FREDHOLM PROPERTIES OF TOEPLITZ OPERATORS
ON DIRICHLET SPACES

GUANGFU CAO

Volume 188 No. 2 April 1999



PACIFIC JOURNAL OF MATHEMATICS
Vol. 188, No. 2, 1999

FREDHOLM PROPERTIES OF TOEPLITZ OPERATORS
ON DIRICHLET SPACES

GUANGFU CAO

In this paper, the Fredholm properties of some Toeplitz
operators on Dirichlet spaces be discussed, and the essential
spectra of Toeplitz operators with symbols in C* or H® 4+ C*
be computed.

1. Introduction.

Let D be the unit disk in the complex plane C, dA = %dmdy be the normal-
ized area measure on ID. L?! is the space of functions u : D — C, for which

the norm
ou 2

L?! is a Hilbert space with the inner product

(1, 0) <6‘u 8v> +<6u 8v>
) 1 = a ) A A_) A — .
2 0z 0z [2(dA) 0z’ 0z L2(dA)

The Dirichlet space, D, is the subspace of all analytic functions ¢ in L*!
with g(0) = 0. Let P be the orthogonal projection from L?! into D. P is
an integral operator represented by

1

2 3
ou

+ 7 (2)

[ully = < o0.
2

Ou 0K (z,w)

Plu)(w) = p 0z 0z

dA,

zkwk

where K (z,w) = Y72, 4% is the reproducing kernel of D (see R. Rochberg
and Z.J. Wu [5] and Wu [7]). Let G be a domain in C, define

ou Ou
10 _
C(G) = {u!u, 9 95 € C(G)},
CcY(G) = {uyu, Ju du C(G)},
y4 y4
and

H®(G) ={f € HG)|f' € H*(G)},
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where C(G)(or C(G)) and H(G) are respectively the set of continuous func-
tions on G(or G) and the one of analytic functions on G.

In [5] and [7], R. Rochberg and Z.J. Wu define the Toeplitz operator with
symbol p as

1.0 = [ 12520 (vreD)

where p is a measure on D. If dy = pdA, ¢ € L (D, dA), one can define

T,f = /f 8K’“”) pdA.

We see easily that T, f # P(¢f) in general, in fact, P(¢f) may be undefined
for ¢ € L>°(D,dA). However, it seems to be more natural that the Toeplitz
operators be defined as the form P(pf). In this paper, we try to define the
Toeplitz operators with some special symbols as following

Definition 1. Suppose ¢ € C*(D), the operator

T, 1) = Plefw) = {of. K)y = [ DEDIEED g,

is said to be the Toeplitz operator with symbol .

We will compute the spectra and essential spectra of these operators.

For convenience, we use frequently the notation T, to denote the Toeplitz
operator with symbol ¢ on Bergman space.

By the way, our results are also true for Toeplitz operators on weighted
Dirichlet spaces Dy (o < 1). If @ = %, then D% = D, the usual Dirichlet

space (c.f. [5], [7]).

2. Toeplitz operators with symbols in C'(D).
Throughout this paper, we use the symbol “(.,.)” to represent the inner
product in L?(D,dA), and “(.,.)1” to that in D.

_ 2
Define the norm in C1(D) as

8<p o

155 }, (VngCl(D)).

ol = mamax {5
zeD

It is well-known that C''(D) is a norm-closed algebra relative to ||.||.

Lemma 1. For any ¢ € C*(D), H,f =: (I—P)(¢f) (Vf € D) is a compact
operator from D to D+.
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oty = (oh.ahy = (Gor + oot 50) + (520.52)
~(Fra) (e at) <az )

Note gL D, so 69J_L2 (L2 is the classical Bergman space on D). Let P, is
the orthogonal projection from L?(D,dA) to L2, then for any f € D and
g € D+, we have

;99\ _ n 99\ _ /3 99
<(Pfaaz> - <(I_Pa)(<pf)7az> - <H90f782>7

where H,, is the Hankel operator from L2 to ng' with symbol ¢. Since

Proof. For any f € D,g € D+
090

¢ € CY(D), Hy, is a compact operator. Now assume that {f;} C D is a
sequence which converges weakly 0 and satisfies || fx||p = 1, we prove first
that || fx||z2 — 0 (kK — 00). In fact, without loss of generality, assume fi(z) =

S (k)z then a(k) — 0 (k — o00,Vn) by fk 2 0. Note kaH% = Hf,’cH%2 =

n=1
1,soy >, |an ]2 1 (Vk), thus > 7 |an ]2 < 1, furthermore, for any € >
0, there is a No which is independent on & such that % ) ]a(k 21 =1 <35

Fix such a Ny, then

IfillZe =

n=1

€

(k
1+2'

n

a

No
2 1] 2
Wt < ‘(k)
n+1_nz:1a”
(k)

Since an — 0 (Vn,k — o0), there is a K{ such that for any k& > K,

SN0 a2 < g, thus ||l 22 < § (k> Kp), hence | fil| 2 — 0. Note
|1 Hp fill 720 = (Ho fr, Hyfr)y
<[[% ol Al + Hka | il o
— H
+ H 55 fr ., | Hp fiell 2.1

< el fell 2 | fell o + H%f;ﬁ;

+ llellllfrll L2l Ho frll L2,

HHcpfk”LQJ
L2

we know easily that || H fi||f21 — 0. This shows that H, is compact. [0

Proposition 2. For any ¢ € C'(D), T, is a bounded operator on D.
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Proof. For any f,g € D,
(Totoahy = tof.ahy = (Peha) = (Gora) + (e f' o),

hence

(5, 9)

HfH 19'llz2 + e f L2/l o2

< llell«(lfllz2llglip + I £l llgllD)-

It is not difficult to check ||f||z2 < ||f|lp for any f € D (since f(0) = 0 for
any f € D), hence [(T,f, g) 1] < 2[[o[l[| fllpllgllp. This shows that [|T,[| <

2[|el]«- .

Remark. In general, |T,| # ||¢|« even p € CYD) N A(D) (A(D) be
the disk algebra), it may be that [|¢|c1 < ||T,|| < 2[|¢||c1. For instance, if
p(2) = z, then [|¢llx = [l¢llo = 1, but | Ty|| > V2.

Proposition 3. Let L' = {f € L*!|f, g’;g—ﬁ € L>(D,dA)}, then for

any ¢ € L' and ¢ € CY(D) T,Ty — Ty € K(D) (the compact operator
algebra on D.)

Proof. For any f,g € D, as a direct computing, we see that
96
(LT = Tou)fr9)1 = <6 vl > <8
Hyf) 0g
i )
set g = (T, Ty — Typy) f, we have
(T Ty — Top) FlID < Noll[I T fll 2 + 1 llll £l 2
+ 1 Hy fll 2 I Ty = Toy) fllo-

Note for any sequence {fr} C D which converges weakly 0 and satisfies
||f]€||p =1 (certainly, T¢fk3>0 in D), ||T7/JkaL2 — 0, ||kaL2 — 0, hence

(T Ty — Tey) frllp — 0

by Hy is compact. Futhermore, T,,Ty, — T,y is compact. U

3)

Lemma 4. For any p € L™, 15 — Ty € K(D).

Proof. Similar to the proof of Proposition 2, it is easy to see that T, is
bounded for any ¢ € L. Now assume ¢ € L°!, then for any f-g € D,
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(T5 = Tp)f.9)1 = (3L, 520) — (F, 9298). Thus
N 9 99

Jyp
[CRESTNES oo I - I

< ||‘10H*||9||L2||f||D + llell«ll £l z2llgllp,

where [[o]|, = esssup,cp max{[p(2)], |%(2)|, ’%(Zﬂ} Hence for any {fi} C
D7 ka” = 17fl~c g 0, we have

(T3 = T) fillp < Nellll(T5 = To) fioll 2l fellp + Neollsll fiell 22 (T = T) fillo-

Note (T3 — T5) fx %0, so (T — Tp) frllz2 — 0. Consequently, |(T; —
T5) fellp — 0. This shows that T3 — T} is compact. O

L2

Remark. It is well-known that T = T for any ¢ € L*(D,dA) on
L2, but it is not difficult to check T} # T in general. For example, if

p(z) =372, n2, then ¢ € H*, but ||g0 lloo = 00, one can check easily that
T, is unbounded, however, Tj; is always bounded for every ¢ € H®, so is
1%, hence T3 — T«p is unbounded.

Proposition 5. If p € C1(D) , then T, is a compact operator on D if and
only if plop = 0.

Proof. Assume ¢|gp = 0, then ﬂ;|2 is a compact operator on L2(ID,dA), so
for any {fr} C L2, fi = 0, || fell2 = 1, we have || T}, fill2 — 0 (k — o0).
If T, is not compact on D, then there is a sequence {F}} C D,||Fi|lp = 1,
Fi, = 0 such that || T, F|[p - 0, thus |[@Fy| /21 - 0, furthermore

(P50, Um () 2

Note SeR) & o oor o

plg) oy IFy oF) y

9z 82Fk+¢ 0z’ 0z 8sz’
thus Do) Do

Pk ply, ) )
< —

N I LY

and
H Oz L27 5Fka&Fk + 5Fk‘7@Fk

0
Since ||FL| ;2 = |Fxllp = 1, and F}, % 0 in L2,
(F}, oF}) = (| FY, Fy) = (T2 Fy, ) — 0,
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Fy)
consequently, [|252(2, — 0 by [(52Fk, S2F) < @l Fkl2, and

|<82Fk,goF’)| < ng||*]|Fk||L2||F’||Lz, and ||Fk|\L2 — 0. This contradicts that
| oFk| L21 —= 0. Hence T, must be a compact operator on D.
Conversely, assume that T, is compact on D. We need to prove that

¢lop = 0. Otherwise, T\, is not compact on L2(ID), thus there is a sequence
{fi} C LZ, I fullze = 1, fx = 0 such that || Tj,) fill 2 — 0, thus ||| full 2 =

0, that is [p |[¢|?|fx|*dA - 0. But T, is compact on D, so for Fy, = [; frdw,
|TpFillp — 0, further || 75T, Fi|lp — 0. Note Tj T € K, so || T2 Fllp —

0 (since Fj, 5 0 in D and || F)||p = 1), thus (Tipp2 Fis Fi)1 — 0, hence
2

(|| F
(K )

that is 5 )
(Kb R+ dort, F) — .
Note
ol2Ff B = (2 i fi) = / (P21 %A = 0,
and
(U b )| < ol Fulisl s — o
hence <T‘<p|2Fk, Fk)% —- 0, this contradiction shows that ¢|gp = 0. O

Remark. If ¢ ¢ C1(D), then T, may be non-compact even ¢ € C(D) and
¢lap = 0. For instance, let ¢ = /1 — |z|?, then it is not difficult to check

T, is not a compact operator. In fact, T, is also a unbounded operator on
D.

Theorem 6. Suppose p € CL(D), then a.(T,) = @(OD).

Proof. Without loss of generality, assume 0 € ¢(9D), thus there is a ( € 0D

such that ¢(¢) = 0. Write fi(z) = (HQZg)k, then ﬁ — 0, and % <
llofell 2.1

Thlls - Clearly

Seht et G fi ol )+ GE R GER)

<(;0 — k> + <90ffw affk> + <gifk,¢fllg>
+

0 0

lofillz2r =
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note
58 fis 52 01) + Cofio G20) + (G2 o) + (B2Fw GEFN
1 fell% ’
and
(pfisefi) _ IplelIfil?dA
£l Jplfil?dA
_ JplePIC) 4 DldA
() dA
20 1244
W T
(since fi is a peak function at ¢). Thus ”H“"M — 0, this shows that T,

can not be Fredholm, hence 0 € 0.(7T,). That is ¢(0D) C 0.(T},).

Conversely, if 0 ¢ ¢(0D), then |p(¢)| > €y > 0 for any ¢ € 9D, thus ip
is Fredholm on L2, if T, is not Fredholm on D, then there is a sequence
{F.} C D with |Fy|lp = 1, F}, = 0 such that | T, Fy|lp — 0, or | T Fkp —
0. Since fip is Fredholm on L2, there is an S € L(L2) such that [ST,] =
[T,S] = [I] in the Calkin algebra %Lg), thus S*T7% = I+ K, K € K(L2),
assume |77 Fi||p — 0. (For the case of ||T,,F[p — 0, we can complete the
proof similarly.) Write fx = F}, then ||f¢|z> = 1, and fx — 0 in L2, thus
(S™T7 fi, f) — 1, that is (T3 fi, Sfi) — 1.

On the other hand,

<T;;Fk,/OZ(SJ"k)(w)dw>1 = <F’f"’0/:(sf’“)(w)dw>l

0 z
= <fk,aj/0 (ka)(w)dw+s@5fk>
— <fk,?;§/0 kadw> + (fi, S fr)-

Since Sfj, > 0 in L2, | [ Sfrdwl 2 — 0, thus (fy, 52 [ S fr(w)dw) — 0.
Note (fk,cpka> = (T;f,Sfr) — 1 # 0, this shows that (T3 Py,
Jo (S fi)(w dw>1 — 1, thus

1T, FellollSl L2y > ( ToFr, | Sfrdw) — 1,
a O %

this contradicts that ||T;;Fk|[p — 0. Hence T, must be Fredholm, that is
0 ¢ 0c(T,). This follows the theorem. O
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Lemma 7. For any ¢ € CY(D), [T, ]le = [Tl = [I¢lonlloc, where || Tyl
denotes the essential norm of T,.

Proof. Assume ¢ € 0D such that [p(C)| = [|¢|ap]/ee, set fe(2) = 1—525, then
k

fr(z) = ”chﬁ % 0, thus for any K € K, ||K fi| — 0. Note
¢

— (O] = llelopllo

and |((To +K) fr, fir) 1| < [T+ K] So [lplapllec < [T+ K| for any K € K.

Hence |[¢]oplloc < 175 [e-

Conversely, by Lemma 1.2 in C.K. Fong [3], there is an orthogonal se-
quence {fi} C D such that ||T, fi|| — ||T,||e, so for any € > 0, there is a kg
such that for any k > ko, [|T,fx|| > || Tplle — €. Since ¢ € C1(D), there is a
0 < r < 1 such that |¢(2)| < ||¢|op||ec + € for any |z| > r. Note

ITofillp < llofillzer = (ofi i

= (ofi- 1) + <gffk790flg>
+ (et a“”fk> (Gt 5
RN
clearly,

% Ly R Op, O Op, O

so there is a k; such that for any k > ki, | T, fx||? < [{¢f1, ¢fi)] + €. Since

fr = 0, we know that fy uniformly 0 on any compact subset of D, so for any
0<t<1, f{|z‘<t} |fel2dA — 0 (k — 00), assume fi(2) = D%, alf) 27, thus

ktn+

(k) :/ 2dA — 0.
Z n+1 {I21<t} il

Without loss of generality, assume ¢ > r, thus

o = a
/{IZIST} z;

1=

2 $2(n+1)

(k) 1 n(n+ 1)t 2 (g)%,

n
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since (£)?"n(n+1)t72 — 0 (n — o00), it is clearly that f{|z‘<r} |fi|?dA — 0,
so there is a ko such that for any k > ko, f{‘z|<r} |f/€|2dA < €, consequently,

(oo fl)] = /D o2\ L 2dA

- / o2 1[2dA + / oI 7L2dA
{Iz|<r} {lz|>r}

< ol /{ oy VA (bl + €7 / fL2dA

{lz|>r}
< loll% / FL2AA + (lloplloo + )
{Iz|<r}

< llelZe+ (plapllsc + €)%
Furthermore, for any k > max{ko, k1, k2}

IToill? < llol% / FL2AA + ([ @lonlloo + €)% + €

{lel<r}
< (lel3e + e+ (lleloplloo + €).

Hence limy .o [T, fxl] < [l¢lapllsc by the arbitrarity of e. This shows that
T lle < l|¢loplloo- We are done. O

Theorem 8. Let Z=Z(C') be the C*-algebra generated by {T,|p€ C*(D)},
then the commutator ideal C(C') of I equals K(D), and % = C(0D). Con-
sequently, following short sequence

(%) 0—-K—-7Z—-C(OD)—0
15 exact.

Proof. By Proposition 3, we know that C(C') C K, since K is minimal,
C(C') = K. By Lemma 4, [T}}] = [T;] in £. Define ¢ : {[T}]|¢ € C*(D)} —
C(0D) as &([T,]) = ¢|am, it is easy to see that & is well-defined, and one-to-
one by Proposition 5. By Proposition 3, Lemma 4 and Lemma 7, we see that
£ is an isometric *-homomorphism. Hence £ can be extended to %, in fact,
for any [T] € %, there is a sequence [T, | such that ||[T,,] — [T]|| — 0, thus

[(ex = j)lopllcc = 1T~ ]Il = [I[Tp,] = [Tyl — 0. Hence there is a ¢ €
C(9D) such that ||¢k|op —¢llecc — 0. Let £([T]) = ¢, then £ is well-defined on
i and [IE([TN) oo = llelloe = limp—os loklopllsc = limp—ss [[[T, ]Il = T,

so & is an isometry from % into C(dD). For any ¢ € C(0D), there is a
polynomial sequence {py} C CY(D) such that ||prlop — @llec — 0, thus
(o — pj)|opllec — 0. Furthermore, |[[Ty,] — [T3,]]| — 0, so there is a [T] € Z
such that [|[Tp,] — [T]|| — 0, hence &£([T]) = ¢, i.e. £ is a surjection onto
C(0D). This shows that ¢ is a *-isomorphism between % and C(0D). The
proof is thus completed. O
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3. Toeplitz operators with symbols in H>® + C'(D).

It is well-known that H*> + C(0D) is a norm-closed algebra (c.f. R.G.
Douglas [2]), Rudin [6] proved that H*(0B,,) + C(9B,) is also a norm-
closed algebra, where B,, is the unit ball of C". The Toeplitz operators with
symbols in H* 4 C' on Hardy or Bergman spaces have many important
properties, their essential spectra and Fredholm index can be completely
determined by their symbols. In this section, we prove that H*+C1(D) is a
norm-closed space relative to a suitable norm, and obtain the representation
of essential spectra of the Toeplitz operators with symbols in H + C1(D).
For any ¢ € H® + CH(D), define
8@
0z } ’

it is clearly that ||. || is a norm on H{° + CI(ID)).

90

Iolls = sup max{
zeD

Theorem 9. H® + CY(D) is a closed space relative to the norm || . ||

Proof. Our proof is similar to that of Rudin [6]. Assume ¢ € cl(H®
C1(D)), to prove p € HX + C1(D), we first prove that for any ¢ € H® +
C1(D), there are v1 € HX®, and ¢y € C1(D) such that ¢ = 1 + 12 and
[l < 3lWlle 192l < 209 In fact, if ¢ = 1 + Py € H® + CY(D),
Yy € HX®, iy € C’l( ), then write ¢2£ z) = o(r2), clearly, |1} — ¥aleo —
0(r—17), and an 2(2) = ragf (rz), 87’25 (2) = raadf (rz), so H¢2 — ng* — 0.
Fix a rg such that Hw — ol < [[¥]«- Set

g = by — P3° + 970, 1 = P1 — 4y
then ¢ = 1 + ¢, and [[Pnfls = [[¢ — b2 3H¢||*» [Pl < 2[4
Since ¢ € cl(H{® + C1(D)), there are ¢; € H® + ek (D), such that lloill« <
270 (i > 2), and ¢ = > .72, ¢ (in fact, there is a sequence {py} C H{®
C(D) such that [|px — ¢|l« — 0, thus there is a subsequence {pj} such
that Hpki+1 _pkiH* < %7 write o1 = Pkis¥Yi = Pkiy1 — Pk (Z > 2) then
Yo i = ¢ and [|gills < 7 (1 > 2)). For each vi, there is a <p( ) e H

5 _
o e C1(D) ueh that o] < 3l 6P < 2l 1= o442,
thus () = "%, 4,01(-1) € H® (since H{® is closed relative to ||.||+), o =
ppast QDZ@) € C'(D), and ¢ = () + (). That is ¢ € H® + C' (D). O
Proposition 10. If ¢ € H{® + CY(D) satisfies ¢lop = 0, then T, is a
compact operator on D, where p|sp denotes the radial boundary values of ¢.

Proof. Suppose ¢ = 1+ 2,01 € H®, g € CH(D), since p|ap = 0, ¢1]op =
—palop, thus ¢1|op € C(ID), further pi(z) = Plpilop] € H® N A(D)
(where P[y|sp] denotes the Poisson integral of ¢|gp), consequently, ¢ €
C(D) N (Hp® + CY(D)).
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Suppose {fr} C D, ||fellp =1, fx — 0, then
T fullD < Nofullizn = (0, 0 fr)

%
= <a“0fk +He Gt fio )+ (G S )
, O 112 d¢ ?
” Jr +2Re/ka808kadA+”Spfk||L2+H62fk L
< Il + 221 ilol el
+leftlBa + ol 5l

Since || fillp =1 and fy = 0 in D, || fi]lz2 — 0, so

lelZI el + 2l e lZ0 fellpll fill 2 + llZl1 el Ze — O

Note ¢ € C(D), and ¢|gp = 0, hence for any ¢ > 0, thereisa 0 < § < 1
such that |¢(z)| < € for any |z| > §, thus

/ PP fL2dA < & / SIPdA 4 / o2 71[2dA
D {lz|>0} {lz|<8}

<4 g2 / fL2dA.
{|z|<d}

By fi — 0, we know that f{‘z|<5} |f1|?*dA — 0, hence [ |¢|*|f1|?dA —

0 (k — 00), furthermore |1}, fx||% — 0, this shows that T, is compact on
D. U

Proposition 11. If ¢ € H*(D), then on Dirichlet space D, o(T,) = ¢(D).
Proof. Note for any f eD,
<f7 > :< sOfaK>%:<<)0fa > = (Z)f(z)7

so To K (2,w) = ©(2) K (2,w), this shows that p(D) C o(T},).

Conversely, if 0 ¢ ¢ ), then there is a 0 > 0 such that |p(2)] > 0 >
0 (Vz € D), thus o~ € H*®. Note

1
2

A~ so’
= | —— % < R
2| |- 5| < g1 < el <0
we have ¢~ € H so T, 1T, = TS@TSO_l = I, that is T}, is invertible, hence
o(T,) C ¢(D). The proof is thus complete. O

Theorem 12. If p = @1+ € H® +CH(D), where p1 € H®, @9 € C1(D),
then on Dirichlet space D,

0e(Ty) = No<s<1{p(2)[[z| > 6} = (ID).
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Proof. Without loss of generality, assume 0 € No<s<1{p(2)||z| > 0}, then
there is a sequence {2} C D with z, — ¢ € 9D, such that ¢(z,) — 0, thus
T, is not Fredholm on L2 (c.f. G.F. Cao [1] or MacDonald [4]), hence there
is a sequence {fx} C L2 with ||fillz2 = 1, fx = 0 such that | T, fg|z2 — 0
or Hf;jkaLz = ||Tsfrllp2 — 0. If T, is Fredholm on D, then there is a
bounded operator S on D such that ST - 1,7,S — I € K(D), further
STy — 1,135 — I € K(D). Write Fi (2 fo fr(w)dw, then Fj, € D and
|EkllD = | fellrz = 1, so || Fxllzz — 0. In addltlon, it is clearly that Fj, — 0
in D. Thus

lim (ST, Fy, Fy)

1
k—o00 2

= hm (T, SFy, Fi)1

M=

1

2

= hm <T*S*Fk, k>
hm (S*T}Fy, Fr), =

k—oo

N[

Hence, without loss of generality, we can assume that ||f$ frll 2 — 0 (similar-
ly for the case of || T, fx||2 — 0). Set Gy = SFy, then |Gy|lp < ||S||[| Fxllp =
S]], and Gj, 5 0, so |G|z — 0, and

(T, SFy, Fy,)

1
2

0
= ‘<90(5Fk)/7fk> + <(.;205Fk7fk>‘
< [((SFTefi)| + el IS Fillzz 1 il o2
< WSFWY e | Tasi]| , + el Gl il

= lGxllo | T3],

+ el IGrll 2l frll 2 — 0.

This contradicts that (T,,SFy, F) 1= 1. hence T, must be non-Fredholm.

That is 0 € o¢(T,), consequently No<s<1{p(2)||2| > 0} C oe(Ty).
Conversely, assume 0 ¢ No<s<1{¢(z)||z| > ¢}, thus there are ¢,6 > 0
such that |¢(2)] > € for any |z| > 0, we prove that T, is Fredholm on
D. Otherwise, there is a sequence {Fy} C D with ||Fy|p = 1,F; = 0,
such that || T,Fi|p — 0 or ||T;Fkl|p — 0. Similar to above proof, we can
assume || T Fy|lp — 0 (if |7,Fk|lp — 0, the proof will be simpler). It is
well-known that = T, is Fredholm on L2 if lp(2)| > € for any [z > 0,
hence there is a S € L(L2) such that ST, — I,T,,S — I € IC(LQ) further,
S*T(; 1, T;S* Ie IC(LQ) Set fr = k?gk = S f, then fk — 0, gx % 01in
L3 and || fill 2 = | Fallp = L, Igxllzz < 15U fellzz = 1S, s0 (S* T fi, i) —
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1, that is (T% fx, Sfx) — 1. Note

<T;Fk,/oz ka(w)dw>1 = <Fk,g0/oz kadw>l
— (e (52 [ snu+ 1) )

a z
= <fk> 8(5/0 gkdw> + (fr> P9k)

and g = 0, so || foz grdw||2 — 0, and
zZ
/ grdw
0

8 zZ
]<fk,8“0 / gkdw>‘ < Ifillzzllgl-
zZ Jo L2

but (fx, pgr) = <T;fk,5fk> — 1 # 0, hence (T;Fk,fozgkdw>% — 1 #0,
this contradicts that ||7;Fgllp — 0. It shows that T, must be Fredholm
on D. That is 0 ¢ 0.(T,). Note the functions with derivatives in H> are
continuous in the closed unit disk, hence H®+C*(D) C C(D), consequently,
No<s<1{p(2)||z| > 0} = p(OD). We are done. O

— 0,

Remark. If ¢ € H*, then T; is always bounded on D, in fact, for any
[,9€D,

(51,903 = [(er. 90| = 1o, 90)
= (Tot' o) < [T 102212 < Dieliol P llg

hence || T f|| < [l¢lloc |l f]lp- However, for ¢ € H*®, T, may be unbounded
on D. Let
of

fs 3 € LOO(ID),dA)} )

then L(fo’l U H® is perhaps the most suitable symbol space of Toeplitz

L = {f € L

operators which are bounded. Also, we can prove that if ¢ € L(fo’l has a
compact support set, then T, is compact on D.

4. An index formula of Toeplitz operators.

The classical index formula shows that for ¢ € C(9D), if |p| > € > 0, then
T, is a Fredholm operator on Hardy space H?(dD), and IndT, = —windp.
If ¢ € C(D) with |(¢|op)(¢)| > € > 0, then IndT,, = —windy|sp on Bergman
space L2(D). The proof of these index formulas is relative to the topology
homotopy of symbol functions, it can not be directly extended to the case
of Dirichlet space since we do not know whether there is a C'-function H;
which is continuous with respect to ¢ € [0, 1] such that Hy = ¢, H] = ¢
if ¢, € C1(D) and wind ¢|sp = winde|gp. In this section, we use the
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short exact sequence (*) to prove an analogy of the above index formulas
for C''-symbols.

Theorem 13. Suppose ¢ € C*(D) such that T5 is Fredholm on D, then
IndT, = —windy|sp.

Proof. By Theorem 8, if ¢, € C'(D) such that T, and T are Fredholm on
D and windy|sp = wind|gp, then there is a H, € C(]0,1] x D) such that
H; € GC(ID) (the set of invertible elements in C(9D)) for each ¢ € [0,1]
and Hy = ¢|sp, H1 = 1|op. Note £ is an isometry isomorphism, so ¢ ~1(H;)
is continuous with respect to t. On the other hand, H, ! is also continuous
on [0,1] x 9D, and £~ (H)§H(H, ') = €7 (H e (Hy) = §H(HH) =
[I]. Hence, £~1(H;) is invertible in % Furthermore, it is easy to see that
IndT, = IndT}.

Now suppose ¢ € C'(D) such that 7T}, is Fredholm on D and windy|sp =
k, note T, is Fredholm on D with Ind7, = —1 = —windz|gp, let

k if >0
sk {z, 1 >0,

z7k otherwise;

we see that windy|gp = windz*|sp, thus IndT}, = IndT.+ by above proof,
consequently, IndT,, = —k = —windyp|sp. The proof is thus complete. O

Proposition 14. Suppose ¢ € H* such that Ty is Fredholm on D, then

Ind7; = — lim windg,|sp,
r—1-

where @ (2) = @(rz).
Proof. If f € KerTy, then for any g € D,

0= (Taf.9)s = (0F.00, = (21.9") = (Tof' o),
since {¢'|lg € D} = L2, Tf' = 0, hence {f'|f € KerT,} C Kerﬁ;. Conse-
quently, assume Tsf = 0, f € L2, set F(z) = foz fdw, then F' € D, and for
any G € D,

<T95F7 G>

s = (pF,G) = <fpf G’> =0,

so TaF =0, further {f; f(w)dw|f € Kerfﬁ} C KerTz. This shows that
dim KerT}; = dim KerTj.

Now assume f € D such that T f = 0, then for any g € D,

0= <T4;fag> = <f795g>

1 1
3 2

={f,ed) = (pf'y) = <T~¢f’7g'> :
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hence T, f' = 0, that is {f'|f € KerT3} C KerT,.
Similarly to above proof, we have also { [, f(w)dw|f € KerT,} C KerT}.
Hence dim KerT7 = dim Kerﬁp, consequently,

Ind7; = —IndT, = rlir?_ winde, |sp = — Tlir?_ wind@, |sp-
O
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