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The structure and classification up to isomorphism of a nat-
urally arising class of local rings is determined. Although we
are primarily interested in the case of a finite residue field K,
our results apply in fact over any field K of characteristic 6= 2.
The problem is shown to be equivalent to that of classifying
two-dimensional subspaces of M2(K) up to congruence, and
it is in these terms that the question is addressed.

1. Introduction.

In investigating the structure of finite local rings one is led to consider such
a ring of the form R = K⊕J in which K = Fq and the Jacobson radical J is
such that J3 = 0 and both J/J2 and J2 are two-dimensional over R/J = K.
Rings with J3 = 0 form a natural object of study, the case J2 = 0 having
long been settled [2, 3]. If J = Kx1⊕Kx2⊕ J2 and J2 = Ky1⊕Ky2, then
we may write xixj = αijy1 + βijy2 (αij , βij ∈ K) and these four products
span J2. The ring structure is determined by the pair of (2 × 2) matrices
A = (αij), B = (βij), which are linearly independent over K, and any pair of
independent matrices defines such a ring.We wish to determine the number
of isomorphism classes of such rings and to find normal forms for the pair
of matrices A,B defining them. Chikunji [1] has shown that there are 10
classes for q = 2 and, on the basis of computer calculations for q = 3, 5, 7,
has conjectured that when q is odd the number of classes is 3q +5. It is also
conjectured that exactly three of these rings are commutative. Our purpose
here is inter alia, to prove these conjectures.

If (x′1, x
′
2, y

′
1, y

′
2) is a new basis of J with corresponding matrices A′, B′,

then x′1, x
′
2 are linear combinations of x1, x2, y1, y2. Since J3 = 0, we may

assume that the coefficients of y1, y2 are zero and write x′i = p1ix1+p2ix2, so
that P = (pij) is the transition matrix from the basis (x1, x2) of J/J2 to the
basis (x′1, x

′
2). Equally, let Q = (qij) be the transition matrix from the basis

(y1, y2) of J2 to (y′1, y
′
2). If we now calculate x′ix

′
j and compare coefficients

of yi we obtain equations which, in matrix form, are{
P tAP = q11A

′ + q12B
′

P tBP = q21A
′ + q22B

′ .
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Evidently, the problem of classifying our rings up to isomorphism amounts
to that of classifying pairs of linearly independent matrices (A,B) under the
above relation of equivalence, P and Q being arbitrary invertible matrices,
and it is to this problem of linear algebra that the paper is devoted. We shall,
in fact, solve it over an arbitrary field of characteristic 6= 2 and will consider
all pairs, independent or otherwise. The approach we take is to first of all
deal with pairs of symmetric matrices (corresponding to commutative rings)
and then to use the fact that a general equivalence class may be represented
by the sum of one of the standard symmetric pairs already found with an
antisymmetric pair. This is similar to an idea used in [4] for congruence of
single matrices.

2. The symmetric case.

We first establish some notation. Let X be the set of all pairs (A,B) of
(2 × 2) matrices over a field K. The group GL2 acts on the right on X by
congruence: (A,B) · P = (P tAP,P tBP ) and on the left via Q · (A,B) =
(q11A + q12B, q21A + q22B), where Q = (qij). These two actions are per-
mutable and define a (left) action of G = GL2 ×GL2 on X:

(P,Q) · (A,B) = Q · (A,B) · P−1.

By restriction, G acts on the subset Y consisting of pairs with A,B lin-
early independent. This amounts to studying the congruence action (via P )
of GL2 on the set Y of 2-dimensional subspaces of M2(K), Q just repre-
senting a change of basis in a given subspace. In the same way, the whole
action of G on X may be reinterpreted as an action of GL2 on the set X of
subspaces of dimension ≤ 2. Two pairs in the same G-orbit will be called
equivalent.

G also acts by restriction on the set S of pairs with A,B symmetric.
Assuming henceforth that char K 6= 2, we determine these orbits first. To
avoid a plague of parentheses we omit these around ordered pairs of displayed
matrices.

Theorem 1. The following table gives a complete set of representatives for
the orbits of G on S, together with their stabilizers:
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Representative Stabilizing elements (P,Q)

1.
(

1
0

)
,

(
1

1

) (
a 0
c d

)
,

(
a2 0
2ac ad

)

2.
(

1
δ

)
,

(
1

1

) (
a ±δc
c ±a

)
,

(
a2 + δc2 ±2δac

2ac ±(a2 + δc2)

)

3.
(

0
0

)
,

(
0

0

)
All

4.
(

1
0

)
,

(
0

0

) (
a 0
c d

)
,

(
a2 l
0 n

)

5.
(

1
δ

)
,

(
0

0

) (
a ∓δc
c ±a

)
,

(
a2 + δc2 l

0 n

)

In 2) and 5) δ runs through a set of coset representatives of K∗2 in K∗.

Write P =
(

a b
c d

)
and Q =

(
k l
m n

)
. Before giving the proof it is useful

to record that if A =
(

α β
γ δ

)
, then:

P tAP =
(

a2α + ac(β + γ) + c2δ abα + adβ + bcγ + cdδ
abα + adγ + bcβ + cdδ b2α + bd(β + γ) + d2δ

)
.

In particular we have:

A

(
1

0

) (
1

δ

) (
1

1

)

P tAP

(
a2 ab
ab b2

) (
a2 + c2δ ab + cdδ
ab + cdδ b2 + d2δ

) (
2ac ad + bc

ad + bc 2bd

)

Note also that (P,Q) fixes a pair Π = (A,B) ⇔ Π · P = Q ·Π.
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Proof of Theorem 1. Consider first independent pairs (A,B) in S. We

claim that any such pair in equivalent to one with B =
(

1
1

)
. To prove

this it is enough to show that every 2-dimensional subspace W of the space
V of symmetric matrices contains an isotropic matrix, in the sense that
it is nonsingular and the associated quadratic form represents zero. For
all isotropic matrices are congruent to this one. If W equals the space of

diagonal matrices, then it contains the isotropic matrix
(

1
−1

)
. If not,

then, since dim V = 3, W is spanned by a diagonal matrix and a non-

diagonal matrix
(

α β
β δ

)
. We may clearly modify the latter so that α or δ

equals 0, and then it is isotropic.

So now let (A,B) be independent, with B =
(

1
1

)
. We may take A to

be diagonal, A =
(

α
δ

)
. Under congruence by P = B, if necessary, we

may assume that α 6= 0, and then, via a suitable Q, that α = 1.

We now determine when two pairs Π =
(

1
δ

)
,

(
1

1

)
and Π′ =(

1
δ′

)
,

(
1

1

)
are equivalent. This happens when there exist P,Q as

above such that Π · P = Q ·Π′, or in other words:
(1)(

a2 + c2δ ab + cdδ
ab + cdδ b2 + d2δ

)
,

(
2ac ad + bc

ad + bc 2bd

)
=

(
k l
l kδ′

)
,

(
m n
n mδ′

)
.

Comparing diagonal terms gives

(2)

{
b2 + d2δ = δ′(a2 + c2δ)
bd = δ′ac

.

Squaring these and subtracting 4δ times the second from the first leads to
b2 − d2δ = ±δ′(a2 − c2δ). According to the sign, there are two cases:

(i)

{
b2 = δ′a2

δd2 = δδ′c2
or (ii)

{
b2 = δδ′c2

δd2 = δ′a2
.

In either case it follows from nonsingularity of P that if δ′ = 0, then b = 0,
d 6= 0 and δ = 0. By symmetry we deduce that δ = 0 ⇔ δ′ = 0. The
stabilizer in this case is given by the single condition b = 0, and the form of
Q follows from (1).

Assume now that δ, δ′ 6= 0. Case (i) cannot now arise, as is shown by the
second equation of (2), the first of (i) and nonsingularity of P. It follows
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from (ii) that Π and Π′ are equivalent ⇔ δ, δ′ are in the same square-class.
The form of the stabilizer results at once.

We are left with the dependent pairs (A,B) in S. Via Q we may assume

that B = 0, and then (via P ) that A =
(

α
δ

)
. If A 6= 0, then again (via

P ) we may assume α 6= 0, and finally (via Q) that α = 1. This gives the
remaining types in the table. As for equivalence, these cannot be equivalent
to independent pairs, so we only have to examine equivalence between Π =(

1
δ

)
,

(
0

0

)
and Π′ =

(
1

δ′

)
,

(
0

0

)
. The condition Π ·P = Q ·Π′

this time gives

(3)

{
b2 + d2δ = δ′(a2 + c2δ)
ab = −cdδ

.

(3) is of exactly the same form as (2): we merely have to interchange a, d and
replace δ by −δ′, δ′ by −δ. It follows that Π and Π′ are equivalent ⇔ δ, δ′

are in the same (possibly zero) square-class. Once more, the form of the
stabilizers results immediately. �

3. The general case.

Consider now an arbitrary pair Π = (A,B). This decomposes uniquely as the
sum Π = Πs + Πa of a symmetric pair Πs = (As, Bs) and an antisymmetric
pair Πa = (Aa, Ba). One checks at once that this decomposition commutes
with the action: ((P,Q) · Π)s = (P,Q) · Πs and ((P,Q) · Π)a = (P,Q) · Πa.
In particular:

(P,Q) fixes Π ⇔ it fixes each of Πs and Πa.

Let S be the set of symmetric representatives in Theorem 1. We now
have:

Proposition 1. (i) Each equivalence class contains a pair Σ + T, where
Σ ∈ S and T is antisymmetric. Moreover, the class determines Σ uniquely.
(ii) If Π = Σ+T and Π′ = Σ+T′ (similarly), then (P,Q) ·Π = Π′ ⇔ (P,Q)
stabilizes Σ and (P,Q) · T = T′.

We also record the following evident lemma. Henceforth let J =
(

1
−1

)
.

Lemma 1. If T = (αJ, βJ) and T′ = (α′J, β′J) are antisymmetric pairs
and ∆ = detP , then

(4) (P,Q) · T = T′ ⇔

{
kα + lβ = ∆α′

mα + nβ = ∆β′ .
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Prop. 1 shows that each equivalence class has an underlying type in S,
and each type is a union of equivalence classes. We now analyze these types
in turn, keeping the notation established above:

1) Σ =
(

1
0

)
,

(
1

1

)
: (P,Q)·Π = Π′ if and only if (P,Q) is as in line 1 of

the table in Theorem 1 and (4) holds, which amounts to

{
aα = dα′

2cα + dβ = dβ′.

If α = 0, then α′ = 0 and β′ = β. Thus there is one orbit for each
β ∈ K, corresponding to T = (0, βJ). The stabilizer for each of these is all
of Stab(Σ). If α 6= 0, we may take a = 1, d = α, c = −β/2 to get α′ = 1,
β′ = 0, resulting in one more orbit given by T = (J, 0). The stabilizer is given
by the equations a = d, c = 0, hence consists of the pairs (P,Q) = (aI, a2I).

2) Σ =
(

1
δ

)
,

(
1

1

)
: Let O2,λ =

{(
x ∓λy
y ±x

)
: x2 + λy2 = 1

}
be the

orthogonal group of the quadratic form (1, λ). The form of (P,Q) shows
that Q/∆ ∈ O2,−δ and Equations (4) say that Q/∆ sends (α, β) to (α′, β′).
Hence these vectors have the same length with respect to the form (1,−δ),
in other words α2 − δβ2 = α′2 − δβ′2.

Conversely, let (α, β) and (α′, β′) be non-zero vectors satisfying this con-
dition. Then by Witt’s Extension Theorem (cf. [4, Prop. 3]) there ex-

ists R =
(

x ±δy
y ±x

)
in O2,−δ (so that x2 − δy2 = 1) sending (α, β) to

(α′, β′). We can now choose a, c such that R = Q/∆. Namely, if x 6= ∓1, let
a = δ−1(1 ± x), c = ±δ−1y and if x = ∓1, let a = 0, c = 1. Now (4) holds,
so Π and Π′ are equivalent.

Thus, apart from the symmetric class (given by T = (0, 0)), there is one
orbit for each element of K represented (non-trivially) by the form α2−δβ2,
corresponding to T = (αJ, βJ).

The stabilizers are easily found from (4), with α′ = α β′ = β.

If P =
(

a δc
c a

)
, this condition becomes

{
c(cα + aβ) = 0
c(aα + δcβ) = 0

, which

reduces to c = 0, P being nonsingular. Thus (P,Q) = (aI, a2I).

If P =
(

a −δc
c −a

)
, it amounts to aα = δcβ, so that (a, c) = µ(δβ, α)

(µ 6= 0). The only other condition which must be met is that ∆ 6= 0, or equiv-
alently α2 − δβ2 6= 0. Provided this is so, the stabilizer contains elements of

this second type, namely (P,Q)=µ

(
δβ −δα
α −δβ

)
, δµ2

(
α2 + δβ2 −2δαβ

2αβ −(α2 + δβ2)

)
.

Otherwise such elements do not arise.
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3) Σ =
(

0
0

)
,

(
0

0

)
: Taking P = I and Q arbitrary shows that in

addition to the symmetric class there is just one orbit with T 6= 0. We
may, for example, take T = (J, 0). The stabilizer then consists of all pairs

(P,Q) =
(

a b
c d

)
,

(
∆ l
0 n

)
.

4) Σ =
(

1
0

)
,

(
0

0

)
: Here (4) becomes

{
a2α + lβ = adα′

nβ = adβ′ , which

implies that β = 0 ⇔ β′ = 0. As well as the symmetric class we have the
cases:

(i) β′ 6= 0: This is equivalent to the case (α, β) = (0, 1) as follows by
taking a = d = 1, l = α′ − α, n = β′. So we get one orbit corresponding to

T = (0, J). The stabilizer consists of the pairs (P,Q) =
(

a 0
c d

)
,

(
a2 0
0 ad

)
.

(ii) α′ 6= 0, β′ = 0: This is equivalent to (α, β) = (1, 0) (take a = α′,
d = 1), and there is again one orbit, given by T = (J, 0). The stabilizer

consists of the pairs (P,Q) =
(

a 0
c a

)
,

(
a2 l
0 n

)
.

5) Σ =
(

1
δ

)
,

(
0

0

)
: Now (4) is

{
(a2 + δc2)α + lβ = ±(a2 + δc2)α′

nβ = ±(a2 + δc2)β′ ,

leading again to β = 0 ⇔ β′ = 0. Apart from the symmetric class we must
consider:

(i) β′ 6= 0: As before, this reduces to one orbit, given by T = (0, J). The

stabilizer is the set of all (P,Q) =
(

a ∓δc
c ±a

)
,

(
a2 + δc2 0

0 ±(a2 + δc2)

)
.

(ii) α′ 6= 0, β′ = 0: It follows that α = ±α′, and thus that the distinct
orbits are given by T = (αJ, 0), α running over K∗/{±1}. To calculate the
stabilizers we put α = α′, β = β′ = 0 in the equations above. This forces

the sign to be +, and hence the stabilizer in the set of (P,Q) =
(

a −δc
c a

)
,(

a2 + δc2 l
0 n

)
.

We collect our results in the next theorem. Since we have dealt already
with the symmetric classes in Theorem 1, we confine ourselves to the rest:

Theorem 2. The following table gives a complete set of representatives for
the orbits of G on X − S (the non-symmetric classes), together with their
stabilizers:
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Representative Stabilizing elements (P,Q)

1a.
(

1
0

)
,

(
1 + β

1− β

)
(β ∈ K∗)

(
a 0
c d

)
,

(
a2 0
2ac ad

)

1b.
(

1 1
−1 0

)
,

(
1

1

) (
a

a

)
,

(
a2

a2

)

2a.
(

1 α
−α δ

)
,

(
1 + β

1− β

)
in 1-1 correspondence with
the values in K represented by
α2−δβ2, for each δ ∈ K∗/K∗2

(
a

a

)
,

(
a2

a2

)
if α2−δβ2 = 0

Otherwise, the above pairs plus:

µ

(
δβ −δα
α −δβ

)
,

δµ2

(
α2 + δβ2 −2δαβ

2αβ −(α2 + δβ2)

)

3a.
(

1
−1

)
,

(
0

0

) (
a b
c d

)
,

(
∆ l
0 n

)

4a.
(

1
0

)
,

(
1

−1

) (
a 0
c d

)
,

(
a2 0
0 ad

)

4b.
(

1 1
−1 0

)
,

(
0

0

) (
a 0
c a

)
,

(
a2 l
0 n

)

5a.
(

1
δ

)
,

(
1

−1

) (
a ∓δc
c ±a

)
,(

a2 + δc2 0
0 ±(a2 + δc2)

)

5b.
(

1 α
−α δ

)
,

(
0

0

)
(α ∈ K∗/{±1})

(
a −δc
c a

)
,

(
a2 + δc2 l

0 n

)
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By inspection from Theorems 1 and 2 we also have:

Corollary 1. The orbits of G on Y (the linearly independent classes) are
given by lines 1, 2, 1a, 1b, 2a, 4a and 5a.

4. Finite Fields.

We now specialize the foregoing to the finite field K = Fq (q odd). In this
case |G| = q2(q−1)2(q2−1)2, |X| = q8, |Y | = q(q3−1)(q4−1) and |S| = q6.
There are two square-classes in K∗, represented by 1 and a fixed non-square
ε. Over Fq quadratic forms of rank ≥ 2 are universal (cf. [5] for example),
so that for each of δ = 1, ε the form α2 − δβ2 takes all values in K∗. In
addition, when δ = 1 it represents 0, but not when δ = ε. Let χ denote the
quadratic character of K.

From the previous results we can now easily determine the number of
equivalence classes and their sizes:

Theorem 3. The following table gives, for each type of representative, the
sizes of the stabilizer and equivalence class and the number of classes:

Rep. |Stabilizer| |Class| Number
of classes

1 q(q − 1)2 q(q2 − 1)2 1

2 2(q − 1)(q − χ(δ)) 1
2q2(q−1)(q2−1)(q+χ(δ)) 2

3 |G| 1 1

4 q2(q − 1)3 (q + 1)(q2 − 1) 1

5 2q(q − 1)2(q − χ(−δ)) 1
2q(q2 − 1)(q + χ(−δ)) 2

1a q(q − 1)2 q(q2 − 1)2 q − 1

1b q − 1 q2(q − 1)(q2 − 1)2 1
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2a

{
q − 1 if α2 − δβ2 = 0
2(q − 1) if not

{
q2(q − 1)(q2 − 1)2
1
2q2(q − 1)(q2 − 1)2

{
1
2(q − 1)

3a q2(q − 1)2(q2 − 1) q2 − 1 1

4a q(q − 1)2 q(q2 − 1)2 1

4b q2(q − 1)2 (q2 − 1)2 1

5a 2(q − 1)(q − χ(−δ)) 1
2q2(q − 1)(q2 − 1)(q +
χ(−δ))

2

5b q(q − 1)2(q − χ(−δ)) q(q2 − 1)(q + χ(−δ)) q − 1

In all there are 4q + 10 classes, of which 7 are symmetric. For the lin-
early independent pairs, the number of classes is 3q + 5, and 3 of these are
symmetric.

Proof. It is only necessary to observe, for lines 2, 5, 5a and 5b, that if ξ ∈ K∗

then the number of solutions of α2 − ξβ2 6= 0 is (q− 1)(q− χ(ξ)). Note also
in line 5b that there are 1

2(q − 1) classes for each of δ = 1, ε. �

As a check on the arithmetic, one readily verifies that the sum of all the
class sizes is q8 = |X|. For the symmetric classes the sum is q6 = |S|.

Corollary 2. For the finite local rings of the Introduction, there are 3q + 5
isomorphism classes (q odd ). Of these, 3 are commutative.
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