′k

〉
+
〈
∂ϕ

∂z̄
fk,

∂ϕ

∂z̄
fk

〉
=
〈
∂ϕ

∂z
fk,

∂ϕ

∂z
fk

〉
+
〈
ϕf ′k,

∂ϕ

∂z
fk

〉
+
〈
∂ϕ

∂z
fk, ϕf

′
k

〉
+
〈
ϕf ′k, ϕf

′
k

〉
+
〈
∂ϕ

∂z̄
fk,

∂ϕ

∂z̄
fk

〉
,
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note

|〈∂ϕ∂z fk,
∂ϕ
∂z fk〉+ 〈ϕf ′k,

∂ϕ
∂z fk〉+ 〈∂ϕ∂z fk, ϕf

′
k〉+ 〈∂ϕ∂z̄ fk,

∂ϕ
∂z̄ fk〉|

‖fk‖2
D

−→ 0,

and
〈ϕf ′k, ϕf ′k〉
‖fk‖2

D
=

∫
D |ϕ|

2|f ′k|2dA∫
D |f

′
k|2dA

=

∫
D |ϕ|

2|(1+zζ̄
2 )2(k−1)|dA∫

D |(
1+zζ̄

2 )2(k−1)|dA

=

∫
D |ϕ|

2|fk−1|2dA∫
D |fk−1|2dA

→ |ϕ(ζ)|2 = 0

(since fk is a peak function at ζ). Thus ‖Tϕfk‖D
‖fk‖D → 0, this shows that Tϕ

can not be Fredholm, hence 0 ∈ σe(Tϕ). That is ϕ(∂D) ⊂ σe(Tϕ).

Conversely, if 0 /∈ ϕ(∂D), then |ϕ(ζ)| > ε0 > 0 for any ζ ∈ ∂D, thus
∼
Tϕ

is Fredholm on L2
a, if Tϕ is not Fredholm on D, then there is a sequence

{Fk} ⊂ D with ‖Fk‖D = 1, Fk
w→ 0 such that ‖TϕFk‖D → 0, or ‖T ∗ϕFk‖D →

0. Since
∼
Tϕ is Fredholm on L2

a, there is an S ∈ L(L2
a) such that [STϕ] =

[TϕS] = [I] in the Calkin algebra L(L2
a)

K , thus S∗T ∗ϕ = I + K, K ∈ K(L2
a),

assume ‖T ∗ϕFk‖D → 0. (For the case of ‖TϕFk‖D → 0, we can complete the
proof similarly.) Write fk = F ′k, then ‖fk‖L2 = 1, and fk

w→ 0 in L2
a, thus

〈S∗T ∗ϕfk, fk〉 → 1, that is 〈T ∗ϕfk, Sfk〉 → 1.
On the other hand,〈

T ∗ϕFk,

∫ z

0
(Sfk)(w)dw

〉
1
2

=
〈
Fk, ϕ

∫ z

0
(Sfk)(w)dw

〉
1
2

=
〈
fk,

∂ϕ

∂z

∫ z

0
(Sfk)(w)dw + ϕSfk

〉
=
〈
fk,

∂ϕ

∂z

∫ z

0
Sfkdw

〉
+ 〈fk, ϕSfk〉.

Since Sfk
w→ 0 in L2

a, ‖
∫ z
0 Sfkdw‖L2

a
→ 0 , thus 〈fk, ∂ϕ∂z

∫ z
0 Sfk(w)dw〉 → 0.

Note 〈fk, ϕSfk〉 = 〈T ∗ϕfk, Sfk〉 → 1 6= 0, this shows that 〈T ∗ϕFk,∫ z
0 (Sfk)(w)dw〉 1

2
→ 1, thus

‖T ∗ϕFk‖D‖S‖L(L2
a) ≥

〈
T ∗ϕFk,

∫ z

0
Sfkdw

〉
1
2

→ 1,

this contradicts that ‖T ∗ϕFk‖D → 0. Hence Tϕ must be Fredholm, that is
0 /∈ σe(Tϕ). This follows the theorem. �
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Lemma 7. For any ϕ ∈ C1(D̄), ‖Tϕ‖e = ‖[Tϕ]‖ = ‖ϕ|∂D‖∞, where ‖Tϕ‖e
denotes the essential norm of Tϕ.

Proof. Assume ζ ∈ ∂D such that |ϕ(ζ)| = ‖ϕ|∂D‖∞, set fζ(z) = 1+zζ̄
2 , then

fk(z) =
fk

ζ

‖fk
ζ ‖D

w→ 0, thus for any K ∈ K, ‖Kfk‖ → 0. Note

∣∣∣〈Tϕfk, fk〉 1
2

∣∣∣ = ∣∣∣∣〈∂ϕ∂z fk, f ′k
〉

+ 〈ϕf ′k, f ′k〉
∣∣∣∣→ |ϕ(ζ)| = ‖ϕ|∂D‖∞

and |〈(Tϕ+K)fk, fk〉 1
2
| ≤ ‖Tϕ+K‖. So ‖ϕ|∂D‖∞ ≤ ‖Tϕ+K‖ for any K ∈ K.

Hence ‖ϕ|∂D‖∞ ≤ ‖Tϕ‖e.
Conversely, by Lemma 1.2 in C.K. Fong [3], there is an orthogonal se-

quence {fk} ⊂ D such that ‖Tϕfk‖ → ‖Tϕ‖e, so for any ε > 0, there is a k0

such that for any k > k0, ‖Tϕfk‖ > ‖Tϕ‖e − ε. Since ϕ ∈ C1(D̄), there is a
0 < r < 1 such that |ϕ(z)| < ‖ϕ|∂D‖∞ + ε for any |z| > r. Note

‖Tϕfk‖2
D ≤ ‖ϕfk‖2

L2,1 = 〈ϕfk, ϕfk〉 1
2

= 〈ϕf ′k, ϕf ′k〉+
〈
∂ϕ

∂z
fk, ϕf

′
k

〉
+
〈
ϕf ′k,

∂ϕ

∂z
fk

〉
+
〈
∂ϕ

∂z
fk,

∂ϕ

∂z
fk

〉
+
〈
∂ϕ

∂z̄
fk,

∂ϕ

∂z̄
fk

〉
,

clearly,〈
∂ϕ

∂z
fk, ϕf

′
k

〉
+
〈
ϕf ′k,

∂ϕ

∂z
fk

〉
+
〈
∂ϕ

∂z
fk,

∂ϕ

∂z
fk

〉
+
〈
∂ϕ

∂z̄
fk,

∂ϕ

∂z̄
fk

〉
→ 0,

so there is a k1 such that for any k > k1, ‖Tϕfk‖2 ≤ |〈ϕf ′k, ϕf ′k〉|+ ε. Since

fk
w→ 0, we know that fk

uniformly−→ 0 on any compact subset of D, so for any
0 < t < 1,

∫
{|z|≤t} |fk|

2dA→ 0 (k →∞), assume fk(z) =
∑∞

i=1 a
(k)
n zn, thus

∞∑
i=1

a(k)
n

t2(n+1)

n+ 1
=
∫
{|z|≤t}

|fk|2dA→ 0.

Without loss of generality, assume t > r, thus∫
{|z|≤r}

|f ′k|2dA =
∞∑
i=1

∣∣∣a(k)
n

∣∣∣2 nr2n =
∞∑
i=1

∣∣∣a(k)
n

∣∣∣2 t2(n+1)

n+ 1
n(n+ 1)t−2

(r
t

)2n
,
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since ( rt )
2nn(n+ 1)t−2 → 0 (n→∞), it is clearly that

∫
{|z|≤r} |f

′
k|2dA→ 0,

so there is a k2 such that for any k > k2,
∫
{|z|≤r} |f

′
k|2dA < ε, consequently,

|〈ϕf ′k, ϕf ′k〉| =
∫

D
|ϕ|2|f ′k|2dA

=
∫
{|z|≤r}

|ϕ|2|f ′k|2dA+
∫
{|z|>r}

|ϕ|2|f ′k|2dA

≤ ‖ϕ‖2
∞

∫
{|z|≤r}

|f ′k|2dA+ (‖ϕ|∂D‖∞ + ε)2
∫
{|z|>r}

|f ′k|2dA

≤ ‖ϕ‖2
∞

∫
{|z|≤r}

|f ′k|2dA+ (‖ϕ|∂D‖∞ + ε)2

< ‖ϕ‖2
∞ε+ (‖ϕ|∂D‖∞ + ε)2.

Furthermore, for any k > max{k0, k1, k2}

‖Tϕfk‖2 ≤ ‖ϕ‖2
∞

∫
{|z|≤r}

|f ′k|2dA+ (‖ϕ|∂D‖∞ + ε)2 + ε

≤ (‖ϕ‖2
∞ + 1)ε+ (‖ϕ|∂D‖∞ + ε)2.

Hence limk→∞ ‖Tϕfk‖ ≤ ‖ϕ|∂D‖∞ by the arbitrarity of ε. This shows that
‖Tϕ‖e ≤ ‖ϕ|∂D‖∞. We are done. �

Theorem 8. Let I=I(C1) be the C∗-algebra generated by {Tϕ|ϕ∈C1(D̄)},
then the commutator ideal C(C1) of I equals K(D), and I

K
∼= C(∂D). Con-

sequently, following short sequence

(∗) 0 → K → I → C(∂D) → 0

is exact.

Proof. By Proposition 3, we know that C(C1) ⊂ K, since K is minimal,
C(C1) = K. By Lemma 4, [T ∗ϕ] = [Tϕ̄] in I

K . Define ξ : {[Tϕ]|ϕ ∈ C1(D̄)} →
C(∂D) as ξ([Tϕ]) = ϕ|∂D, it is easy to see that ξ is well-defined, and one-to-
one by Proposition 5. By Proposition 3, Lemma 4 and Lemma 7, we see that
ξ is an isometric *-homomorphism. Hence ξ can be extended to I

K , in fact,
for any [T ] ∈ I

K , there is a sequence [Tϕk
] such that ‖[Tϕk

]− [T ]‖ → 0, thus
‖(ϕk − ϕj)|∂D‖∞ = ‖[Tϕk−ϕj ]‖ = ‖[Tϕk

]− [Tϕj ]‖ → 0. Hence there is a ϕ ∈
C(∂D) such that ‖ϕk|∂D−ϕ‖∞ → 0. Let ξ([T ]) = ϕ, then ξ is well-defined on
I
K , and ‖ξ([T ])‖∞ = ‖ϕ‖∞ = limk→∞ ‖ϕk|∂D‖∞ = limk→∞ ‖[Tϕk

]‖ = ‖[T ]‖,
so ξ is an isometry from I

K into C(∂D). For any ϕ ∈ C(∂D), there is a
polynomial sequence {pk} ⊂ C1(D̄) such that ‖pk|∂D − ϕ‖∞ → 0, thus
‖(pk−pj)|∂D‖∞ → 0. Furthermore, ‖[Tpk

]− [Tpj ]‖ → 0, so there is a [T ] ∈ I
K

such that ‖[Tpk
] − [T ]‖ → 0, hence ξ([T ]) = ϕ, i.e. ξ is a surjection onto

C(∂D). This shows that ξ is a *-isomorphism between I
K and C(∂D). The

proof is thus completed. �
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3. Toeplitz operators with symbols in H∞
1 + C1(D̄).

It is well-known that H∞ + C(∂D) is a norm-closed algebra (c.f. R.G.
Douglas [2]), Rudin [6] proved that H∞(∂Bn) + C(∂Bn) is also a norm-
closed algebra, where Bn is the unit ball of Cn. The Toeplitz operators with
symbols in H∞ + C on Hardy or Bergman spaces have many important
properties, their essential spectra and Fredholm index can be completely
determined by their symbols. In this section, we prove that H∞

1 +C1(D̄) is a
norm-closed space relative to a suitable norm, and obtain the representation
of essential spectra of the Toeplitz operators with symbols in H∞

1 +C1(D̄).
For any ϕ ∈ H∞

1 + C1(D̄), define

‖ϕ‖∗ = sup
z∈D

max
{
|ϕ|,

∣∣∣∣∂ϕ∂z
∣∣∣∣ , ∣∣∣∣∂ϕ∂z̄

∣∣∣∣} ,
it is clearly that ‖ . ‖∗ is a norm on H∞

1 + C1(D̄).

Theorem 9. H∞
1 + C1(D̄) is a closed space relative to the norm ‖ . ‖∗.

Proof. Our proof is similar to that of Rudin [6]. Assume ϕ ∈ cl(H∞
1 +

C1(D̄)), to prove ϕ ∈ H∞
1 + C1(D̄), we first prove that for any ψ ∈ H∞

1 +
C1(D̄), there are ψ1 ∈ H∞

1 , and ψ2 ∈ C1(D̄) such that ψ = ψ1 + ψ2 and
‖ψ1‖∗ ≤ 3‖ψ‖∗, ‖ψ2‖∗ ≤ 2‖ψ‖∗. In fact, if ψ = ψ̃1 + ψ̃2 ∈ H∞

1 + C1(D̄),
ψ̃1 ∈ H∞

1 , ψ̃2 ∈ C1(D̄), then write ψ̃r2(z) = ψ̃2(rz), clearly, ‖ψ̃r2 − ψ̃2‖∞ →
0 (r → 1−), and ∂ψ̃r

2
∂z (z) = r ∂ψ̃2

∂z (rz), ∂ψ̃
r
2

∂z̄ (z) = r ∂ψ̃2

∂z̄ (rz), so ‖ψ̃r2 − ψ̃2‖∗ → 0.
Fix a r0 such that ‖ψ̃r02 − ψ̃2‖∗ ≤ ‖ψ‖∗. Set

ψ2 = ψ̃2 − ψ̃r02 + ψr0 , ψ1 = ψ̃1 − ψ̃r01 ,

then ψ = ψ1 + ψ2, and ‖ψ1‖∗ = ‖ψ − ψ2‖∗ ≤ 3‖ψ‖∗, ‖ψ2‖∗ ≤ 2‖ψ‖∗.
Since ϕ ∈ cl(H∞

1 + C1(D̄)), there are ϕi ∈ H∞
1 + C1(D̄), such that ‖ϕi‖∗ ≤

2−i (i ≥ 2), and ϕ =
∑∞

i=1 ϕi (in fact, there is a sequence {pk} ⊂ H∞
1 +

C1(D̄) such that ‖pk − ϕ‖∗ → 0, thus there is a subsequence {pk} such
that ‖pki+1

− pki
‖∗ < 1

2i , write ϕ1 = pk1 , ϕi = pki+1
− pki

(i ≥ 2), then∑∞
i=1 ϕi = ϕ and ‖ϕi‖∗ < 1

2i (i ≥ 2)). For each ϕi, there is a ϕ(1)
i ∈ H∞

1 ,

ϕ
(2)
i ∈ C1(D̄) such that ‖ϕ(1)

i ‖∗ ≤ 3‖ϕi‖∗, ‖ϕ(2)
i ‖∗ ≤ 2‖ϕi‖∗, ϕi = ϕ

(1)
i +ϕ(2)

i ,

thus ϕ(1) =
∑∞

i=1 ϕ
(1)
i ∈ H∞

1 (since H∞
1 is closed relative to ‖.‖∗), ϕ(2) =∑∞

i=1 ϕ
(2)
i ∈ C1(D̄), and ϕ = ϕ(1) + ϕ(2). That is ϕ ∈ H∞

1 + C1(D̄). �

Proposition 10. If ϕ ∈ H∞
1 + C1(D̄) satisfies ϕ|∂D = 0, then Tϕ is a

compact operator on D, where ϕ|∂D denotes the radial boundary values of ϕ.

Proof. Suppose ϕ = ϕ1 +ϕ2, ϕ1 ∈ H∞
1 , ϕ2 ∈ C1(D̄), since ϕ|∂D = 0, ϕ1|∂D =

−ϕ2|∂D, thus ϕ1|∂D ∈ C(∂D), further ϕ1(z) = P [ϕ1|∂D] ∈ H∞
1 ∩ A(D)

(where P [ϕ|∂D] denotes the Poisson integral of ϕ|∂D), consequently, ϕ ∈
C(D̄) ∩ (H∞

1 + C1(D̄)).
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Suppose {fk} ⊂ D, ‖fk‖D = 1, fk
w→ 0, then

‖Tϕfk‖2
D ≤ ‖ϕfk‖2

L2,1 = 〈ϕfk, ϕfk〉 1
2

=
〈
∂ϕ

∂z
fk + f ′kϕ,

∂ϕ

∂z
fk + f ′kϕ

〉
+
〈
∂ϕ

∂z̄
fk,

∂ϕ

∂z̄
fk

〉
=
∥∥∥∥∂ϕ∂z fk

∥∥∥∥2

L2

+ 2Re
∫

D
f ′kϕ

∂ϕ

∂z
fkdA+ ‖ϕf ′k‖2

L2 +
∥∥∥∥∂ϕ∂z̄ fk

∥∥∥∥2

L2

≤ ‖ϕ‖2
∗‖fk‖2

L2 + 2‖ϕ‖2
∗‖fk‖D‖fk‖L2

+ ‖ϕf ′k‖2
L2 + ‖ϕ‖2

∗‖fk‖2
L2 .

Since ‖fk‖D = 1 and fk
w→ 0 in D, ‖fk‖L2 → 0, so

‖ϕ‖2
∗‖fk‖2

L2 + 2‖ϕ‖2
∗‖fk‖D‖fk‖L2 + ‖ϕ‖2

∗‖fk‖2
L2 → 0.

Note ϕ ∈ C(D̄), and ϕ|∂D = 0, hence for any ε > 0, there is a 0 < δ < 1
such that |ϕ(z)| < ε for any |z| > δ, thus∫

D
|ϕ|2|f ′k|2dA ≤ ε2

∫
{|z|>δ}

|f ′k|2dA+
∫
{|z|≤δ}

|ϕ|2|f ′k|2dA

≤ ε2 + ‖ϕ‖2
∗

∫
{|z|≤δ}

|f ′k|2dA.

By fk
w→ 0, we know that

∫
{|z|≤δ} |f

′
k|2dA → 0, hence

∫
D |ϕ|

2|f ′k|2dA →
0 (k → ∞), furthermore ‖Tϕfk‖2

D → 0, this shows that Tϕ is compact on
D. �

Proposition 11. If ϕ ∈ H∞
1 (D), then on Dirichlet space D, σ(Tϕ) = ϕ(D).

Proof. Note for any f ∈ D,

〈f, T ∗ϕK〉 1
2

= 〈Tϕf,K〉 1
2

= 〈ϕf,K〉 1
2

= ϕ(z)f(z),

so T ∗ϕK(z, w) = ϕ(z)K(z, w), this shows that ϕ(D) ⊂ σ(Tϕ).
Conversely, if 0 /∈ ϕ(D), then there is a δ > 0 such that |ϕ(z)| > δ >

0 (∀z ∈ D), thus ϕ−1 ∈ H∞. Note∣∣∣∣∂(ϕ−1)
∂z

∣∣∣∣ = ∣∣∣∣− ϕ′ϕ2

∣∣∣∣ ≤ 1
δ2
|ϕ′| ≤ 1

δ2
‖ϕ‖∗ <∞,

we have ϕ−1 ∈ H∞
1 , so Tϕ−1Tϕ = TϕTϕ−1 = I, that is Tϕ is invertible, hence

σ(Tϕ) ⊂ ϕ(D). The proof is thus complete. �

Theorem 12. If ϕ = ϕ1+ϕ2 ∈ H∞
1 +C1(D̄), where ϕ1 ∈ H∞

1 , ϕ2 ∈ C1(D̄),
then on Dirichlet space D,

σe(Tϕ) = ∩0<δ<1{ϕ(z)||z| > δ} = ϕ(∂D).
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Proof. Without loss of generality, assume 0 ∈ ∩0<δ<1{ϕ(z)||z| > δ}, then
there is a sequence {zk} ⊂ D with zn → ζ ∈ ∂D, such that ϕ(zn) → 0, thus
T̃ϕ is not Fredholm on L2

a (c.f. G.F. Cao [1] or MacDonald [4]), hence there
is a sequence {fk} ⊂ L2

a with ‖fk‖L2 = 1, fk
w→ 0 such that ‖T̃ϕfk‖L2 → 0

or ‖T̃ ∗ϕfk‖L2 = ‖T̃ϕ̄fk‖L2 → 0. If Tϕ is Fredholm on D, then there is a
bounded operator S on D such that STϕ − I, TϕS − I ∈ K(D), further
S∗T ∗ϕ − I, T ∗ϕS

∗ − I ∈ K(D). Write Fk(z) =
∫ z
0 fk(w)dw, then Fk ∈ D and

‖Fk‖D = ‖fk‖L2 = 1, so ‖Fk‖L2 → 0. In addition, it is clearly that Fk
w→ 0

in D. Thus

lim
k→∞

〈STϕFk, Fk〉 1
2

= lim
k→∞

〈TϕSFk, Fk〉 1
2

= lim
k→∞

〈
T ∗ϕS

∗Fk, Fk
〉

1
2

= lim
k→∞

〈
S∗T ∗ϕFk, Fk

〉
1
2

= 1.

Hence, without loss of generality, we can assume that ‖T̃ ∗ϕfk‖L2→0 (similar-
ly for the case of ‖T̃ϕfk‖L2 → 0). Set Gk = SFk, then ‖Gk‖D ≤ ‖S‖‖Fk‖D =
‖S‖, and Gk

w→ 0, so ‖Gk‖L2 → 0, and

∣∣∣〈TϕSFk, Fk〉 1
2

∣∣∣ = ∣∣∣∣〈ϕ(SFk)′, fk
〉

+
〈
∂ϕ

∂z
SFk, fk

〉∣∣∣∣
≤
∣∣∣〈(SFk)′, T̃ ∗ϕfk〉∣∣∣+ ‖ϕ‖∗‖SFk‖L2‖fk‖L2

≤ ‖(SFk)′‖L2

∥∥∥T̃ ∗ϕfk∥∥∥
L2

+ ‖ϕ‖∗‖Gk‖L2‖fk‖L2

= ‖Gk‖D
∥∥∥T̃ ∗ϕfk∥∥∥

L2
+ ‖ϕ‖∗‖Gk‖L2‖fk‖L2 → 0.

This contradicts that 〈TϕSFk, Fk〉 1
2
→ 1. hence Tϕ must be non-Fredholm.

That is 0 ∈ σe(Tϕ), consequently ∩0<δ<1{ϕ(z)||z| > δ} ⊂ σe(Tϕ).
Conversely, assume 0 /∈ ∩0<δ<1{ϕ(z)||z| > δ}, thus there are ε, δ > 0

such that |ϕ(z)| > ε for any |z| > δ, we prove that Tϕ is Fredholm on
D. Otherwise, there is a sequence {Fk} ⊂ D with ‖Fk‖D = 1, Fk

w→ 0,
such that ‖TϕFk‖D → 0 or ‖T ∗ϕFk‖D → 0. Similar to above proof, we can
assume ‖T ∗ϕFk‖D → 0 (if ‖TϕFk‖D → 0, the proof will be simpler). It is
well-known that ∼→ Tϕ is Fredholm on L2

a if |ϕ(z)| > ε for any |z| > δ,
hence there is a S ∈ L(L2

a) such that ST̃ϕ − I, T̃ϕS − I ∈ K(L2
a), further,

S∗T̃ ∗ϕ − I, T̃ ∗ϕS∗− I ∈ K(L2
a). Set fk = F ′k, gk = Sfk, then fk

w→ 0, gk
w→ 0 in

L2
a and ‖fk‖L2

a
= ‖Fk‖D = 1, ‖gk‖L2

a
≤ ‖S‖‖fk‖L2

a
= ‖S‖, so 〈S∗T̃ ∗ϕfk, fk〉 →
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1, that is 〈T̃ ∗ϕfk, Sfk〉 → 1. Note〈
T ∗ϕFk,

∫ z

0
Sfk(w)dw

〉
1
2

=
〈
Fk, ϕ

∫ z

0
Sfkdw

〉
1
2

=
〈
fk,

(
∂ϕ

∂z

∫ z

0
Sfkdw + ϕSfk

)〉
L2

=
〈
fk,

∂ϕ

∂z

∫ z

0
gkdw

〉
+ 〈fk, ϕgk〉

and gk
w→ 0, so ‖

∫ z
0 gkdw‖L2 → 0, and∣∣∣∣〈fk, ∂ϕ∂z
∫ z

0
gkdw

〉∣∣∣∣ ≤ ‖fk‖L2
a
‖ϕ‖∗

∥∥∥∥∫ z

0
gkdw

∥∥∥∥
L2

→ 0,

but 〈fk, ϕgk〉 = 〈T̃ ∗ϕfk, Sfk〉 → 1 6= 0, hence 〈T ∗ϕFk,
∫ z
0 gkdw〉 1

2
→ 1 6= 0,

this contradicts that ‖T ∗ϕFk‖D → 0. It shows that Tϕ must be Fredholm
on D. That is 0 /∈ σe(Tϕ). Note the functions with derivatives in H∞ are
continuous in the closed unit disk, hence H∞

1 +C1(D̄) ⊂ C(D̄), consequently,
∩0<δ<1{ϕ(z)||z| > δ} = ϕ(∂D). We are done. �

Remark. If ϕ ∈ H∞, then Tϕ̄ is always bounded on D, in fact, for any
f, g ∈ D,∣∣∣〈Tϕ̄f, g〉 1

2

∣∣∣ = ∣∣∣〈ϕ̄f, g〉 1
2

∣∣∣ = |〈ϕ̄f ′, g′〉|

=
∣∣∣〈T̃ϕ̄f ′, g′〉∣∣∣ ≤ ∥∥∥T̃ϕ̄∥∥∥ ‖f ′‖L2‖g′‖L2 ≤ ‖ϕ‖∞‖f‖D‖g‖D,

hence ‖Tϕ̄f‖ ≤ ‖ϕ‖∞‖f‖D. However, for ϕ ∈ H∞, Tϕ may be unbounded
on D. Let

L∞,1
1 =

{
f ∈ L2,1

∣∣∣f, ∂f
∂z

∈ L∞(D, dA)
}
,

then L∞,1
1 ∪ H∞ is perhaps the most suitable symbol space of Toeplitz

operators which are bounded. Also, we can prove that if ϕ ∈ L∞,1
1 has a

compact support set, then Tϕ is compact on D.

4. An index formula of Toeplitz operators.

The classical index formula shows that for ϕ ∈ C(∂D), if |ϕ| > ε > 0, then
Tϕ is a Fredholm operator on Hardy space H2(∂D), and IndTϕ = −windϕ.
If ϕ ∈ C(D̄) with |(ϕ|∂D)(ζ)| > ε > 0, then IndTϕ = −windϕ|∂D on Bergman
space L2

a(D). The proof of these index formulas is relative to the topology
homotopy of symbol functions, it can not be directly extended to the case
of Dirichlet space since we do not know whether there is a C1-function Ht

which is continuous with respect to t ∈ [0, 1] such that H0 = ϕ,H1 = ψ
if ϕ,ψ ∈ C1(D̄) and windϕ|∂D = windψ|∂D. In this section, we use the
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short exact sequence (∗) to prove an analogy of the above index formulas
for C1-symbols.

Theorem 13. Suppose ϕ ∈ C1(D̄) such that Tϕ̄ is Fredholm on D, then

IndTϕ = −windϕ|∂D.

Proof. By Theorem 8, if ϕ,ψ ∈ C1(D̄) such that Tϕ and Tψ are Fredholm on
D and windϕ|∂D = windψ|∂D, then there is a Ht ∈ C([0, 1]× ∂D) such that
Ht ∈ GC(∂D) (the set of invertible elements in C(∂D)) for each t ∈ [0, 1]
and H0 = ϕ|∂D,H1 = ψ|∂D. Note ξ is an isometry isomorphism, so ξ−1(Ht)
is continuous with respect to t. On the other hand, H−1

t is also continuous
on [0, 1]× ∂D, and ξ−1(Ht)ξ−1(H−1

t ) = ξ−1(H−1
t )ξ−1(Ht) = ξ−1(HtH

−1
t ) =

[I]. Hence, ξ−1(Ht) is invertible in I
K . Furthermore, it is easy to see that

IndTϕ = IndTψ.
Now suppose ϕ ∈ C1(D̄) such that Tϕ is Fredholm on D and windϕ|∂D =

k, note Tz is Fredholm on D with IndTz = −1 = −windz|∂D, let

z̃k =

{
zk, if k > 0,
z̄−k, otherwise;

we see that windϕ|∂D = windz̃k|∂D, thus IndTϕ = IndTz̃k by above proof,
consequently, IndTϕ = −k = −windϕ|∂D. The proof is thus complete. �

Proposition 14. Suppose ϕ ∈ H∞ such that Tϕ̄ is Fredholm on D, then

IndTϕ̄ = − lim
r→1−

windϕ̄r|∂D,

where ϕr(z) = ϕ(rz).

Proof. If f ∈ KerTϕ̄, then for any g ∈ D,

0 = 〈Tϕ̄f, g〉 1
2

= 〈ϕ̄f, g〉 1
2

=
〈
ϕ̄f ′, g′

〉
=
〈
T̃ϕ̄f

′, g′
〉
,

since {g′|g ∈ D} = L2
a, T̃ϕ̄f

′ = 0, hence {f ′|f ∈ KerTϕ̄} ⊂ Ker
∼
Tϕ̄. Conse-

quently, assume T̃ϕ̄f = 0, f ∈ L2
a, set F (z) =

∫ z
0 fdw, then F ∈ D, and for

any G ∈ D,

〈Tϕ̄F,G〉 1
2

=
〈
ϕ̄F ′, G′

〉
=
〈
∼
Tϕ̄f,G

′
〉

= 0,

so Tϕ̄F = 0, further {
∫ z
0 f(w)dw|f ∈ Ker

∼
Tϕ̄} ⊂ KerTϕ̄. This shows that

dim KerTϕ̄ = dim KerT̃ϕ̄.

Now assume f ∈ D such that T ∗ϕ̄f = 0, then for any g ∈ D,

0 =
〈
T ∗ϕ̄f, g

〉
1
2

= 〈f, ϕ̄g〉 1
2

=
〈
f ′, ϕ̄g′

〉
=
〈
ϕf ′g′

〉
=
〈
T̃ϕf

′, g′
〉
,
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hence T̃ϕf ′ = 0, that is {f ′|f ∈ KerT ∗ϕ̄} ⊂ KerT̃ϕ.
Similarly to above proof, we have also {

∫ z
0 f(w)dw|f ∈ KerT̃ϕ} ⊂ KerT ∗ϕ̄.

Hence dim KerT ∗ϕ̄ = dim KerT̃ϕ, consequently,

IndTϕ̄ = −IndT̃ϕ = lim
r→1−

windϕr|∂D = − lim
r→1−

windϕ̄r|∂D.
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