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For a Haken 3-manifold M with incompressible boundary,
we prove that the mapping class group M acts properly dis-
continuously on a contractible simplicial complex, with com-
pact quotient. This implies that every torsionfree subgroup
of finite index in M is geometrically finite. Also, a simplified
proof of the fact that torsionfree subgroups of finite index
in M exist is given. All results are given for mapping class
groups that preserve a boundary pattern in the sense of K. Jo-
hannson. As an application, we show that if F is a nonempty
compact 2-manifold in ∂M such that ∂M − F is incompress-
ible, then the classifying space BDiff(M rel F ) of the diffeo-
morphism group of M relative to F has the homotopy type
of a finite aspherical complex.

1. Introduction.

The mapping class groupH(F ) of a 2-manifold is the group of isotopy classes
of diffeomorphisms, π0(Diff(F )). As is well-known, it acts properly discon-
tinuously on a Teichmüller space, which is topologically a Euclidean space
(traditionally only the action of the orientation-preserving classes was con-
sidered). This classical setup was refined by Harer [8, 9], who found an
ideal triangulation of Teichmüller space for which H(F ) acts simplicially,
then constructed a contractible simplicial complex in the first barycentric
subdivision of this triangulation which is invariant and has finite quotient
under the action. Consequently, if Γ is any torsionfree subgroup of finite
index in H(F ) (and such subgroups always exist), the quotient of the action
of Γ on this complex is a finite K(Γ, 1)-complex. That is, Γ is a geometrically
finite group.

For a compact 3-manifold M , a great deal is known about H(M) (see
for example [20] or the surveys [25, 27]). In the present paper, we ex-
tend the aforementioned property of torsionfree subgroups of H(F ) to the
case of Haken 3-manifolds. To postpone the introduction of boundary pat-
terns, we state here only a corollary of our main theorem. In the corollary,
H(M rel W ) means π0(Diff(M rel W )), where Diff(M rel W ) is the group
of diffeomorphisms of M which restrict to the identity on W .
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Corollary 7.10. Let M be a Haken 3-manifold and let W be a compact 2-
dimensional submanifold of ∂M such that ∂M −W is incompressible. Then
any torsionfree subgroup of finite index in H(M rel W ) is geometrically
finite.

In this result, W , or ∂M − W , or both may be empty. For Haken 3-
manifolds, it was already known that H(M rel W ) contains a finite-index
subgroup which is geometrically finite [26], so the new information from
the Main Theorem is that every torsionfree subgroup of finite index in
H(M rel W ) is geometrically finite. It is a longstanding and apparently
difficult open question whether a torsionfree finite extension of a geometri-
cally finite group must be geometrically finite. Of course, if this were known,
the result from [26] would imply our strengthened version.

Our method of proof is to construct a topological action of H(M rel W )
on a contractible simplicial complex (whose quotient is compact), and as we
show in Section 3 this is sufficient to deduce the geometric finiteness of tor-
sionfree finite-index subgroups. It would be interesting to give a more direct
construction of a contractible complex, along the lines of those developed
by Harer, admitting a simplicial action of H(M rel W ) with finite quotient.

The Kontsevich Conjecture (Problem 3.48 in the new version of R. Kirby’s
problem list [20]) asserts that the classifying space BDiff(M rel ∂M) has
the homotopy type of a finite complex when M is a compact 3-manifold
with nonempty boundary. This conjecture was recently proven for the case
of Haken 3-manifolds in [14]. As observed there, the Kontsevich Conjecture
for a Haken 3-manifold M is equivalent to the assertion that H(M rel ∂M)
is geometrically finite. In Section 8 we use our results on geometric finiteness
to deduce a generalization of the result from [14]:

Theorem 8.7. Let M be a Haken 3-manifold with incompressible bound-
ary, and let F be a nonempty compact 2-manifold in ∂M such that ∂M −F
is incompressible. Then BDiff(M rel F ) has the homotopy type of a finite
complex.

The proof makes use of the extension of Nielsen’s theorem to 3-manifolds
made by Heil and Tollefson [15].

We will work in the context of 3-manifolds with boundary patterns. This
lends greater generality to the results, and allows us to make direct use
of Johannson’s powerful characteristic submanifold theory for Haken mani-
folds. As is well-known, the characteristic submanifold was discovered and
exploited independently by Johannson [17] and Jaco and Shalen [16]. We
use Johannson’s formulation because it is ideally suited to working with
homotopy equivalences and homeomorphisms of 3-manifolds. In Section 2
we provide a brief exposition of the portion of Johannson’s theory that we
will use. In Section 3 we introduce a generalization of geometric finiteness,
called (for lack of imagination) almost geometric finiteness. Any torsionfree
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finite-index subgroup of an almost geometrically finite group is geometri-
cally finite. Using a theorem of Kamishima, Lee, and Raymond [18], we
prove in Proposition 3.3 a key fact: An extension of a virtually finitely
generated abelian group by an almost geometrically finite group is almost
geometrically finite. The rest of the proof then follows the general approach
of [26] to show that H(M) is an extension of this form, and hence is almost
geometrically finite. It is necessary to work with a bit more precision than
was needed in [26], since one can no longer evade difficulties by passing to
subgroups of finite index in H(M). We also give a new proof that torsionfree
subgroups of finite index in H(M) exist. This was proven in [26] by a very
complicated argument; the new proof uses an algebraic fact from [28] to
give a much shorter and more transparent proof. The final section contains
the application to the Kontsevich Conjecture.

The authors thank BSRI-1422 and Nondirect Research Fund (K.R.F.)
for support of their collaborative work, and acknowledge helpful discussions
with Kyung-bai Lee and Leonard Rubin.

2. Johannson’s characteristic submanifold theory.

We give here a brief review of the basic definitions of Johannson’s formu-
lation of the characteristic submanifold. We refer the reader to [17] for
the original presentation, and also to Chapter 2 of [2] for a more extensive
expository treatment with a number of examples.

A boundary pattern m for an n-manifold M is a finite set of compact,
connected (n − 1)-manifolds in ∂M , such that the intersection of any i of
them is empty or consists of (n−i)-manifolds. Thus when n=3, two elements
of the boundary pattern intersect in a collection of arcs and circles, while
if three elements meet, their intersection consists of a finite collection of
points at which three intersection arcs meet. It is important in arguments
to distinguish between elements of m and the points of M which lie in them,
and we will always be precise in this distinction. The symbol |m| will mean
the set of points of ∂M that lie in some element of m. When |m|=∂M , m is
said to be complete. Provided that ∂M is compact, we define the completion
of m to be the complete boundary pattern m which is the union of m and
the set of components of the closure of ∂M − |m|. In particular, the set
of boundary components of M is the completion of the empty boundary
pattern ∅.

Suppose (X, x) is an admissibly imbedded codimension-zero submanifold
of (M,m), which is admissibly imbedded in (M,m). The latter assumption
guarantees that X∩∂M = |x|, that |x| is contained in the topological interior
of |m| in ∂M , and that an element of x which does not meet any other
element of x must be imbedded in the manifold interior of an element of m.
Let x′′ denote the collection of components of the frontier of X in M . To
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split M along X means to construct the manifold with boundary pattern
(M −X, m̃∪x′′), where the elements of m̃ are the closures of the components
of F − (X ∩F ) for F ∈ m. The boundary pattern m̃∪x′′ is called the proper
boundary pattern on M −X.

Maps which respect boundary pattern structures are called admissible.
Precisely, a map f from (M,m) to (N,n) is called admissible when m is the
disjoint union

m =
∐
G∈n

{components of f−1(G)}.

An admissible map h : (K, k) → (X, x), where K is an arc or a circle and
(X, x) is a 2- or 3-manifold, is called inessential if it is admissibly homotopic
to a constant map (the constant map might not be admissible, but all the
other maps in the homotopy must be admissible), otherwise it is called es-
sential. A map f : (X, x) → (Y, y) between 2- or 3-manifolds (not necessarily
of the same dimension) is called essential if for any essential path or loop
h : (K, k) → (X, x), the composition fh : (K, k) → (Y, y) is essential. Notice
that when x is empty, this simply says that f is injective on fundamental
groups.

The group of admissible isotopy classes of admissible diffeomorphisms
from (M,m) to (M,m) is denoted by H(M,m). The classes that preserve
the orientation of each component are indicated by a plus subscript, as in
H+(M,m). The classes relative to the subset |m1|, where m1 ⊆ m, are
denoted by H(M,m rel |m1|). Suppose 〈h〉 ∈ H(M,m). Since h−1(|m|) =
|m|, h must carry each free side of (M,m) diffeomorphically to a free side
of (M,m). Therefore h is admissible for (M,m). Thus when working with
mapping class groups of manifolds with boundary patterns, the requirement
that the boundary pattern be complete is not at all restrictive.

An i-faced disc is a 2-disc whose boundary pattern is complete and has i
components. Observe that each element of m is incompressible if and only if
whenever D is an admissibly imbedded 1-faced disc in (M,m), the boundary
of D bounds a disc in |m| which is contained in a single element of m. For
most of Johannson’s theory, a somewhat stronger condition is needed. The
boundary pattern m of a 3-manifold M is called useful when the boundary of
every admissibly imbedded i-faced disc in (M,m) with i ≤ 3 bounds a disc
D in ∂M such that D∩ (∪F∈m∂F ) is the cone on ∂D∩ (∪F∈m∂F ). Notice
that ∅ is a useful boundary pattern on M if and only ∂M is incompressible.

A Seifert fibering on a 3-manifold (V, v) with boundary pattern is called
an admissible Seifert fibering when the elements of v are the preimages of
the components of a boundary pattern of the orbit surface. Consequently
the elements of v must be tori or fibered annuli.

Assume that V carries a fixed structure as an I-bundle over B. Each
component of the associated ∂I-bundle is a 2-manifold in ∂V , called a lid



GEOMETRIC FINITENESS IN MAPPING CLASS GROUPS 279

of the I-bundle. There are two lids when the bundle is a product, and one
when it is twisted. Let b be a boundary pattern on B. The preimages of
the elements of b form a collection of squares and annuli in ∂V , called the
sides of the I-bundle. The lid or lids, together with the sides, if any, form
a boundary pattern v on V . When V carries this boundary pattern, the
fibering is called an admissible I-fibering of V as an I-bundle over (B, b).
We emphasize that for an admissible I-fibering, the lids are always elements
of the boundary pattern.

We are now ready to introduce the characteristic submanifold. An ad-
missible I-bundle or Seifert fibered space (X, x) in a 3-manifold (M,m) is
an I-bundle or Seifert fibered space imbedded in M such that the inclusion
defines admissible maps (X, x) → (M,m) and (X, x) → (M,m). An ad-
missible I-bundle or Seifert fibered space in M is called essential when its
frontier is an essential surface in (M,m). This implies that the inclusion of
(X, x) into (M,m) is an essential map.

We suppose that (M,m) is a Haken 3-manifold with useful boundary
pattern. A disjoint collection (Σ, σ) of essential admissible I-bundles and
Seifert fibered spaces is a characteristic submanifold for (M,m) if

1) (Σ, σ) is full, i.e. the union of Σ with any of the components of M − Σ
is not a disjoint union of essential admissible I-bundles and Seifert
fibered spaces,

2) (Engulfing property) any essential admissible I-bundle or Seifert fiber-
ed space (X, x) in (M,m) is admissibly isotopic into (Σ, σ), and

3) (Enclosing property) any essential map f : (T, t) → (M,m) of a square,
annulus, or torus into (M,m) is admissibly homotopic to a map with
image in Σ.

One may combine Proposition 9.4, Corollaries 10.9 and 10.10 and Theorem
12.5 of [17] to see that every Haken 3-manifold with useful boundary pattern
has a characteristic submanifold, and that the characteristic submanifold is
unique up to admissible isotopy.

A Haken 3-manifold (M,m) whose completed boundary pattern m is use-
ful is called simple if every component of the characteristic submanifold of
(M,m) is a regular neighborhood of an element of m. When the bound-
ary consists of tori, the interior of a simple 3-manifold admits a hyperbolic
structure of finite volume. Then, by Mostow Rigidity and Waldhausen’s
theorem, H(M, ∅) is isomorphic to the group of isometries, hence is finite.
One of the deep applications of Johannson’s theory is the following gener-
alization of this fact (although it was proven before the dissemination of
Thurston’s work on hyperbolic structures of 3-manifolds). It appears as
Proposition 27.1 of [17].
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Theorem 2.1 (Finite Mapping Class Group Theorem). Let (M,m) be
a simple 3-manifold with complete and useful boundary pattern. Then
H(M,m) is finite.

3. Almost geometric finiteness.

We say that a group G is almost geometrically finite if it acts smoothly and
properly discontinuously on a contractible simplicial complex L, such that
L/G is compact. A subgroup of finite index in an almost geometrically finite
group is almost geometrically finite. Almost geometrically finite groups are
finitely generated (any group acting properly discontinuously on a connected
locally compact space with compact quotient must be finitely generated).
Every torsionfree subgroup of finite index in an almost geometrically finite
group must be geometrically finite:

Lemma 3.1. Let G be an almost geometrically finite group, and let Γ be a
torsionfree subgroup of finite index in G. Then Γ is geometrically finite.

Proof. Let G act properly discontinuously on the contractible complex L
with compact quotient. Since Γ has finite index, L/Γ is compact, and since
Γ is torsionfree, it acts freely on L. Therefore L/Γ is locally an ANR and
hence an ANR (see for example Theorem 5.4.5 of [32]). By [35], a finite-
dimensional compact ANR is homotopy equivalent to a finite simplicial com-
plex, and therefore Γ is geometrically finite. �

We caution that in general, an almost geometrically finite group need not
contain any geometrically finite subgroups of finite index: Schneebeli [30]
constructed extensions 1 → Z/k → E → Q → 1 where Q is geometrically
finite but E contains no torsionfree subgroups of finite index.

By Lemma 3.1, a group is geometrically finite if and only if it is almost ge-
ometrically finite and torsionfree. Simple examples of almost geometrically
finite groups are finite groups (acting on a point) and finitely generated
abelian groups (project to the quotient by the torsion subgroup and act
on Rn by translations). By work of Borel and Serre [1], many arithmetic
groups including GL(n,Z) are almost geometrically finite. Finitely gener-
ated virtually free groups are another interesting example; by [19] these are
exactly the groups that act simplicially on trees with finite quotient and
finite vertex stabilizers. In our context, mapping class groups of 2-manifolds
are one of the most important examples:

Lemma 3.2. Let B be a 2-manifold, not necessarily connected, of finite
type with compact boundary, and let b be a boundary pattern for B. Then
H(B, b) is almost geometrically finite.

Proof. Write b = a ∪ c where the elements of a are arcs and those of c are
circles. Let B0 be obtained by removing all boundary circles that do not
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contain an element of a. Let P ′ consist of one point from the interior of each
element of a and let P ′′ consist of the points that are the intersection of two
different elements of a. It is not difficult to see that H(B, b) is isomorphic
to a subgroup of finite index in H(B0, P

′ ∪ P ′′). Thus we are reduced to
proving the lemma for H(B,P ), where P is a finite subset of ∂B that meets
every boundary component of B.

We will first prove the lemma under the assumption that B is connected.
Suppose first that χ(B) ≥ 0. For S2 with 0, 1, or 2 punctures, RP2 with
0 or 1 puncture, D2 with 0 or 1 puncture, the Möbius band, or the Klein
bottle, H(B,P ) is finite, for the annulus it is virtually infinite cyclic, and
for the torus it is GL(2,Z). From now on we assume that χ(B) < 0.

Suppose first that P is empty, so B is either closed or is a punctured closed
surface. If B is closed and orientable, then H(B) acts properly discontin-
uously on Teichmüller space. (Classically, from the viewpoint of conformal
surfaces, only the action of the orientation-preserving classes was consid-
ered, but using the hyperbolic viewpoint as in [5], H(B) acts as well.) This
action extends to the Harvey bordification [10, 11] of Teichmüller space,
on which it acts smoothly with compact quotient. Lifting a smooth trian-
gulation gives the necessary simplicial structure to conclude that H(B) is
almost geometrically finite. If B is orientable and punctured, then H(B)
acts on the contractible complex Y 0 constructed by Harer [8, 9] with com-
pact quotient. The analogues of these for nonorientable surfaces are given in
Section 2 of [26]. Suppose now that P is nonempty. Lemma 1.2 of [14] uses
[13] to construct a contractible complex on which H(B,P ) acts properly
discontinuously.

We now assume that B is not connected. Let B1, . . . , Bn be the com-
ponents of B, and let Pi = P ∩ Bi. Assume first that each (Bi, Pi) is dif-
feomorphic to (B1, P1). From the connected case, there is a contractible
simplicial complex L such that H(B1, P1) acts properly discontinuously on
L. Let Li be a copy of L on which H(Bi, Pi) acts. Fix diffeomorphisms
fi : (B1, P1) → (Bi, Pi) and equivariant simplicial isomorphisms φi : L1 →
Li. By means of these identifications, if 〈h〉 ∈ H(B,P ), and h carries
Bi to Bj , we may regard 〈h〉 as carrying Li to Lj . For let hi : Bi → Bj

be the restriction of h to Bi. Then let hi send Li to Lj by φjφ
−1
i ◦

〈fif
−1
j hi〉. Now we define an action of H(B,P ) on

∏n
i=1 Li. Given h,

define a permutation σ by h(Bi) = Bσ(i). Then, put 〈h〉(x1, . . . , xn) =
(〈hσ−1(1)〉(xσ−1(1)), . . . , 〈hσ−1(n)〉(xσ−1(n))). This action is properly discon-
tinuous with compact quotient, since the finite index subgroup of H(B,P )
that preserves each component acts as a product of properly discontinuous
actions each with compact quotient.

For the general case, partition the components of (B,P ) into maximal
subsets such that each subset consists of pairwise diffeomorphic components.
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Let F1, . . . , Fm be the unions of the components in the subsets, and let
Qi = P ∩ Fi. By the previous paragraph, each H(Fi, Qi) acts properly
discontinuously on a contractible complex Ki. Since H(B,P ) is the direct
product of the H(Fi, Qi), it acts properly discontinuously on the product of
the Ki. �

A useful observation is that if there is a surjective homomorphism Q1 →
Q2 with finite kernel, and Q2 is almost geometrically finite, then Q1 is
also almost geometrically finite. In our proof that mapping class groups of
Haken 3-manifolds are almost geometrically finite, we will use the following
generalization of this observation, which is a direct consequence of a theorem
of Kamishima, Lee, and Raymond [18]:

Proposition 3.3. Let 1 → V → G → Q → 1 be an exact sequence of
groups, such that V contains a finitely generated abelian group of finite index
and Q is almost geometrically finite. Then G is almost geometrically finite.

Proof. Consider a subgroup Zn of finite index in V . Under conjugation by
elements of G, its orbit consists of finitely many subgroups, whose inter-
section is a normal subgroup isomorphic to Zn. Let Q′ be the quotient of
G by this subgroup. Since Q′ maps onto Q with finite kernel, it is almost
geometrically finite. Therefore we may assume that V itself is free abelian
of rank n. From Proposition 2.2 of [18], there exists a Seifert construction
for this data, that is, a properly discontinuous action of G on Rn×L, where
L is any contractible simplicial complex on which Q acts properly discon-
tinuously. The action takes Rn-fibers (over points of L) to Rn-fibers, and
the quotient of each Rn-fiber is a quotient of a compact flat manifold by
a finite group action. Therefore (Rn × L)/G is compact, so G is almost
geometrically finite. �

4. Laudenbach’s Theorem.

Throughout this section let M be a Haken 3-manifold, M 6= D3, and let
G 6= S2 be a compact connected properly imbedded incompressible surface
in M . Let m0 be a basepoint in G. If G is not closed, choose m0 in ∂G.
Denote by Imb0(G, M) the space of smooth imbeddings of G in M that take
m0 to m0 and ∂G to ∂G. The inclusion map of G into M is understood to
be the basepoint of Imb0(G, M). The following result is proven on pp. 49-62
of [22].

Theorem 4.1. π1(Imb0(G, M))={1}.
From this we deduce the result we will need.

Theorem 4.2. Assume that G is not an annulus in a solid torus or a boun-
dary-parallel disc. Let f and g be diffeomorphisms of M which preserve G
and fix m0. Let H be an isotopy from f to g, whose trace at m0 lies in
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π1(G, m0). Then H is deformable relative to M × ∂I to an isotopy through
diffeomorphisms that preserve G. Moreover,

(i) If H is relative to ∂G, then the new isotopy may be chosen to be relative
to ∂G.

(ii) If H is relative to ∂M , then the new isotopy may be chosen to be
relative to ∂M .

(iii) If H is relative to ∂M , and f and g agree on G, then the new isotopy
may be chosen to be relative to G ∪ ∂M .

(iv) If F is an incompressible surface (not necessarily connected) in M ,
disjoint from G, such that H preserves F , then the new isotopy may
be chosen to agree with H on F .

Note that by virtue of part (iv), the theorem applies to G that are not
connected, provided that the trace condition is satisfied for a basepoint in
each component of G.

Proof. Replacing f by g−1f , we may assume that g is the identity. If ∂G 6= ∅
and the hypothesis of one of cases (i), (ii), or (iii) holds, then H is already an
isotopy relative to m0. Otherwise, we may change f by isotopy in a neigh-
borhood of G so that the trace of H at m0 is trivial, and then (using [24])
so that H is an isotopy relative to m0. Consequently H induces the identity
automorphism on π1(M,m0).

Let f1 be the restriction of f to G. We will first reduce to the situation
when f1 is the identity. In case (iii), this already holds. In cases (i) and
(ii), H is an isotopy relative to ∂G or ∂M . As in Lemma 7.3 of [34], f1 is
homotopic to the identity preserving ∂G, so f1 is isotopic to the identity.
Choose a basepoint in each component of ∂G. Suppose that γ is an arc
in G connecting two of them. The restriction of H to γ gives an isotopy
in M from f(γ) to γ, and since π2(M,G) is trivial (because π2(M) = 0
and π1(G) → π1(M) is injective), f(γ) is homotopic and hence isotopic
to γ in G. Thus by changing f by isotopy preserving G and relative to
∂M , we may assume that f1 preserves a set of arcs (disjoint except for their
endpoints) connecting the basepoints in the boundary circles. This, together
with the fact that f1 is isotopic to the identity relative to m0, implies that
f1 is isotopic to the identity relative to ∂G. After changing f by isotopy
preserving G and relative to ∂M , we may assume that f1 is the identity.
Finally, suppose that none of (i), (ii), or (iii) holds. The trace condition
implies that f induces the identity automorphism on π1(M,m0). Since
f(G) = G, the restriction f1 of f to G induces the identity automorphism
on π1(G, m0). Therefore f1 is homotopic to the identity. Any orientation-
preserving diffeomorphism of a compact 2-manifold that is homotopic to
the identity is isotopic to the identity, unless G is a disc or annulus and the
diffeomorphism is orientation-reversing. If f1 is orientation-reversing, then
f must reverse the sides of G. If G were a disc, then since f induces the
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identity automorphism on π1(M,m0), M would have to be a 3-ball, so G
would be a boundary-parallel disc. If G were an annulus, then for the same
reason M would have to be a solid torus, also excluded. So f1 is isotopic to
the identity, and since f1 induces the identity automorphism on π1(G, m0),
we may assume that the isotopy preserves m0. Extending such an isotopy
of f1 to an isotopy of f , we may assume that f1 is the identity on G.

Next we need to achieve that H preserves ∂G. In (i), (ii), or (iii), no
alteration is needed. Otherwise, let C be the component of ∂G that contains
m0, let B be the component of ∂M that contains C, and consider the trace
τ of H|B at m0. Note that C is not contractible in B, since G is not a
boundary-parallel disc. Suppose that τ is not trivial in π1(B). Suppose
for contradiction that τ does not lie in π1(C). Since f is the identity on
C, τ lies in the normalizer of π1(C) in π1(B). Therefore B is a torus,
and since τ is essential in π1(B) and trivial in π1(M), M must be a solid
torus. Since τ is not in π1(C), C is not contractible in π1(M), so G is an
annulus, the case excluded by hypothesis. So we may assume that τ lies in
π1(C). Since τ is trivial in π1(M), G must be a disc. There is an isotopy
of M that preserves G and moves m0 around C. Juxtaposing H with the
correct multiple of this isotopy, we may assume that τ is trivial in π1(B).
By [6], π1(Imb((C,m0), (B,m0))) is trivial unless B is a 2-sphere, a case
excluded since G is not a boundary-parallel disc, so H may be deformed in
a neighborhood of B so that it preserves C at each level. Repeating for the
other components of ∂G, we may assume that ∂G is preserved at each level
of H.

The restriction jt of H to G × I defines a loop in π1(Imb0(G, M)). Ap-
plying Theorem 4.1, this loop is contractible, so there exists a 2-parameter
family jt,s, 0 ≤ s, t ≤ 1, such that jt,0 = jt, and jt,1, j0,s, and j1,s are the
inclusions for each t and s. Define Jt,0 =Ht, J0,s =f , and J1,s =1M . By the
isotopy extension theorem (i.e. the fact that Diff0(M) → Imb0(G, M) is a
Serre fibration) this extends to a 2-parameter family Jt,s of diffeomorphisms
of M . Letting Kt =Jt,1, we have an isotopy from f to 1M relative to G, and
the existence of an isotopy preserving G together with statements (i), (ii),
and (iii) are established.

For (iv), notice that all of our alterations to H may be performed so as
not to change H outside a neighborhood of G. Therefore if F is another
incompressible surface (not necessarily connected) which is preserved by H,
we cut along F and apply the previous argument to obtain a new isotopy
agreeing with H on F . �

There is a 2-dimensional analogue of Theorem 4.2.

Theorem 4.3. Let G 6= S2 be a surface and k an arc or circle essentially
imbedded in G. If k is a circle, let m0 be a basepoint in k. Let f and g be
diffeomorphisms of G which preserve G. Let H be an isotopy from f to g
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through diffeomorphisms fixing m0, if k is a circle, or preserving ∂k, if k
is an arc. Then H is deformable relative to G × ∂I to an isotopy through
diffeomorphisms that preserve k. Moreover,

(i) If H is relative to ∂M , then the new isotopy may be chosen to be
relative to ∂M .

(ii) If H is relative to ∂M , and f and g agree on G, then the new isotopy
may be chosen to be relative to G ∪ ∂M .

(iii) If ` is a 1-manifold in G, disjoint from k, such that H preserves `,
then the new isotopy may be chosen to agree with H on `.

The proof is analogous to the proof of Theorem 4.2, but much simpler.

5. Exceptional Seifert-fibered 3-manifolds.

In the next section we will give a general treatment of the mapping class
groups of Seifert-fibered Haken 3-manifolds, but there are a few exceptional
cases to which it will not apply. We address those cases in the present
section. The manifolds (all assumed to be admissibly fibered with complete
boundary pattern) are:

(E1) The S1-bundle over the annulus, with boundary pattern ∅.
(E2) The S1-bundle over the Möbius band, with boundary pattern ∅.
(E3) An S1-bundle over the torus.
(E4) An S1-bundle over the Klein bottle.
(E5) The Hantzsche-Wendt manifold, which is the closed flat 3-manifold

with Seifert invariants {−1; (n2, 1); (2, 1), (2, 1)} (see [29] pp. 133, 138,
[3] pp. 478-481, [7, 33, 36]).

(E6) A Haken manifold which fibers over S2 with three exceptional orbits.

Proposition 5.1. Let (Σ, σ) be admissibly fibered as a Seifert 3-manifold of
one of the exceptional types (E1)-(E4). Then H(Σ, σ) is almost geometrically
finite.

Proof. For (E1), from Proposition 3.4.1 of [26] we have H(Σ, σ) isomorphic
to Z/2×GL(2,Z) (the Z/2 factor is generated by reflection in the I-fibers
of the I-bundle structure). So H(Σ, σ) is virtually free. For (E2), H(Σ, σ) is
finite, by Proposition 3.4.2 of [26]. For (E3), if the Euler class is zero then
Σ is the 3-torus, with H(Σ) ∼= Out(π1(Σ)) ∼= GL(3,Z). If the Euler class
is n, then π1(Σ) ∼= 〈x, y, t | [x, t] = [y, t] = 1, [x, y] = tn〉. The center is Z
generated by t, and the quotient of π1(Σ) by its center is Z × Z generated
by the images of x and y. Sending Out(π1(Σ)) to Aut(Z×Z) = GL(2,Z) is
surjective and splits (the three automorphisms determined by sending (1) x
to xy, y to y, and t to t, (2) x to x, y to xy, and t to t, and (3) x to y,
y to x, and t to t−1 define the splitting). Elements of the kernel are the
automorphisms φ(i, j) that send x to xti, y to ytj , and t to t. Conjugation
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by x equals φ(0, n) and conjugation by y equals φ(−n, 0), so the kernel of
Out(π1(Σ)) → GL(2,Z) is Z/n × Z/n, showing that H(Σ) ∼= Out(π1(Σ))
is almost geometrically finite. The manifolds of type (E4) are analyzed in
Proposition 3.4.4 of [26]. If the Euler class is zero then there is a homomor-
phism from Out(π1(M)) to PGL(2,Z) with finite kernel. Since PSL(2,Z) is
virtually free, it is almost geometrically finite. If the Euler class is nonzero,
Out(π1(Σ)) is finite. �

Proposition 5.2. Let M be one of the exceptional types (E5)-(E6). Then
H(M) is finite.

Proof. For (E5), it is from [3] (although the correct structure of the group
was later given in [36]). The lemma in Section 3.4 of [26] gives case (E6). �

6. Fibered 3-manifolds.

We first treat the case of I-bundles, over surfaces which are not necessarily
connected.

Lemma 6.1. Suppose that (Σ, σ) is admissibly I-fibered over the compact
2-manifold (B, b). Let p : Σ → B be the projection. Then H(Σ, σ) is iso-
morphic to a semidirect product F ◦ H(B, b) where F is a direct sum of
copies of Z/2, one for each component of Σ, and the action of an element
of H(B, b) on F is to permute the copies of Z/2 exactly as it permutes the
corresponding components of Σ.

Proof. Let i : (B, b) → (Σ, σ) be the 0-section of the I-bundle (where I is
regarded as [−1, 1] and the structure group is reduced to Z/2 generated
by reflection in I, and the twisting is given by the orientation homomor-
phism). For each component of Σ there is the involution given by reflection
in the I-fibers, and this is not admissibly isotopic to the identity since it is
orientation-reversing. These give the generators of F .

Define j : H(B, b) → H(Σ, σ) by extending diffeomorphisms on i(B) to Σ
linearly in each fiber, choosing the unique way to do this that is orientation-
preserving on Σ. To see that this is injective, let 〈h〉 be an element ofH(B, b)
such that j(〈h〉) is trivial in H(Σ, σ). Then h is orientation-preserving, since
otherwise the restriction of j(h) of the lid or lids of Σ cannot be isotopic
to the identity. Projecting an admissible isotopy from j(h) to 1Σ down
to i(B) gives an admissible homotopy from h to 1B. This implies that h is
admissibly isotopic to 1B (see for example Lemma 2.19 of [2]). Corollary 5.9
of [17] shows that the image of j is the entire group of orientation-preserving
mapping elements of H(Σ, σ). Then, it is clear that the subgroups F and
j(H(Σ, σ)) generate H(Σ, σ), and F is normal, and the lemma follows. �

Throughout the remainder of this section, (Σ, σ) will denote a Haken
3-manifold with complete and useful boundary pattern, which admits an
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admissible Seifert fibering over (B, b). A diffeomorphism of Σ is called fiber-
preserving if it carries each fiber Σ to a fiber of Σ, and is called vertical if
it takes each fiber to itself. By Hf (Σ, σ) we indicate the mapping classes of
fiber-preserving diffeomorphisms (that is, fiber-preserving diffeomorphisms
modulo isotopy through fiber-preserving diffeomorphisms). There is a nat-
ural homomorphism Hf (Σ, σ) → H(Σ, σ).

Theorem 6.2. If (Σ, σ) is not one of (E1)-(E6), then Hf (Σ, σ) → H(Σ, σ)
is an isomorphism.

Proof. Provided that (Σ, σ) is not an exception (E1)-(E5), [33] or Theo-
rem 8.1.7 of [29] shows that the homomorphism is surjective. If it is not
an exception (E6), then it has a vertical incompressible surface, and the
argument of p. 85-86 of [34] shows that it is injective. �

Define H0(Σ, σ) to be the elements of H(Σ, σ) that contain a vertical
diffeomorphism. As in Lemma 25.2 of [17] (see also Lemma 3.5.3 of [26]),
we have the following calculation.

Proposition 6.3. Let Σ be Seifert-fibered over (B, b), with no component
of Σ an exceptional case (E1)-(E6). Then H0

+(Σ, σ) ∼= H1(B, |b|).

The rough idea behind this result is that the generators of H0
+(Σ, σ) are

Dehn twists (see [17] or Section 3.3 of [26] for a definition of Dehn twist)
about vertical tori and annuli, which obey the same homological relations as
their image circles and arcs in B. When B is nonorientable, there is another
type of generator supported in a neighborhood of a vertical Klein bottle; its
square is a Dehn twist about the boundary of a regular neighborhood of the
Klein bottle.

Let E be the exceptional points of B, that is, the images of the excep-
tional orbits of Σ. This is a finite subset of the interior of B. Denote by
ρ : H(Σ, σ) → H(B − E, b) the homomorphism induced by projection of
fiber-preserving homomorphisms to the base surface. Define H0(B − E, b)
to be the subgroup of H(B − E, b) consisting of the classes 〈f〉 such that
f is admissibly isotopic to a map which is the identity on |b|= ∂B, and f
permutes the punctures of B trivially. Since b consists of arcs and circles
(and since B is of finite type), H0(B−E, b) has finite index in H(B−E, b).

Proposition 6.4. The image of ρ : Hf (Σ, σ) → H(B − E, b) contains
H0(B − E, b), hence has finite index in H(B − E, b). If ∂B 6= ∅, then
there exists a homomorphism s : H0(B − E, b) → Hf (Σ, σ) such that ρs is
the identity, and such that each s(〈f〉) has a representative which is the
identity on ∂Σ.

Proof. The proposition follows from the special case when B is connected.
The connected case appears a Proposition 25.3 of [17] and Theorem 3.5.2 of
[26]. The splitting is constructed using a cross-section i : B − E → Σ − Ẽ,
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where Ẽ is the union of the exceptional fibers. For 〈f〉 ∈ H0(B −E, b), one
may assume that f is the identity on ∂B, so (since s(f) is always selected
to be orientation-preserving) that s(f) is the identity on i(∂B) and hence
on ∂Σ. �

Propositions 6.3 and 6.4, combined with Lemma 3.2, yield immediately
the following:

Theorem 6.5. Let (Σ, σ) be an admissibly Seifert-fibered Haken 3-manifold
with complete and useful boundary pattern σ. Assume that (Σ, σ) is not one
of the exceptional manifolds (E1)-(E6). Then there is an exact sequence

1 −→ V −→ H(Σ, σ) −→ Q −→ 1

where V has a finitely generated abelian subgroup of finite index, and Q is
almost geometrically finite.

Applying Proposition 3.3, we have:

Corollary 6.6. Let (Σ, σ) be an admissibly Seifert-fibered Haken 3-manifold
with complete and useful boundary pattern σ. Assume that (Σ, σ) is not one
of the exceptional manifolds (E1)-(E6). Then H(Σ, σ) is almost geometri-
cally finite.

7. Haken manifolds.

Throughout this section we assume that (M,m) is a Haken manifold with a
complete and useful boundary pattern. We allow the possibility that ∂M is
empty. Denote by Σ the characteristic submanifold of (M,m). Let σ be the
proper boundary pattern on Σ. The following result was proved in [26], but
we present a less abbreviated proof here. A reference for the Sol geometry
is Theorem 5.5 of [31].

Proposition 7.1. Suppose that M is not a torus bundle over the circle that
admits a Sol structure. Then H(M,Σ,m) → H(M,m) is an isomorphism.

Proof. Since the characteristic submanifold is unique up to admissible iso-
topy, the homomorphism is surjective. For injectivity, let 〈f〉 ∈ H(M,Σ,m)
and suppose that H : M × I → M is an admissible isotopy from f to 1M .
We must find an isotopy that preserves the frontier of Σ.

Let F be a component of the frontier of Σ. We claim that f(F ) = F .
Suppose not. The restriction of H to F × I is an admissible map from an
I-bundle or Seifert fiber space into (M,m), so by Proposition 13.1 of [17],
it is admissibly homotopic into Σ. That is, two components of the frontier
of Σ are admissibly homotopic in Σ. By Proposition 19.1 of [17], these
components must be admissibly parallel in Σ, that is, the component of Σ
containing F is of the form F × I and f interchanges of the components of
its boundary. Therefore f is isotopic to a diffeomorphism that preserves F
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and interchanges its sides. Since f is isotopic to the identity, Lemma 7.4
of [34] shows that this is impossible.

By isotopy preserving Σ, we may assume that f fixes a basepoint m0 in
the interior of F . We claim that the trace of H at m0 is in the subgroup
π1(F,m0). When ∂M is nonempty, Corollary 18.2 of [17] applies to prove
the claim. When ∂M is empty, the argument in Lemma 18.1 of [17] shows
that if the claim is false then the components of Σ and M − Σ adjacent to
F are each diffeomorphic to the product of the torus and an interval. By
maximality of Σ, this is only possible when M is a torus bundle over the
circle which admits a Sol structure, which is excluded by hypothesis. This
establishes the claim.

Since F is a square, annulus, or torus, there is an isotopy on F from the
identity to the identity whose trace is equal to the trace of H. So it is possible
to change f by an admissible isotopy with support in a neighborhood of F ,
so that the trace of the isotopy from f to the identity of M is trivial. Then
f must induces the identity automorphism on π1(M,m0). Since f preserves
F , it also induces the identity isomorphism on π1(F,m0).

Let f1 be the restriction of f to F . We will show that f1 preserves each
element of the boundary pattern of F . If F is a torus, there is nothing to
prove. Suppose F is an annulus, so that the boundary pattern consists of
the two boundary circles. If f1 interchanges them, then since f1 induces the
identity automorphism it must be orientation-reversing. But f preserves the
sides of F (because f preserves Σ, or alternatively using Lemma 7.4 of [34]
again), so f would be orientation-reversing and could not be isotopic to the
identity. Suppose that F is a square. Its boundary pattern consists of the
four edges. Suppose for contradiction that f1 moves some edge to a different
edge. Since f is admissibly homotopic to the identity, it must preserve each
element of m. Since adjacent edges cannot lie in the same element of m,
f1 must interchange a pair of opposite edges. If it interchanges one pair
of opposite edges, but preserves each of the other two edges, then f1 is
orientation-reversing, a contradiction as in the case when F is an annulus.
Therefore f must interchange both pairs of opposite edges. Since F is a
square, the component of Σ containing F must be an I-bundle, and since
opposite edges of F lie in the same component of the boundary pattern,
one pair lies in the lid and the other pair are joined by a square S which
is contained in an element F ′ of m. Now the I-bundle cannot be fibered
over the disc, because since F and S are sides which meet in two fibers, the
I-bundle would be fibered over a 2-faced disc and would not be essentially
imbedded. This is impossible since it is a component of Σ. So the center
circle of the annulus F ∪ S is essential in M . Since f interchanges opposite
edges of F , it must send this element of π1(M) to its negative, which is
impossible since f induces the identity automorphism on π1(M,m0).
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Fix a component F of the frontier of Σ. Suppose F is a torus. Since the
trace of the isotopy at m0 is trivial, Theorem 4.2 applies to show that the
isotopy from f to the identity may be deformed to preserve F at each stage.

Suppose F is an annulus. Consider a basepoint b0 in a boundary circle
C of F . Since f1 is the identity on F , and the trace of H at m0 is trivial,
the trace of H at b0 is also trivial in π1(M, b0). Since the elements of m are
incompressible, the trace at b0 is trivial in π1(G) where G is the element
of m that contains b0. Applying Theorem 4.3, we may deform the isotopy
admissibly in a neighborhood of ∂M so that C preserved at each level of the
isotopy. Repeating, we assume that all of ∂F is preserved, and then apply
Theorem 4.2.

Now suppose F is a square. Let b0 be a corner where two edges meet,
so b0 ∈ G1 ∩ G2 for two elements of the boundary pattern. Again, the
trace of H at b0 is trivial in π1(G1) and π1(G2). If it is not trivial in the
fundamental group of the component k of G1∩G2 that contains it, then that
component is a circle and G1 and G2 must be discs. Then M would be a 3-
ball with boundary pattern {G1, G2} and M could not contain the essentially
imbedded square F . We conclude that the trace of H at b0 is trivial in
π1(k), so we may assume that H preserves b0. Repeating, we assume that
H preserves each of the four corners of F . Now using Theorem 4.3 we may
assume that H preserves each of the four edges of F , and apply Theorem 4.2
to assume that H preserves F .

Repeating this for each component of the frontier of Σ, not disturbing
those already adjusted, shows that f was the trivial element of H(M,Σ,m).

�

From now until when we reach Theorem 7.7, we assume that M 6= Σ. Let
H =M − Σ, and let h be the proper boundary pattern on H. Define RH to
be the image of the restriction H(M,Σ,m) → H(H,h). From Lemma 4.2.1
of [26] we have the following fact.

Lemma 7.2. RH is finite.

Actually, according to Theorem 2.1, H(Hi, hi) is itself finite for all com-
ponents of (H,h) except the case when (Hi, hi) = (T 2 × I, ∅). For these a
special argument is given in [26]. The idea is that on the adjacent Seifert-
fibered component(s) of Σ, any diffeomorphism must be fiber-preserving up
to isotopy. The fibers are linearly independent in π1(T 2 × I) ∼= Z× Z, and
only ±I can preserve two linearly independent elements of Z× Z, allowing
at most two possibilities for the restriction to H(Hi, hi).

Since M 6= Σ, the components of Σ, with their proper boundary patterns,
are of four kinds.

(i) The components which can be admissibly fibered as I-bundles with
their lids in ∂M . Their union will be denoted by I.
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(ii) Those that are diffeomorphic to S1 × S1 × I with boundary pattern
φ, but are not as in (i) (that is, exceptional case (E1)). These must
be Seifert-fibered (since as I-bundles they could not have both lids in
∂M), and must have frontier equal to one or both of their boundary
components. Their union will be denoted by T .

(iii) Those that are diffeomorphic to the twisted I-bundle over the Klein
bottle with boundary pattern φ (that is, exceptional case (E2)). Their
union will be denoted by K.

(iv) The components that are not as in (i), (ii), or (iii). These are Seifert-
fibered, since they are not as in (i), and their fiberings are unique up
to admissible isotopy, since they are not as in (ii) or (iii). Their union
will be denoted by S.

The proper boundary pattern of I is denoted i, and similarly for K, T ,
and S. Clearly each of I, K, T , and S is preserved by each element of
H(M,Σ,m). Let RT be the image of the restriction H(M,Σ,m) → H(T, t).

Lemma 7.3. RT is finite.

Proof. Consider the composition

H(M,Σ,m) → RT → H(Fr(T )),

where Fr(T ) is the frontier. Since this equals the composition

H(M,Σ,m) → H(H, s) → H(Fr(T )),

and H(M,Σ,m) → H(H, s) has finite image by Lemma 7.2, it follows that
RT → H(Fr(T )) has finite image. But it is also injective, since any diffeo-
morphism of T isotopic to the identity on a boundary component is isotopic
to the identity. Therefore RT is finite. �

Lemma 7.4. H(K, k) is finite.

Proof. Since (K, k) fibers admissibly as an I-bundle, k=∅. By Lemma 6.1, if
X is the twisted I-bundle over the Klein bottle Y , we have H(X, ∅) ∼= H(Y ),
and by [23] the latter is Z/2×Z/2. Since K has finitely many components,
H(K, k) is also finite. �

Consider the restriction homomorphism

H(M,Σ,m) → RH ×RT ×H(K, k)×H(I, i)×H(S, s).

Let (B, b) be the quotient surface of (S, s), and let E be the image of the
exceptional fibers. By Theorem 6.2 and Proposition 6.4, there is a homo-
morphism H(S, s) → H(B − E, b), and composing with this in the H(S, s)
factor, we obtain a homomorphism

Ψ: H(M,Σ,m) → RH ×RT ×H(K, k)×H(I, i)×H(B − E, b).

Proposition 7.5. The image of Ψ has finite index.
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Proof. By Lemmas 7.2, 7.3, and 7.4, we need only examine H(I, i) and
H(B − E, b). Let H0(I, i) be the subgroup of H(I, i) consisting of the ele-
ments containing representatives which are the identity on the frontier of I,
and recall the subgroup H0(B −E, b) of H(B −E, b) defined shortly before
Proposition 6.4. Since the mapping class groups of the square, annulus, arc,
and circle are finite, these are finite index subgroups. It suffices to show
that H0(I, i)×H0(B − E, b) is contained in the image of Ψ.

Proposition 6.4 shows that the image of the homomorphism ρ : Hf (S, s) →
H(B − E, b) contains H0(B − E, b), and that there is a homomorphism
s : H0(B − E, b) → Hf (S, s) with ρs equal to the identity. Moreover, each
s(〈h〉) can be represented by a diffeomorphism which is the identity on ∂S.
So given an element in H0(I, i) × H0(B − E, b), it can be represented on
I ∪ S by a diffeomorphism which is the identity on the frontier of I ∪ S.
Extending this to M using the identity map on M − (I ∪ S) produces an
element of H(M,Σ,m) that Ψ carries to the given element. �

Define K(M,Σ,m) to be the kernel of Ψ.

Proposition 7.6. K(M,Σ,m) is finitely generated and abelian.

Proof. Let g be a vertical diffeomorphism of S which is isotopic to the iden-
tity on Fr(S). Each such g extends to a diffeomorphism of M which is the
identity outside a regular neighborhood of S. The image of K(M,Σ,m)
in H(S, s) is contained in the subgroup of H0

+(S, s) consisting of elements
representable by maps which are isotopic to the identity on the frontier of
S. By Proposition 6.3, H0

+(S, s) is finitely generated and abelian, hence so
is the image of K(M,Σ,m). Choose a set of generators for the image, and
for each an extension to M . Let X1 be the resulting subset of H(M,Σ,m).
These commute with each other and with any diffeomorphism supported
in a regular neighborhood of Fr(H). Choose a set of generators X2 (Dehn
twists about components of Fr(H)) for the elements of H(M,Σ,m) repre-
sentable by diffeomorphisms supported in a regular neighborhood of Fr(H).
The set X = X1 ∪ X2 is a finite set of commuting elements, and we claim
that it generates K(M,Σ,m). Given any element of K(M,Σ,m), we may
compose this element with elements in X1 to assume that its restriction to S
is isotopic to the identity. But all elements of K(M,Σ,m) are isotopic to the
identity when restricted to each of I, K, T , and H, so when the restriction
to S is also isotopic to the identity, the element is a product of elements in
X2. �

Theorem 7.7. Let M be a Haken manifold and m a boundary pattern on
M whose completion is useful. Then H(M,m) is virtually torsionfree and
almost geometrically finite.
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Proof. If M is a torus bundle over S1 that admits a Sol structure, then by
Proposition 4.1.2 of [26], H(M) is finite. Otherwise, by Proposition 7.1, we
may work instead with H(M,Σ,m).

First we combine previous results to prove that H(M,m) is almost ge-
ometrically finite. If M = Σ, then Lemma 6.1 and Corollary 6.6 apply.
Suppose that M 6= Σ. By Lemma 6.1, H(I, i) is almost geometrically finite.
By Proposition 7.5, the image of Ψ is almost geometrically finite. By Propo-
sition 7.6, the kernel of Ψ is finitely generated abelian. By Proposition 3.3,
H(M,m) is almost geometrically finite.

It was proven in [26] that H(M,m) is virtually torsionfree, but we give
here a proof that is much simpler.

If M =Σ, then Lemma 3.5.9 of [26] completes the proof, so we assume that
M 6= Σ. Let (Q, q) be obtained as follows. Let (B1, b1) be the base surface
of (I, i), and let (B2, b2) be the base surface of (S, s), and E the image of the
exceptional fibers. Remove each component (X, x) from (B1, b1) ∪ (B2, b2)
for which H(X − E, x) is finite, and call the remainder (Q, q). Let

π : RH ×RT ×H(K, k)×H(I, i)×H(B2 − E, b2) −→ H(Q− E, q)

be the projection, and note that π has finite kernel. Put Ψ′ = πΨ and
V = (Ψ′)−1(F ) where F is the subgroup of H(I, i) from Lemma 6.1. Then
we have an exact sequence

1 → V −→ H(M,m) Ψ′
−→H(Q− E, q)

where V is virtually abelian. Let G(Q − E, q) denote the subgroup of
H(Q − E, q) consisting of the elements that preserve each element of q

and each point of intersection of two elements of q, and let G0(Q − E, q)
be the corresponding subgroup of H0(Q − E, q). Let H′(M,m) denote the
subgroup (Ψ′)−1(G0(Q − E, q)); as in Proposition 6.4, there is a splitting
s : G0(Q− E, q) → H′(M,m) so we have a semidirect product

H′(M,m)=V ◦ G0(Q− E, q) .

Let W =H1(B1)×V , and consider the holomorph of W , W◦Aut(W ), which is
defined to be the semidirect product in which Aut(W ) acts naturally on W .
We claim that Aut(W ) is virtually torsionfree. Write W as W1 ◦ T where
W1 is free abelian and T is finitely generated. Since T is characteristic,
there is a homomorphism Aut(W ) → Aut(W1). It is easily checked that
the kernel is a finite group of the form Hom(W1, T ) ◦Aut(T ), and moreover
it splits. Since Aut(W1) ∼= GL(n,Z) is virtually torsionfree, it follows that
Aut(W ) is virtually torsionfree. Since W is also virtually torsionfree, and W
is finitely generated, Lemma 6.8 of [28] implies that W ◦Aut(W ) is virtually
torsionfree.
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The action in the semidirect product V ◦ G0(Q− E, q) together with the
natural action of H0(B1) on H1(B1) defines a homomorphism from G0(Q−
E, q) to W ◦ Aut(W ). Since the latter is virtually torsionfree, it suffices to
show that the kernel is torsionfree. The kernel is contained in the subgroup
of G0(Q − E, q) consisting of elements that act trivially on H1(Q − E).
Since we have removed all disc components from Q − E, elements of the
kernel preserve each component of Q−E, so we may assume that Q−E is
connected. Let P consist of one point from each arc of q together with all
points that are intersections of two distinct arcs of q. It is easy to see that
G0(Q−E, q) is isomorphic to a subgroup of finite index in H(Q−E rel P ).
If P is empty, then it is well-known that the subgroup of H(Q−E) inducing
the identity on homology is torsionfree (see for example [4]). Suppose P is
not empty. Let Diff1(Q−E) denote the subgroup of Diff(Q−E) consisting
of the elements which induce the identity on H1(Q− E) and preserve each
component of ∂(Q− E). There is a fibration

Diff1(Q− E rel P ) → Diff1(Q− E) → imb(P, ∂(Q− E))

where imb(P, ∂(Q−E)) is the connected component of the inclusion in the
space of imbeddings Imb(P, ∂(Q− E)). Clearly imb(P, ∂(Q− E)) ∼= (S1)k,
where k is the number of boundary circles of Q − E that contain points of
P . From the homotopy exact sequence of this fibration, we have an exact
sequence

0 → π1(Diff1(Q− E)) → Zk → H1(Q− E rel P ) → H1(Q− E) → 1

where H1(Q − E rel P ) = π0(Diff1(Q − E rel P )) and H1(Q − E) =
π0(Diff1(Q − E)). Now π1(Diff1(Q − E)) is nontrivial only when Q − E is
an annulus and k=2 (a disc, a Möbius band, or an annulus with k=1 have
already been excluded by the definition of Q−E), and in this case the genera-
tor of π1(Diff1(Q−E)) is carried to an element of the form (±1,±1) ∈ Z×Z.
Therefore we have an exact sequence

0 → Z` → H1(Q− E rel P ) → H1(Q− E) → 1.

We have already seen that H1(Q−E) is torsionfree, and therefore H1(Q−
E rel P ) is torsionfree. �

To deduce some corollaries, it is convenient to introduce a general tech-
nique for extending results about H(M,m) to relative mapping class groups.
Assume that m is complete. Suppose m1 ⊂ m. Take a fine triangulation of
|m1|, which includes as vertices the points of ∂|m1| that are intersections of
three elements of m, and let m2 be the complete boundary pattern on M
consisting of the elements of m −m1 and the 2-cells dual to the triangula-
tion of |m1|. Choose the triangulation so that at every vertex in |m1|, at
least four triangles meet (for example, take the barycentric subdivision of
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the triangulation of |m1| without introducing the barycenters of 1-simplices
that lie in the boundary). Then, each dual 2-cell has at least four sides.
This ensures the following.

(i) If m is useful, then m2 is useful.
(ii) If m − m1 consists of the components of ∂M − |m1|, and these com-

ponents are incompressible, then m2 is useful.
The important property of m2 is the following.

Proposition 7.8. H(M,m rel |m1|) is isomorphic to a subgroup of finite
index in H(M,m2).

Proof. Consider the natural homomorphism from H(M,m rel |m1|) to
H(M,m2). We claim this is injective and has image of finite index. Suppose
f and g are the identity on |m1| and are equivalent inH(M,m2). Any admis-
sible isotopy must preserve the intersection of any collection of dual 2-cells,
so must preserve the points where three dual 2-cells in W meet. Therefore
we may assume the isotopy is relative to the dual 0-cells. Also, it must
preserve the intersection of any two dual 2-cells, i.e. the dual 1-cells. By the
Alexander trick applied to each dual 1-cell× I, we may make the admissible
isotopy to be relative to the intersections of the dual cells. Then, by the
Alexander trick applied to each dual 2-cell × I, we may make the isotopy
relative to all of |m1|. To show the image has finite index, let H(M,m2) act
on the union of the set of all the dual cells. This defines a homomorphism
to a finite permutation group, and by an argument similar to the proof of
injectivity one shows that any element in the kernel is admissibly (for m2)
isotopic to the identity on |m1|, so is in the image. �

Using m2 we can now deduce the corollaries of the main theorem.

Corollary 7.9. Let (M,m) be Haken with complete and useful boundary
pattern, and let W be a union of elements of m. Then H(M,m rel W ) is
virtually torsionfree and almost geometrically finite.

Proof. By remark (i) above and Proposition 7.8, there is a complete and
useful boundary pattern m2 on M so that H(M,m rel W ) is isomorphic
to a subgroup of finite index in H(M,m2). By Theorem 7.7, H(M,m2) is
almost geometrically finite, hence so is H(M,m rel W ). �

Corollary 7.10. Let M be a Haken 3-manifold and let W be a compact 2-
dimensional submanifold of ∂M such that ∂M −W is incompressible. Then
H(M rel W ) is virtually torsionfree and almost geometrically finite.

Proof. Let m1 be the set of components of W , and let m be the union of m1

with the set of components of ∂M −W . The boundary pattern constucted
above m2 is complete, and by (ii) above it is useful. Since H(M rel W ) =
H(M,m2 rel |m1|), Corollary 7.9 applies. �
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8. The Kontsevich Conjecture.

Throughout this section, the symbol f ∼= g means that f and g are isotopic
relative to the boundary of the manifold on which they are defined. We first
isolate a couple of technical steps that will be needed in later arguments.

Lemma 8.1. Let M be a Haken manifold containing an incompressible sur-
face G, not necessarily connected. Let f and g be two diffeomorphisms of
M which are homotopic relative to ∂M . Then f ∼= g. If f and g agree on
G, and the homotopy has trivial trace at a basepoint in each component of
G, then they are isotopic relative to G ∪ ∂M .

Proof. Replacing f by g−1f , we may assume that f is orientation-preserving,
g is the identity, and f restricts to the identity on G. As in Theorem II.6.1
of [22], the homotopy can be deformed relative to M × ∂I ∪ ∂M × I to an
isotopy. In particular, the traces at basepoints on components of G remain
trivial. By Theorem 4.2, we may assume that the isotopy is relative to
G ∪ ∂M . �

Lemma 8.2. Let M be a compact 3-manifold, each of whose components is
Haken with incompressible boundary. Assume that each component M0 of
M has the property that if g is a diffeomorphism from M0 to itself such that
gn ∼= 1M0, then there exists a diffeomorphism h of M0 such that g ∼= h with
hn =1M0. Then M itself has this property.

Proof. It suffices to consider the case when g acts transitively on the com-
ponents of M . Let M1 be a component and let i be the smallest positive
integer such that gi preserves M1. Since M1 has the property, gi ∼= h such
that hn/i =1M1 . Let M2 =g−1(M1). By isotopy relative to the boundary of
M2, we may change g|M2 to hg1−i, then g has order n on each component
of M . �

We will need an extension of Theorem 3 of [15].

Proposition 8.3. Let M be Haken with nonempty incompressible bound-
ary. Assume that each component of ∂M is a torus. If g is a diffeomorphism
from M to itself such that gn ∼= 1M , then g ∼= h such that hn =1M .

Proof. Consider the characteristic submanifold Σ of (M, ∅). Since ∂M con-
sists of tori, each component of the frontier of Σ is a torus, and is boundary
parallel exactly when it lies in a component of Σ which is a regular neighor-
hood of a component of ∂M . We induct on the number of components of
the frontier of Σ that are not parallel onto ∂M . If there are none, M is
either simple or a Seifert fiber space. By Theorem 3 of [15] and Lemma 8.1,
the theorem is true for M . (In the remainder of the proof, Lemma 8.1 must
be used in similar fashion to strengthen conclusions from [15], but we will
no longer mention these individually.)
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We induct on the number of components of the frontier of Σ that are
not parallel into ∂M . Since Σ is unique up to isotopy, we may assume that
g(Σ) = Σ. Let F be a component of the frontier of Σ such that F is not
parallel into ∂M . Let F̂ =∪gi(F ), a collection of components of the frontier
of Σ. By induction and Lemma 8.2, it suffices to show that gn is isotopic to
1M relative to F ∪ ∂M .

Fix an isotopy H : gn ∼= 1M . The proof of Lemma 9(ii) of [15] contains
most of the arguments needed to obtain our conclusion, so we only explain
the changes needed. We refer to the notation used there. The first paragraph
of the proof (of Case (ii)) in [15] is not needed; since π1(M) is centerless
the condition h(γ) ' γ holds automatically, as shown by the argument for
Lemma 6 of [15]. For the next paragraph, we know that M cannot fiber
over S1 with fiber F , since ∂M is nonempty, therefore the first half of the
paragraph shows that the restriction of the homotopy to F̂ × I is homotopic
relative to F̂ × ∂I to a map into F̂ × I. Therefore the homotopy at the
start of the third paragraph may also be assume to be relative to ∂M . The
remainder of the proof makes some rather delicate adjustments to achieve
that the restriction of g to F̂ is periodic and that the homotopy has trivial
trace at a basepoint in each component of F̂ . Since these changes take place
only in a regular neighborhood of F̂ , the resulting homotopy is still relative
to ∂M . Then Lemma 8.1 yields from this an isotopy relative to F ∪ ∂M , to
complete the inductive step and the proof. �

Theorem 8.4. Let M be a Haken 3-manifold such that ∂M is nonempty
and incompressible. Then H(M rel ∂M) is torsionfree.

Proof. Let 〈g〉 ∈ H(M rel ∂M) and suppose that for n > 1, gn ∼= 1M . We
must show that g ∼= 1M .

Let T be the union of the torus boundary components of M . Suppose
first that T = ∂M . By Proposition 8.3, g ∼= h with hn = 1M . Since h is
the identity on ∂M , a theorem of M. H. A. Newman (see Proposition 3.1 of
[21]) shows that h = 1M . Now suppose that T is not empty but T 6= ∂M .
Form N by gluing two copies of M together along ∂M − T , and let D(g)
be the diffeomorphism of N defined by taking g on each copy of M . Since
D(g)n ∼= 1N , the previous case shows that D(g) ∼= 1N . Let H : N × I → N
be an isotopy from D(g) to 1N . By Lemmas 7.2 and 7.3 of [34], H may be
deformed to a homotopy that preserves G. Therefore the trace of H at a
point in G lies in G. Since D(g) is the identity on G, the trace is a central
element of π1(G). Since G is not a torus, the center of π1(G) is trivial. By
Theorem 4.2, H may be deformed to an isotopy relative to G. Repeating,
we have an isotopy relative to ∂M −W , so g ∼= 1M . This completes the case
when T is not empty.

Now suppose that no component of ∂M is a torus. Let G be a boundary
component, and choose an essential simple closed curve γ in G. Let G1 be
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a regular neighborhood of γ in G. Let W be S1 × S1 × I, and let G2 be a
regular neighborhood of S1 ×{s0}× {0} in S1 × S1 ×{0} for some s0 ∈ S1.
Form N by identifying G1 with G2 and let G0 be the incompressible surface
in N obtained from G1 and G2. Since G0 is incompressible in M and W ,
N is Haken. Extend g to a diffeomorphism f of N using the identity on
W . The isotopy gn ∼= 1M extends using the identity on W to an isotopy
fn ∼= 1N . Since N has a torus boundary component, the previous case
implies that f ∼= 1N . By Theorem 4.2, f ∼= 1N relative to G1, and therefore
g ∼= 1M . �

Now we will weaken the hypothesis.

Theorem 8.5. Let M be a Haken 3-manifold and let F be a nonempty
compact 2-manifold in ∂M . Then H(M rel F ) is torsionfree.

Proof. Fix 〈g〉 ∈ H(M rel F ) with gn isotopic to 1M relative to F for some
n > 1. We must prove that g is isotopic to 1M relative to F .

Let W be the union of the boundary components of M that meet F . On
each component X of W − F , we have gn|X ∼= 1X . Since ∂X is nonempty,
Lemma 1.2 of [14] shows that H(X rel ∂X) is torsionfree. Therefore g|X ∼=
1X , so we may change g by isotopy relative to F so that g|W = 1W . Also,
π1(Diff(X rel ∂X)) is trivial, so we may assume that gn is isotopic to 1M

relative to W .
Form N by attaching two copies of M along ∂M−W . Then D(g)n ∼= 1N ,

so by Theorem 8.4, D(g) ∼= 1N . As in the proof of Theorem 8.4, the trace of
an isotopy from D(g) to 1N relative to ∂N at each component G of ∂M−W
lies in G, so by Theorem 4.2 we may deform the isotopy so that it preserves
∂M − W . Therefore g is isotopic to 1M relative to W and hence relative
to F . �

Using Corollary 7.10, we have the following immediate consequence.

Theorem 8.6. Let M be a Haken 3-manifold with incompressible boundary,
and let F be a nonempty compact 2-manifold in ∂M , such that ∂M − F is
incompressible. Then H(M rel F ) is geometrically finite.

From this we will obtain the following generalized version of the Kontse-
vich Conjecture for Haken manifolds.

Theorem 8.7. Let M be a Haken 3-manifold with incompressible boundary,
and let F be a nonempty compact 2-manifold in ∂M such that ∂M − F is
incompressible. Then BDiff(M rel F ) has the homotopy type of a finite
complex.

Proof. We will show that πi(Diff(M rel F )) = 0 for i ≥ 1. Since
BDiff(M rel F ) is connected and πi+1(BDiff(M rel F )) ∼= πi(Diff(M rel F ))
for i ≥ 1, this implies that BDiff(M rel F ) is a K(H(M rel F ), 1)-complex,
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so Theorem 8.6 shows that BDiff(M rel F ) has the homotopy type of a finite
complex.

By the main theorem of [12], the homotopy groups πi(Diff(M rel ∂M))
vanish for i ≥ 1, which gives the assertion when F = ∂M . Otherwise, let
W =∂M − F . Restricting diffeomorphisms to W is the projection map of a
fibration

Diff(M rel ∂M) → Diff(M rel F ) → Diff(W rel ∂W ).

From the homotopy exact sequence of this fibration, we have using [12]
again, that πi(Diff(M rel F )) ∼= πi(Diff(W rel ∂W ))=0 for i ≥ 2. We also
obtain an exact sequence

0 → π1(Diff(M rel F )) → π1(Diff(W rel ∂W )) → H(M rel ∂M).

No component of W is a 2-sphere, so elements in π1(Diff(W rel ∂W )) are
classified by their traces (nontrivial elements occur only for tori). Since
the traces of an isotopy from 1M to 1M at different basepoints are freely
homotopic, and F is nonempty, all traces of an element of π1(Diff(M rel F ))
must be trivial in π1(M). Since W is incompressible, the restriction of an
element of π1(Diff(M rel F )) to W has trivial trace in each component of
W , so is trivial in π1(Diff(W rel ∂W )). Therefore π1(Diff(M rel F )) is
trivial. �
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