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In this work it is shown that, under appropriate hypothe-
ses, the multiplicative Cousin problem on complex manifolds
admits solutions that depend continuously on parameters.

1. Introduction.

The bulk of this paper is devoted to the study of continuous families of
nonnegative divisors on a complex manifold. In particular our work leads
to the solution, for a broad class of complex manifolds, of two problems
proposed by Stoll [St, Problem A and Problem B, p. 155 and pp. 201-202].

If M is a complex-analytic manifold1 of complex dimension N ≥ 1,
we denote by D+(M) the set of nonnegative divisors on M. Moreover we
denote by D+

P (M) the subset of D+(M) consisting of the principal divisors,
i.e., the divisors of holomorphic functions. (It will also be convenient to
use the notation that D+(M; p) denotes the set of all nonnegative divisors
with support not containing the point p ∈ M, and that D+

P (M; p) is the
set of principal divisors in D+(M; p).) An element D ∈ D+(M) can be
understood as a formal sum D =

∑
mjVj with each mj a nonnegative

integer and with {Vj}j=1,... a locally finite family of irreducible complex
hypersurfaces in M. It is natural to identify this divisor with the current of
integration over D, that is, the current defined by

D(α) = 〈α,D〉 =
∑

mj

∫
Vj

α,

for each C∞ compactly supported (N − 1, N − 1)-form, α, on M. Thus,
D+(M) may be considered as a subset of D1,1(M) = D′(1,1)(M), the space
of bihomogeneous currents on M of type (1, 1), which is dual to the space
D(N−1,N−1)(M) of compactly supported smooth forms of bidegree (N −
1, N − 1) on M.

From the point of view of functional analysis there are two natural topolo-
gies on D′(1,1)(M): The weak* topology and the strong topology. It follows
that D+(M) inherits from D′(1,1)(M) two topologies: The relative topol-
ogy induced by the weak* topology and the relative topology induced by

1In what follows, we assume all our manifolds to be countable at infinity. In the absence
of explicit mention to the contrary, they are also assumed to be connected.
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the strong topology. Stoll [St] introduced a third topology on the space
D+(M), a topology particularly suited to the study of the “normal fami-
lies of nonnegative divisors”. In Section 3 of the paper we establish that on
D+(M) these three topologies coincide; the unique topology they determine
will be seen eventually to be separable and metrizable.

Stoll [St, Problem B, p. 155 and p. 202] posed the following problem: Let
M be a complex-analytic manifold. Suppose that every nonnegative divisor
on M is a principal divisor. Let R be a set of nonnegative divisors on M.
Does there exist a continuous map h : R → O(M) such that Div h(D) = D
for every D ∈ R?

Stoll [St] solved this problem in certain cases involving domains in CN .
In particular, he proved the following result [St, Theorems 1.9, 2.25 and
3.6].

Theorem 1.0. Let Ω be a domain in CN that contains the closed unit ball
B̄N . There is a continuous map h : D+(Ω; 0) → O(BN ) such that for each
D ∈ D+(Ω; 0), Div h(D) = D|BN .

We shall exploit this result systematically in the sequel. The appendix to
the paper gives a development of the theorem from a point of view somewhat
different from that used by Stoll.

The main thrust of the present work is to obtain generalizations of this
result of Stoll.

We shall establish in Theorem 6.4 that if M is a complex manifold with
H1(M,O) = 0 and H1(M,Z) = 0, then there exists a continuous map
ς : D+

P (M) → O(M) with Div ς(D) = D for all D ∈ D+
P (M). There is a

strong result in the converse direction, Theorem 6.6.
The proof will depend in an essential way on Theorem 1.0 quoted above

and on certain topological methods.
We shall see in Section 7 that the conclusion of Theorem 6.4 can also

be drawn if M is a domain in a Stein manifold that satisfies the geometric
condition H1(M,Z) = 0.

In Section 8 we show that there is an analogue of Theorem 6.4 in which
the role of the space O(M) is played by the space L(M) of global sections
of the holomorphic line bundle L over M.

The above results can be reformulated in terms of the solvability of the
Second Cousin Problem for nonnegative divisors with continuous depen-
dence on parameters as follows. Given a continuous family {Dx : x ∈ X}
in D+

P (M), parametrized by a topological space X, we ask: Does there ex-
ist a continuous function F : X ×M → C such that F (x, ·) ∈ O(M) and
DivF (x, ·) = Dx for all x ∈ X?

Consider the continuous map µ : X → D+
P (M) defined by µ(x) = Dx, for

all x ∈ X. The existence of F amounts to the existence of a continuous map
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µ̃ : X → O(M) with Div µ̃(x) = µ(x) for all x ∈ X, for, if either of them
exists, then we may define the other by F (x, ·) = µ̃(x), for all x ∈ X.

It is well to indicate with a simple example that for the kind of lifting
problem we are concerned with, some geometric conditions must be imposed
on the manifold in question. This shows up already in the plane.

Set Ω = C \ {0}, the punctured plane. Denote by γ the unit circle in C.
Define ψ : [0, 1] → O(Ω) \ {0} by

ψ(t)(z) = tz + (1− t)
1
z
.

Define φ = Div ◦ ψ : [0, 1] → D+(Ω) = D+
P (Ω). This is continuous and

satisfies φ(0) = φ(1).
We ask: Does this map lift to a continuous map φ̃ : [0, 1] → O(Ω) that

satisfies φ̃(0) = φ̃(1) and Div ◦ φ̃ = φ?
Suppose such a φ̃ to exist. Without loss of generality, φ̃(0) = ψ(0).

(
If

not, replace φ̃ by ψ(0)

φ̃(0)
φ̃.
)

Define χ(t) = 1
2πi

∫
γ d log

(
φ̃(t)
ψ(t)

)
.

The function χ is an integer that depends continuously on t and so is
constant. But compute:

χ(0) =
1

2πi

∫
γ
d log

(
φ̃(0)
ψ(0)

)
= 0.

Also,

χ(1) =
1

2πi

∫
γ
d

(
φ̃(1)
ψ(1)

)

=
1

2πi

∫
γ
d log

(
ψ(0)
ψ(1)

)
=

1
2πi

∫
γ
d log z−2 = −2.

Contradiction.
This simple example shows that to obtain lifting theorems of the kind we

are concerned with, it is necessary to impose some geometric condition on
the manifolds under consideration.

Stoll [St, Problem A, p. 155 and pp. 201–202] posed also the following
problem:

Let M be a complex-analytic manifold. Suppose that every nonnegative
divisor on M is a principal divisor. Let {Dλ}λ∈Λ be a normal family of
nonnegative divisors on M. Does there exist a normal family {hλ}λ∈Λ of
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holomorphic functions on M and a compact subset K of M such that, for
each λ ∈ Λ, Div hλ(Dλ) = Dλ and hλ(aλ) = 1 for some aλ ∈ K?

Stoll [St] solved this problem in the case that M = CN .
In Section 9 we show that if there is a continuous map ς : D+(M) →

O(M) with Div◦ς = id, then the problem has a positive solution.

Remark. Our motivation for undertaking this work was the desire to apply
some of the results obtained here to the study of certain hulls that generalize
polynomially convex hulls. In addition to the well known polynomially con-
vex hulls, another collection of hulls has been introduced by Basner [Bas].
Given a compact subset X of CN there is a hull hq(X) defined for each
integer q in the range 1 ≤ q ≤ N − 1. The hull hq(X) is defined in terms
of polynomial mappings from CN to Cq. By using the results of the present
paper, we show that the hull hq(X) can be described in terms of continuous
families of polynomial maps from CN to Cq+1. This work will be published
in a subsequent paper.

We shall need to use a selection theorem proved by Michael [Mi]: If E
and F are Fréchet spaces and if T : E → F is a surjective continuous linear
transformation, then there is a continuous map ς : F → E such that T ◦ ς is
the identity map on F . In general the selection map ς cannot be chosen to
be linear; it can always be chosen to be homogeneous. A perspicuous proof
of the result is given in [Ru1].

Given an indexed family of sets {Sα}α∈A, we understand {Sαβ}α,β∈A to
be the family of intersections Sαβ = Sα ∩ Sβ. Similar notation will be used
for triple, quadruple,..., intersections.

We shall also use the notation that C∗ denotes the collection of nonzero
complex numbers and that C(X) denotes the space of continuous C-valued
functions on the space X.

A referee has drawn our attention to the papers of McGrath [MG] and Siu
[Si]. McGrath’s thesis extends Stoll’s results to the setting of polycylinders
in CN . In Siu’s paper further results are obtained that extend those of Stoll
and that are closely related to the present work.

It should be remarked that the possibility of solving the First Cousin
Problem with continuous dependence on real parameters is essentially due
to Oka [Ok]; it was discussed in [Na].

2. The Topologies on D+(M).

The space D+(M) has three natural topologies, two with functional-analytic
roots, the other based in function theory.

The first of these is the weak* topology in which a net {Dα}α∈A in D+(M)
converges to Do ∈ D+(M) if and only if for every compactly supported
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smooth form ϑ of bidegree (N − 1, N − 1) on M

lim
α∈A

∫
Dα

ϑ =
∫
Do

ϑ.

The second functional-analytic topology is the strong topology in which a
net {Dα}α∈A in D+(M) converges toDo ∈ D+(M) if and only if it converges
in the weak* sense and if, moreover, the convergence is uniform on bounded
sets in the space DN−1,N−1(M).

Recall that if D(M) denotes the space of compactly supported functions
on M, then a subset B of D(M) is bounded if there is a fixed compact set
K in M with suppf ⊂ K for all f ∈ B. It is required, moreover that the set
K be decomposed into a union of closed subsets K1, ...,Kr, with each Kj

contained in an open set Uj on which there are global smooth coordinates.
For each j, there is a sequence of positive constants {kν}ν=1,2,... with the
property that for each f ∈ B and each j = 1, ..., r, the derivatives of order
less than ν of f with respect to the coordinates in Uj are bounded uniformly
on Kj by kν . This gives rise to the notion of bounded set in the space of
forms DN−1,N−1(M).

The third topology we shall consider is that introduced in function-theor-
etic terms by Stoll [St]. This topology is defined by the condition that a
net {Dα}α∈A in D+(M) converges to Do ∈ D+(M) if and only if there
is an open cover V = {Vj}j=1,... of M such that for each α ∈ A, there is
an fjα ∈ O(Vj) such that Divfjα = Dα|Vj and such that fjα converges
uniformly on compacta in Vj to fjo ∈ O(Vj) , fjo a function with divisor
Do|Vj . Stoll verifies that this prescription does specify a topology on the
space D+(M).

The principal goal of the present section is to show the equivalence of
these three topologies. In this connection, certain results are immediate.
It is plain that strong convergence implies convergence in the weak∗ sense.
It is less evident, but essentially known, that convergence in the sense of
Stoll’s topology implies strong convergence. This is contained in a theorem
of Andreotti and Norguet [AN] to the effect that if N is a connected complex
manifold, then the map that associates to a nonzero-function f ∈ O(N ) its
divisor, viewed as a current, is continuous when the space O(N ) is endowed
with the usual topology of uniform convergence on compacta and the space
of currents is endowed with its strong topology, viewed as the dual of the
topological vector space DN−1,N−1(N ) of compactly supported (N−1, N−1)-
forms on N .

To complete the proof of the equivalence of the three topologies on
D+(M), it suffices to show that on this space, convergence in the weak∗

sense implies convergence in the sense of the topology of Stoll.
This depends on Stoll’s characterization of normal families in the space

D+(M). Recall that, by definition, a subset of D+(M) is a normal family
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if it is a relatively compact subset, when the space of divisors is endowed
with the topology introduced by Stoll.

For normal families, Stoll [St] gives the following characterization: A
subset R of D+(M) is relatively compact with respect to to Stoll’s topology
if and only if R is bounded on every compact subset K ⊂ M in the sense
that, for a fixed Hermitian metric on M with associated fundamental form
ω, there is a positive constant LK such that for each D ∈ R, the area of
D in K given by D(χKωN−1) = 1

(N−1)!

∫
D χKω

N−1 is not more than LK .
(Here χK denotes the characteristic function of the set K.)

Fix now a Hermitian metric on M, and let ω denote its associated funda-
mental form. Let {Dλ}λ∈Λ be a net in D+(M) that converges in the relative
weak∗ topology to Do ∈ D+(M). Fix a relatively compact open set U in M,
and let χ be a compactly supported C∞ function on M that is indentically
one on a neighborhood of Ū and is everywhere nonnegative.

As the net converges in the weak∗ sense, there is a constant L large enough
that for some λo ∈ Λ if λ > λo, then∫

Dλ

χωN−1 < L.

By the characterization of normal families quoted above, it follows that
the family {Dλ|U : λ > λo} is a normal family. Accordingly, the net
{Dλ|U}λ>λo has a cluster point, say D̃, in D+(U) with respect to Stoll’s
topology. As convergence in the sense of Stoll’s topology implies conver-
gence in the weak∗ sense, D̃ can only be the limit Do|U. (Stoll proves that
the topology he introduces satisfies the Hausdorff separation axiom.) This
implies that the net {Dλ|U}λ∈Λ converges to Do|U in the sense of Stoll’s
topology.

As the open, relatively compact subsets of M constitute an open cover
for M, it follows, as we wished, that the initial net {Dλ}λ∈Λ converges to
Do in the sense of Stoll’s topology.

We have now reached the desired conclusion that the three naturally de-
fined topologies on the space D+(M) of nonnegative divisors on M coincide.
In the sequel, we shall speak simply of the topology on D+(M).

The proof just given of the equivalence of the three topologies on the
space D+(M) depends explicitly on the mechanism developed in [St]. It is
of interest, and of some importance at a later point in this work, that there
is a rather simple, direct proof of the equivalence of the weak* and strong
topologies on this space. It runs as follows.

What is to be shown is that a net {Dι}ι∈I converges to Do ∈ D+(M) in
the relative weak* topology if and only if it converges to Do in the relative
strong topology.

That strong convergence implies weak* convergence is evident.
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Conversely, we consider a net {Dι}ι∈I in D+(M) that converges in the
weak* sense to Do, and we show it to converge strongly.

To this end, consider a bounded set B ⊂ DN−1,N−1(M). As B is bounded,
there is a compact set X ⊂ M such that each α ∈ B has support in X. If
χ is a smooth function on M, then the set χB defined by

χB = {χα : α ∈ B}

is a bounded set in DN−1,N−1(M). If χ1 + . . .+ χq = 1, then

B = χ1B + . . .+ χqB.

If {Dι}ι∈I converges uniformly on each χkB to χDo, then {Dι}ι∈I converges
uniformly on B to Do. This remark, coupled with the existence of smooth
partitions of unity on M, permits us to localize our problem: We assume
from here on that M = BN (2), the open ball of radius 2 centered in the
origin in CN , and that X = BN , the closed unit ball.

Since B is bounded, there exist positive constants kr, r = 0, 1, . . . , such
that for each α ∈ B, if

α =
∑

|I|,|J |=N−1

αIJdz
I ∧ dz̄J ,

then ∣∣∣∣∣∂|P |+|Q|αIJ∂zP∂z̄Q
(z)

∣∣∣∣∣ ≤ k|P |+|Q|

for all z ∈ BN (2) and all multi-indices P,Q.
Denote by χ a real-valued nonnegative smooth function on CN with χ = 1

on a neighborhood of BN (1) and with χ(z) = 0 if |z| > 3
2 . Let ω be the Kähler

form i
2

∑N
j=1 dzj ∧ dz̄j .

By hypothesis

lim
ι
Dι(χωp) = Do(χωp).(1)

For each ι ∈ I write Dι =
∑

jmιjVιj for suitable positive integers mιj and
suitable irreducible complex hypersurfaces Vιj in BN (2). Then (1) implies
the existence of an index ιo ∈ I such that for a positive constant Co and for
all multi-indices I, J with |I| = |J | = N − 1∣∣∣∣∣∣

∑
j

mιj

∫
Vιj∩BN

dzI ∧ z̄J
∣∣∣∣∣∣ ≤ Co(2)

provided ιo ≤ ι.
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Let α =
∑

|I|,|J |=N−1 αIJdz
I ∧ dz̄J ∈ B and compute: For ιo ≤ ι we have

|Dι(α)−Do(α)|

(3)

=

∣∣∣∣∣∑
j

mιj

∫
Vιj

∑
|I|=|J |=N−1

αIJdz
I ∧ dz̄J

−
∑
k

mok

∫
Vok

∑
|I|=|J |=N−1

αIJdz
I ∧ dz̄J

∣∣∣∣∣
≤

∑
|I|=|J |=N−1

∣∣∣∣∣∣
∑
j

mιj

∫
Vιj

αIJdz
I ∧ dz̄J −

∑
k

mok

∫
Vok

αIJdz
I ∧ dz̄K

∣∣∣∣∣∣ .
For each ι ∈ I and for all multi-indices I and J , define a measure µιIJ on

BN (2) by ∫
gdµιIJ =

∑
j

mιj

∫
Vιj∩BN

gdzI ∧ dz̄J ,

for g ∈ C(BN ) and define µoIJ , associated with Do in a similar way. By (2),
‖µιIJ‖ and ‖µoIJ‖ are bounded uniformly in ι,ιo < ι, say by the constant
C1. Let λ = 8N and define ψιIJ(ζ) for ζ ∈ CN by

ψιIJ(ζ) = γ

∫
|z − ζ|2λ−4N log |z − ζ|dµιIJ(z).

Define ψoIJ similarly. With a suitable choice of constant γ, these functions
satisfy the equations

∆λψιIJ = µιIJ , and ∆λψoIJ = µoIJ

in the sense of distributions. See [GS, p. 282]. (Here ∆ denotes the Lapla-
cian on R2N = CN .)

We may write∣∣∣∣∣∣
∑
j

mιj

∫
Vιj

αIJdz
I ∧ dz̄I −

∑
k

mok

∫
Vok

αIJdz
I ∧ dz̄J

∣∣∣∣∣∣
=
∣∣∣∣∫

BN

αIJd(µιIJ − µoIJ)
∣∣∣∣

=
∣∣∣∣∫

BN

∆λαIJ(ζ)(ψιIJ(ζ)− ψoIJ(ζ))ωN (ζ)
∣∣∣∣

≤M

∫
BN

|ψιIJ(ζ)− ψoIJ(ζ)|ωN (ζ)
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for a suitable positive constant M .
Call the last integral LιIJ .
The definition of the ψιIJ ’s shows that they are uniformly bounded and

that they satisfy a uniform Lipschitz condition on BN (2). Moreover, the
measures µιIJ converge in the weak* sense (in the space of measures) to
µoIJ . Thus, ψιIJ(ζ) → ψoIJ(ζ) for each ζ ∈ BN (2).

From this it follows that limι LιIJ = 0: The numbers LιIJ are uniformly
bounded, so the net {LιIJ}ι has cluster points. Let to be such a cluster
point, and let {LιβIJ}β∈B be a subnet of such that limβ LιβIJ = to.

The net {ψιβIJ − ψoIJ}β∈B is a net of continuous functions that are uni-
formly bounded and uniformly equicontinuous. Consequently, there is a
subnet, which we may suppose to be {ψιβIJ − ψoIJ}β∈B itself, that con-
verges uniformly on BN . As ψιIJ → ψoIJ pointwise, the limit can only be
zero. As the convergence is uniform, we have

lim
β
LιβIJ = 0.

Consequently, to = 0. This means that limι LιIJ = 0.
The proposition is proved.
It is worth noting that this argument applies, mutatis mutandis, to yield

the corresponding result for the space of holomorphic p-chains on M .

3. The Topology of D+(M).

We have now to treat certain aspects of D+(M) and D+
P (M) as topological

spaces, the topology being that discussed in the preceding section.

Lemma 3.1. If p ∈ M, then the set of D ∈ D+(M) with p /∈ suppD is
open in D+(M).

Proof. Fix a divisorDo ∈ D+(M) with p /∈ suppDo. Let ω be the fundamen-
tal form for some Hermitian metric on M. Fix neighborhoods U ′′ b U ′ b U
of p with U ∩ suppDo = ∅. Let χ be a nonnegative C∞ function on M with
χ identically one on U ′ and χ identically zero on M \ U. There is a con-
stant C > 0 small enough that if D ∈ D+(M) and suppD ∩ U ′′ 6= ∅, then∫
Do
χωN−1 > C. It follows that the set{

D ∈ D+(M) :
∫
D
χωN−1 < C/2

}
is a (weak∗) neighborhood V of Do with the property that if D ∈ V , then
suppD does not contain p. The lemma is proved.

Lemma 3.2. Let p be a fixed point in the complex manifold M. There
exists a countable family {ϕj}j∈N of maps from the unit ball BN into M
with the following properties:
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i. Each ϕj carries BN biholomorphically onto a domain Ωj in M.
ii. Each ϕj carries 0 ∈ BN to the point p.
iii. For suitable ρj ∈ (0, 1), M = ∪{ϕ(ρjBN ) : j = 1, . . . }.

Proof. This depends on knowing that every pair of points in a complex
manifold is contained in a biholomorphic copy of the ball.

Granted this, for each point q ∈M, fix a biholomorphic map ψq from BN
onto a domain in M that carries the origin to the point p and the range of
which contains the point q. If ρq ∈ (0, 1) is large enough, then the point q
will lie in the set ψq(ρqBN ).

Let {Kj}j∈N be a sequence of compact sets in M with union M. A finite
number of the sets ψj(ρjBN ) will cover a given K in the sequence, so the
result follows.

To realize that it is possible to find a biholomorphic copy of the ball that
contains a given pair of points in an arbitrary complex manifold, consider
points p and q in M. There is a real-analytic arc in M that contains both
p and q. Then as a compact (real) line segment in CN has a neighborhood
basis that consists of biholomorphic copies of the ball, we see that the desired
ball exists. The lemma is proved.

We next prove that the space D+(M; p) is metrizable.
Fix a point p ∈M. Let Ωj , j ∈ N, be biholomorphic copies of BN in M as

introduced in the preceding lemma. Let Ω′
j be the corresponding concentric

balls that cover M.
There are restriction maps

r : D+(M; p) → Πj∈ND+(Ωj ; p)

and
r′ : D+(M; p) → Πj∈ND+(Ω′

j ; p)
given by

r(D) = {D|Ωj : j ∈ N} ∈ Πj∈ND+(Ωj ; p)
and

r′(D) = {D|Ω′
j : j ∈ N} ∈ Πj∈ND+(Ω′

j ; p).
In addition, there is a restriction map

r̃ : Πj∈ND+(Ωj ; p) → Πj∈ND+(Ω′
j ; p)

defined in the evident way. These maps are all continuous when the product
spaces are endowed with the product topologies. Plainly r̃ ◦ r = r′. Notice
that the map r is a homeomorphism from D+(M; p) onto the closed subset

{{Dj : j ∈ N} ∈ Πj∈ND+(Ωj ; p) : Dj |Ωj ∩ Ωk = Dk|Ωj ∩ Ωk}
of Πj∈ND+(Ωj ; p). Similarly, r′ is a homeomorphism onto its range.

Consider now the map

σj : D+(Ωj ; p) → O(Ω′
j)
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given by Stoll that has the property that Div ◦ σj(D) = D|Ω′
j . These maps

taken together give a map

σ : Πj∈ND+(Ωj ; p) → ⊕j∈NO(Ω′
j)

given by
σ({Dj : j ∈ N}) = {σj(Dj) : j ∈ N}.

Also let
δ : ⊕j∈NO(Ωj) → Πj∈ND+(Ωj)

and
δ′ : ⊕j∈NO(Ω′

j) → Πj∈ND+(Ω′
j)

be the divisor maps

δ({fj : j ∈ N}) = {Divfj : j ∈ N}

and with δ′ defined in a similar way. These maps are continuous.
The map δ′ ◦ σ carries rD+(M; p) onto r′D+(M; p).
Finally, notice that if D ∈ D+(M; p), then r′−1 ◦ δ′ ◦ σ ◦ r(D) is simply

D. This implies that σ ◦ r is a homeomorphism of D+(M; p) onto a subset
of the metrizable space Πj∈NO(Ω′

j).
We have reached the following conclusion:

Proposition 3.3. The space D+(M; p) is metrizable.

Consequently, D+(M; p) and all its topological subspaces are paracom-
pact.

4. Lifts of ϕ : X → D+
P (M; p).

The main result of this section is the following intermediate proposition,
which will serve as a stepping stone to more general results.

Proposition 4.1. Let M be a complex manifold with H1(M,O) = 0. Let
p ∈ M. If X is a connected paracompact space with H1(X,Z) = 0, then
given a continuous map ψ : X → D+

P (M; p), there is a continuous map
ψ̃ : X → O(M) with Div ◦ ψ̃ = ψ.

Proof. Again introduce a sequence {Ωj}j∈N of (biholomorphic copies of)
balls in M and concentric balls Ω′

j , all centered at the point p ∈ M and
with ∪Ω′

j = M. Let U = {Uj}j∈N be a locally finite refinement of the
cover {Ω′

j}j∈N of M by connected domains Uj with the property that the
intersections Ujk are all contractible. That such covers exist is shown in [BT,
p. 42]. Denote by τ : N → N a refining map so that for each j, Uj ⊂ Ω′

τ(j).

Also, let σj : D+(Ωj ; p) → O(Ω′
j), be the map used above that satisfies

Div ◦ σj(D) = D|Ω′
j for all D ∈ D+(Ωj ; p). Define rj : D+(M; p) →
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D+(Ωj ; p) to be the restriction map so that rj(D) = D|Ω′
j . The map rj is

continuous and satisfies

Div ◦ σj ◦ rj(D) = D|Ω′
j

for all j.
For each j = 1, . . . , let Fj : D+

P (M)× Ω′
j → C be defined by

Fj(D, z) = (σj ◦ rj(D))(z).

These functions have the following properties: i. Fj ∈ C(D+
P (M) × Ω′

j),
ii. Fj(D, ·) ∈ O(Ω′

j) for each j, and iii. DivFj(D, ·)|Ω′
jk = DivFk(D, ·)|Ω′

jk

for all j, k.
Define fjk : D+

P (M; p)× Ujk → C by

fjk = (Fτ(j)|Ujk)(Fτ(k)|Ujk)−1.

This is a continuous zero-free function with the property that for all D,
fjk(D, ·) is holomorphic on Ω′

jk for each choice of j, k.
With ψ : X → D+

P (M, p) as in the theorem, let the map ψjk : X ×Ujk →
C be given for each choice of j and k by

ψjk(x, z) = fjk(ψ(x), z);

it is continuous and zero-free. Moreover, for each x ∈ X, the function
ψjk(x, ·) is holomorphic on Ujk.

By hypothesis, H1(X,Z) = 0, so the group H1(X ×Ujk,Z) also vanishes.
Accordingly, the function ψjk has a continuous logarithm, to be denoted by
λjk, on X × Ujk. For each x ∈ X, λjk(x, ·) is holomorphic on Ujk.

Define cαβγ on X × Uαβγ by

cαβγ = λβγ − λαγ + λαβ .

This is some value of log 1. The data {cαβγ}α,β,γ∈N constitute a 2-cocycle for
the covering UX = {X×Uj}j∈N of X×M with values in the group 2πiZ. For
fixed x ∈ X, this cocycle defines the Chern class of the set {ψjk(x, ·)}j,k∈N
of Cousin II data on M. As the associated divisor is principal, this cocycle
is a coboundary: There are integers {nαβ}α,β∈N such that

cαβγ = 2πi(nβγ − nαγ + nαβ).

As X is connected, continuity implies that for each fixed z ∈M, cαβγ is
independent of x.

Given j, k ∈ N, define a continuous map λ′jk : X → O(Ujk) by

λ′jk = λjk − njk.

For each x ∈ X, the family λ′(x) = {λ′jk(x)}jk∈N defines a 1-cocycle for the
covering U with values in the sheaf O = OM, that is, an element of the
space Z1(U ,O). Thus, we have a continuous map λ′ : X → Z1(U ,O), given
by x 7→ λ′(x), for all x ∈ X.
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For every nonnegative integer p the space Cp(U ,O) of p-chains for the
covering U with values in the sheaf O is the direct sum ⊕βo,... ,βp∈NO(Uβo...βp)
of the Fréchet spaces O(Uβo...βp). As this is a countable direct sum, Cp(U ,O)
is itself a Fréchet space.

The coboundary map δp : Cp(U ,O) → Cp+1(U ,O) is a continuous linear
map, so its kernel Zp(U ,O) is a closed subspace of Cp(U ,O), hence a Fréchet
space.

By hypothesis, H1(M,O) vanishes, so H1(U ,O) = 0 as well, whence the
range of the coboundary map δ0 : C0(U ,O) → C1(U ,O) is closed and so is
a Fréchet space.

Accordingly, by the selection theorem of Michael quoted in the Introduc-
tion, there is a continuous map

ς : Z1(U ,O) → C0(U ,O)

such that δ0 ◦ ς is the identity. Consider then the continuous map f = ς ◦λ′ :
X → C0(U ,O). We have f = {fj}j∈N, where each fj is a continuous map
from X into O(Uj), and the fj ’s satisfy fj−fk = λ′jk on Ujk, for all j, k ∈ N.
It follows that Fτ(j)e−2πifj = Fτ(k)e

−2πifk on Ujk, for all j, k ∈ N and all
x ∈ X.

Hence the map we seek is the map ψ̃ : X → O(M) given by

ψ̃(x)(z) = Fτ(k)(x, z)e
−2πifk(x)(z)

for all k ∈ N, x ∈ X and z ∈ Uk.
We point out that the proof just given contains implicitly also the proof

of the following fact:

Proposition 4.2. Let M be a complex-analytic manifold of dimension N ≥
1. Let X be a topological space that is paracompact and connected and has
the further property that the Čech cohomology group H1(X,Z) = 0. Let
µ : X → D+(M) be a continuous map. Then all the divisors µ(x), x ∈ X
have the same Chern class.

5. The Topology of D+
P , Continued.

The following lemma will be used at several points below.

Lemma 5.1. If E is an infinite dimensional locally convex Fréchet space,
then for all n = 0, 1, . . . , the homotopy group πn(E \ {0}) vanishes.

Remark. This is known: E \ {0} is known to be contractible. The reason
we include Lemma 5.1, with a proof, is that it can be proved in a very
elementary way by an argument for which we have no reference. It seems
worth our while to include the argument for the convenience of the reader.

That E \ {0} is contractible appears in the literature as follows. (See
[BP].) By a theorem of Anderson and Kadec [BP, Theorem 5.2, p. 189],



316 G. LUPACCIOLU AND L. STOUT

every infinite-dimensional separable Fréchet space is homeomorphic to RN.
On the other hand, by a theorem of Anderson, if A is a compact subset
of RN (or more generally a countable union of compacta), then RN \ A is
homeomorphic to the whole space RN. This follows from [BP, Theorem 6.3,
p. 166 and Corollary 6.2, p. 165]. It follows in particular that E \ {0} is
homeomorphic to E and so is contractible. A simpler approach than this,
still granted the theorem of Anderson and Kadec, is to invoke a theorem
of Klee [Kl], which is somewhat simpler than the more general result of
Anderson.

Proof of the Lemma. The space E \ {0} is connected, so let n > 0 from
here on.

Denote by ρ a metric on E that has the property that the ball {y ∈ E :
ρ(y, x) < c} is convex for every choice of x ∈ E and all r > 0.

Denote by Σ the simplex in Rn+1 determined by the origin and the unit
vectors ej = (0, . . . , 1, . . . , 0), 1 in the jth place. The boundary, bΣ, of Σ is
topologically the n−sphere.

Consider a continuous map ϕ : bΣ → E \{0}. As ϕ(bΣ) is compact, there
is a δ > 0 small enough that ρ(ϕ(x), 0) > δ for all x ∈ bΣ.

For a sufficiently fine simplicial refinement of the given triangulation of
bΣ, say with vertices {x1, . . . , xr} and with simplexes T1, . . . , Ts, the unique
continuous map ψ : Σ → E \ {0} that agrees with ϕ at each xj and that
is real affine on each T has the property that both of the sets ϕ(Tj) and
ψ(Tj) are contained in some ball with respect to the metric ρ that does not
contain 0. Consequently, ϕ and ψ are homotopic as maps into E \ {0}.

The range of ψ is contained in a finite dimensional real linear subspace
of E, which we can take to have real dimension d > n+ 1. As every map of
the n−sphere into Rd \ {0} is homotopic to a constant, it follows that the
original map ϕ is homotopic in E \ {0} to a constant.

Remark. Granted that all of the homotopy groups πn(E \ {0}) vanish, it
follows that the space E \ {0} is contractible. See [BP, Theorem 6.3, p. 79
and Corollary 6.5, p. 76].

Lemma 5.2. If H1(M,O) = 0 and H1(M,Z) = 0, then the cohomology
groups H1(D+

P (M),Z) and H1(D+
P (M, p),Z) vanish.

The cohomology in question is taken in the sense of Čech theory.

Proof. This lemma depends on the following simple fact: Because the group
H1(M,Z) vanishes, it follows that every zero-free continuous C−valued
function on M is of the form eh for some continuous function h. As ev-
ery continuous logarithm of a holomorphic function is itself holomorphic, it
follows that the space O∗(M) of zero-free holomorphic functions on M is
connected and, indeed, is arcwise connected: If f = eh with h ∈ O(M),
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then t 7→ eth, t ∈ [0, 1] is a curve in O∗(M) that connects f to 1. (Note that
O∗(M) is not open in O(M).)

Consider first the group H1(D+
P (M),Z).

If O(M) = C, then D+
P (M) = {0}, and the assertion of the lemma is

true. Thus, assume O(M) to be infinite dimensional. Let U = {Uα}α∈A be
an open cover for D+

P (M), and let {mαβ}αβ∈A be a 1-cocycle for this cover
with values in Z so that for each choice of α, β ∈ A, mαβ is a continuous
Z-valued function on Uαβ .

Because the map Div is continuous, if Ũα = Div−1(Uα), then Ũ =
{Ũα}α∈A is an open cover for the space O(M)\{0}. With m̃αβ = mαβ ◦Div,
the family {m̃αβ}α,β∈A is a 1-cocycle for the covering Ũ with values in Z.

As the space O(M) \ {0} has vanishing first integral cohomology, it fol-
lows that the cohomology group H1(Ũ ,Z) vanishes, for the canonical map
from this group into H1(O(M) \ {0},Z) is injective. (See the discussion of
Leray’s theorem given in [Gu].) Consequently, the 1-cocycle {m̃αβ}α,β∈A is
a 1-coboundary: There are continuous, Z−valued functions ñα on Ũα with
m̃αβ = ñα|Uαβ − ñβ|Uαβ .

For any divisor D ∈ D+(M), the fiber Div−1(D) is of the form {gh : g ∈
O(M), g zero− free} for any fixed element h of the fiber. That the set of
zero-free functions holomorphic on M is connected implies that the fiber
Div−1(D) is connected.

It follows that the continuous, Z−valued functions ñα are constant on
the fibers of Div and so are of the form ñα = nα ◦ Div for suitable contin-
uous Z−valued functions nα on Uα. Plainly nα|Uαβ − nβ|Uαβ = mαβ . That
is, the cocycle {mαβ}αβ ∈ A is a coboundary. It follows that the group
H1(D+

P (M),Z) is trivial as claimed.
In its essence, the argument to prove thatH1(D+

P (M, p),Z) = 0 is parallel
to the preceding argument, but some preliminaries are necessary.

If the set Fp is defined by Fp = {f ∈ O(M) : f(p) /∈ C \ (−∞, 0]}, then
DivFp = D+

P (M; p). This is so, for if D ∈ D+
P (M; p), then D = Divf for an

f ∈ O(M) with f(p) 6= 0, which yields that D = Div(f/f(p)). The function
f/f(p) lies in Fp. Conversely, it is evident that DivFp ⊂ D+

P (M; p).
The set Fp is open in O(M). It is also contractible. To see the latter

point, define H : [0, 2]×Fp → Fp by

H(t, f)(z) =


f(p)e(1−t)

R z
p

df
f when t ∈ [0, 1], f ∈ Fp, z ∈M

(2− t)f(p) + t− 1 when t ∈ [1, 2], f ∈ Fp, z ∈M.

That the integral is well defined depends on the hypothesis thatH1(M,Z) =
0. The map H is continuous, and its range is contained in Fp, H(0, ·) is the
identity on Fp, and, finally, H(2, ·) is the function identically 1.
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As Fp is contractible, it follows that H1(Fp,Z) vanishes.
If D ∈ D+

P (M; p), then the fiber (Div−1D) ∩ Fp be described as follows.
Fix an fo ∈ O(M) with Divfo = D. Without loss of generality, fo can be
chosen to take the value 1 at p. The condition that Divg = D is then the
condition that for some h ∈ O∗(M), g = hfo The function g lies in F if and
only if h(p) /∈ (−∞, 0]. It follows that the fiber Div−1(D) ∩ Fp is (arcwise)
connected: Fix h ∈ O∗(M) with h(p) /∈ (−∞, 0]. If λ : [0, 1] → O∗(M) is
defined by

λ(t)(z) = fo(z)e
(1−t)

R z
p

dh
h

+(1−t)L(h(p))

where L denotes the branch of the logarithm defined on C \ (−∞, 0] that
vanishes at the point 1, then λ is a curve in O∗(M) that connects g to the
function fo. Note that as λ(t)(p) = fo(p)e(1−t)L(h(p)) for all t, the range of
λ is contained in the set Fp. Thus, as claimed, the fiber is connected.

The rest of the argument can proceed as in the case of D+
P (M): If U =

{Uα}α∈A is an open cover of D+
P (M; p), then the sets Ũα = Fp ∩Div−1(Uα)

constitute an open cover for Fp. An integral 1-cocycle on D+
P (M; p) in-

duces a corresponding integral 1-cocycle on Fp, which is a coboundary, for
H1(Fp,Z) = 0. The result follows as before.

Corollary 5.3. If H1(M,O) and H1(M,Z) vanish, and if p ∈ M, then
there is a continuous map ςp : D+

P (M; p) → O(M) with Div ◦ ςp(D) = D for
all D ∈ D+

P (M; p).

Proof. This is a consequence of the preceding lemma and Proposition 4.1.

Corollary 5.4. If H1(M,O) and H1(M,Z) vanish, then the map Div :
O(M) \ {0} → D+

P (M) is open.

Proof. As usual, the case that O(M) consists only of constants requires
separate comment, and is trivial. Therefore suppose that there is a non-
constant holomorphic function f on M. Let Do ∈ D+

P (M) be given. Fix
p ∈M \ suppDo. There is an associated section ςp : D+

P (M; p) → O(M).
Let fo ∈ O(M) satisfy Div fo = Do. We show that ifWo is a neighborhood

of fo in O(M)\{0}, then DivWo contains a neighborhood of Do in D+
P (M).

To do this, define σ : D+
P (M; p) → O(M) by σ(D) = fo

ςp(Do) ςp(D). This
map is continuous, and it satisfies σ(Do) = fo. By continuity there is a
neighborhood W̃o of Do such that σ(D) ∈Wo if D ∈ W̃o. This implies that
the map Div carries Wo onto a set that contains the neighborhood W̃o of
Do.

Thus, as claimed, Div is an open map.

Corollary 5.5. If H1(M,O) and H1(M,Z) vanish, then the topology on
the space D+

P (M) is the quotient topology induced by the map Div : O(M) \
{0} → D+

P (M).
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This follows from the continuity and openness of the map Div. (See [Ke,
p. 95].)

Corollary 5.6. If H1(M,O) and H1(M,Z) vanish then the space D+
P (M)

is metrizable.

Remark. Granted the corollary, it is easy to see that for every complex
manifold M, the space D+(M) of nonnegative divisors is metrizable. Fix
M and let {Bj}j∈N be a countable collection of domains in M each of
which is biholomorphic to a ball and the union of which covers M. Define
a map ρ : D+(M) → Πj∈ND+(Bj) by ρD = {D|Bj : j ∈ N}. The map
ρ is a homeomorphism from D+(M) onto the closed subset {{Dj : j ∈
N} ∈ Πj∈ND+(Bj) : Dj |Bjk = Dk|Bjk forall j, k ∈ N} of Πj∈ND+(Bj). As
the product is countable and as each D+(Bj) = D+

P (Bj) is metrizable, the
metrizability of D+(M) follows.

Proof of the corollary. Begin by recalling that the topology of a topological
space Y is regular if given a point y ∈ Y and a neighborhood U of y, there
is a neighborhood V of y with V̄ ⊂ U.

The space O(M) \ {0} is metrizable and separable, so its topology has
a countable basis. As the map Div is open, it follows that the topology on
D+
P (O) has a countable base.
Moreover, the topology of D+

P (M) is regular. For this, work with the
relative weak∗ topology. If Do ∈ D+

P (M), and if W is an open set containing
Do, then there is a collection {α1, . . . , αr} of compactly supported smooth
(N − 1, N − 1)-forms on M such that W contains the weak∗ neighborhood

W1 =
{
D ∈ D+

P (M) :
∣∣∣∣∫
D
αj −

∫
Do

αj

∣∣∣∣ < 1 for all j = 1, ..., r
}

of Do But then the closed neighborhood

W̄ 1
2

=
{
D ∈ D+

P (M) :
∣∣∣∣∫
D
αj −

∫
Do

αj

∣∣∣∣ ≤ 1
2

for all j = 1, ..., r
}

is contained in W1. Thus, the topology of D+
P (M) is regular as claimed.

The classical metrization theorem of Uryson and of Tikhonov [Ke, p. 125]
implies that D+

P (M) is metrizable.
Recall now the notion of an ANR [BP]. A topological space Y is an

ANR (absolute neighborhood retract) if it is metrizable and if whenever it is
embedded topologically as a closed subset of a metric space, X, there is a
neighborhood of X that retracts onto Y. We shall need three general facts
about ANR’s. One is a theorem of Hanner [BP, p. 69]: A paracompact
space that is locally an ANR is an ANR. There is also the fact that a retract
of an ANR is an ANR [BP, p. 68]. Finally, an open set in a locally convex
metrizable topological vector space is an ANR [BP, p. 69].

The following corollary is now evident:
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Corollary 5.7. If H1(M,O) and H1(M,Z) vanish, then the space D+
P (M)

is an ANR as is the space D+(M; p).

Proof. If O(M) consists of the constants the result is clear.
If O(M) contains a nonconstant function, the case of D+

P (M) is a conse-
quence of case of D+

P (M; p), for as noted above, a space that is locally an
ANR is itself an ANR.

To treat the case of D+
P (M; p), notice that as the group H1(D+

P (M; p),Z)
vanishes, Proposition 4.1 applies to yield a map σ : D+

P (M; p) → O(M)
with Div ◦ σ(D) = D for every D ∈ D+

P (M; p). Consequently, the map
σ◦Div : Div−1(D+(M; p)) → σ(D+(M; p)) is a retraction of the open subset
Div−1(D+(M; p)) of O(M) onto the range of σ. It follows that D+(M; p)
is an ANR as desired.

Corollary 5.8. Let M be a complex manifold with H1(M,O) = 0 and
H1(M,Z) = 0, and let p ∈ M. For each n = 0, 1, 2, . . . , the Čech and the
singular cohomology groups of D+

P (M) of dimension n with integral coeffi-
cients are isomorphic as are the corresponding groups of D+

P (M; p).

Proof. It is known [Bo, p. 107], [Ma] that for topological spaces of type
ANR the Čech and singular cohomology groups agree.

6. Liftings Over D+
P .

If X is a topological space and M is a complex manifold, we denote by
CX;O(M) and by CX;O∗(M) the sheaves of germs of continuous O(M)−valued
functions and of continuous O∗(M)−valued functions on X, respectively.
These are sheaves of abelian groups.

Lemma 6.1. Let M be a complex-analytic manifold of dimension N ≥ 1
with H1(M,Z) = 0, and let X be a paracompact topological space.

1) Every continuous map f : X → O∗(M) has a continuous logarithm if
and only if the Čech cohomology group H1(X,Z) = 0 vanishes.

2) For q ≥ 1 the Čech cohomology groups Hq(X, CX;O∗(M)) and Hq+1(X,
Z) are isomorphic.

Proof. Define E : CX;O(M) → CX;O∗(M) by Eg = e2πig. This is a homomor-
phism of sheaves of abelian groups.

The map E is surjective, that is, if xo ∈ X and fo : V → O∗(M) is a con-
tinuous map, V some neighborhood of xo in X, then there is a neighborhood
W ⊂ V of xo on which there is defined a continuous map g : W → O(M)
that satisfies Eg(x) = fo(x) for all x ∈W . This is seen as follows.

Fix ζ ∈ M and define a function ε : V → C∗ by ε(x) = fo(x)(ζ), for all
x ∈ V . (A word on notation may be in order here: For each x ∈ V , fo(x) is
an element of O∗(M) and so has a value at the point ζ ∈M, viz., fo(x)(ζ).)
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The evaluation function ε is continuous, so there is a neighborhood W of
xo, W ⊂ V, on which ε has a continuous logarithm: There is a continuous
function λ : W → C with eλ(x) = ε(x) for all x ∈W .

Define g̃ : W → O(M) by

g̃(x)(z) =
∫ z

ζ

dfo(x)
fo(x)

for all x ∈ W and for all z ∈ M. By hypothesis H1(M,Z) = 0, so the
integral does not depend on the choice of the path of integration from ζ
to z. Hence g̃ is a well-defined, O(M)−valued function on W ; it depends
continuously on x ∈W .

The map g : W → O(M) given by

g(x) =
1

2πi
(g̃(x) + λ(x)), for all x ∈W,

is continuous and satisfies Eg = fo. Thus, E is surjective.
The kernel of the sheaf homomorphism E is the sheaf Z of germs of con-

tinuous integer-valued functions onX, so we infer that, under the hypothesis
H1(M,Z) = 0, there is an exact sheaf sequence

0 → Z ↪→ CX;O(M)
E−→ CX;O∗(M) → 0.

This gives rise to the associated exact cohomology sequence, which con-
tains the segments

Γ(X, CX;O(M)) → Γ(X, CX;O∗(M)) → H1(X,Z) → H1(X, CX;O(M))

and

Hq(X, CX;O(M)) → Hq(X, CX;O∗(M)) → Hq+1(X,Z) → Hq+1(X, CX;O(M)).

Moreover the cohomology group Hq(X, CX;O(M)) is zero for q ≥ 1, since
the sheaf CX;O(M) of germs of continuous O(M)−valued functions on the
paracompact space X is a fine sheaf, as it is because it is a sheaf of modules
over the fine sheaf CX of complex-valued continuous functions on X. Then
the two statements of the lemma follow at once.

Lemma 6.2. Let M be a complex-analytic manifold of dimension N ≥ 1,
such that H1(M,O) and H1(M,Z) vanish. Let X be a topological space
that is paracompact and connected and has the further property that the Čech
cohomology groups H1(X,Z) and H2(X,Z) vanish. Let µ : X → D+

P (M)
be a continuous map. Then there exists a continuous map µ̃ : X → O(M)
such that Div µ̃(x) = µ(x) for all x ∈ X.

Proof. The case that O(M) = C is clear, so we assume from here on that
there is a nonconstant holomorphic function on M.

To begin with, the Lemma is correct locally in X. Let x ∈ X. The
point µ(x) lies in an open set D+

P (M; p) for some choice of p ∈ M. By
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Corollary 5.3, there is a section ςp : D+
P (M; p) → O(M) of the map Div.

By continuity, there is an open set Vx in X that contains x and such that
µ(Vx) ⊂ D+

P (M; p). As Div ◦ ςp ◦ µ(x) = µ(x), the Lemma is seen to be
correct locally on X.

Let V = {Vj}j∈N be a locally finite open covering of X with the property
that for each j there is a map µj : Vj → O(M) that satisfies Div ◦ µj = µ

in Vj . If µjk : Vjk → O(M) is defined by µjk(x)(z) = µj(x)(z)
µk(x)(z) , then µjk

is continuous, and {µjk}j,k∈N defines an element of the group of cocycles
Z1(V, CX;O∗(M)). By hypothesis, H2(X,Z) = 0, so by Lemma 6.1, this
cocycle is a coboundary: There are maps νj : Vj → O∗(M) with µj

µl
= νj

νk
on

Vjk. This implies that on Vjk the functions µjν−1
j and µkν−1

k agree, whence
we can obtain a well defined map µ̃ : X → O(M) by requiring that on
Vj , µ̃ = µjν

−1
j . This map µ̃ satisfies Div ◦ µ̃ = µ, so the Lemma is proved.

Lemma 6.3. Let M be a complex manifold with H1(M,O) = 0 and H1(M,
Z) = 0. For every nonnegative integer n the homotopy group πn(D+

P (M)) is
zero.

Proof. The lemma is trivial if there are no nonconstant holomorphic func-
tions on M, in which case D+

P (M) contains only 0−the zero divisor.
Thus, assume that O(M) contains a nonconstant function.
That π0(D+

P (M)) = 0 means simply that the space D+
P (M) is arcwise

connected, which it is.
In order to prove that π1(D+

P (M)) = 0, we begin by recalling that, as
H1(M,Z) = 0, the space O∗(M) is arcwise connected.

We have to prove that each continuous map γ : [0, 1] → D+
P (M) with

γ(0) = γ(1) is homotopic to the constant map t 7→ γ(0). To do this, first lift
γ to a closed curve µ inO(M). That is, µ is to be a closed curve that satisfies
Div ◦µ = γ. Lemma 6.2 or, alternatively, Proposition 4.1, implies that there
is a continuous map γ∗ : [0, 1] → O(M) that satisfies Div◦γ∗ = γ. In general,
γ∗ will not be a closed curve. However, the hypothesis that H1(M,Z) = 0
lets us modify γ∗ to obtain a closed lifting, µ, of γ: The function γ∗(0)

γ∗(1) is
holomorphic and zero-free on M and so has a holomorphic logarithm, say
λ. For µ take the function given by µ(t) = etλγ∗(t). As Div ◦ µ = γ, the
range of µ is contained in the space O(M) \ {0}, which, by Lemma 5.1, has
vanishing fundamental group, so the map µ is homotopic to the constant
map t 7→ µ(0): There is a map H̃ : [0, 1] × [0, 1] → O(M) \ {0} with
H̃(0, t) = µ(t), H̃(1, t) = µ(0) for all t ∈ [0, 1] and H̃(0, s) = H(1, s) for all
s. Then the map H = Div ◦ H̃ : [0, 1] × [0, 1] → D+

P (M) is a homotopy in
D+
P (M) connecting γ with the constant map t 7→ γ(0).
Hence D+

P (M) is simply connected.
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Next, assume that n ≥ 2. There is a distinction between the case n = 2
and the case n ≥ 3.

Consider first the case n ≥ 3. We are to show that each continuous map
φ : Sn → D+

P (M) is homotopic to a constant map. As the cohomology
groups H1(Sn,Z) and H2(Sn,Z) vanish, Lemma 6.2 yields a continuous lift
ϕ̃ : Sn → O(M) with Div ϕ̃(x) = ϕ(x) for all x ∈ Sn. The range of ϕ̃ is
contained in the space O(M)\{0}, which, by Lemma 5.1, has vanishing nth

homotopy group, so the map ϕ̃ is homotopic to a constant map: There is a
map H̃ : [0, 1]×Sn → O(M)\{0} with H̃(0, x) = ϕ̃(x) and H̃(1, x) = fo for
all x ∈ Sn, for some fixed fo ∈ O(M) \ {0} that is independent of x. Then
the map H = Div ◦ H̃ : [0, 1] × Sn → D+

P (M) is a homotopy in D+
P (M)

connecting ϕ with a constant map.
The case n = 2 requires something more.
Let ϕ : S2 → D+

P (M) be a continuous map with S2 realized in the usual
way as

S2 =
{
(x1, x2, x3) ∈ R3 : x2

1 + x2
2 + x2

3 = 1
}
.

Denote by Σ+ the subset S2 \ {(−1, 0, 0)} of S2 and by Σ− the subset
S2\{(1, 0, 0)}. Lemma 6.2 (considered forX = Σ+,Σ− and µ = ϕ|Σ+, ϕ|Σ−,
respectively) yields continuous maps ϕ+ : Σ+ → O(M) and ϕ− : Σ− →
O(M) with Div◦ϕ+ = ϕ on Σ+ and Div◦ϕ− = ϕ on Σ−. After multiplying
ϕ− by a function in O∗(M), we can suppose that ϕ+(0, 0, 1) = ϕ−(0, 0, 1).

Set Σ+− = Σ+ ∩ Σ−.
Let zo be a fixed point of M, and define h : Σ+− → C∗ by

h(x) =
ϕ+(x)(zo)
ϕ−(x)(zo)

, for all x ∈ Σ+−.

Define f : Σ+− → O∗(M) by

f(x) =
1

h(x)
ϕ+(x)
ϕ−(x)

for all x ∈ Σ+−.

This is a continuous O∗(M)-valued function with the properties that
f(x)(zo) = 1 for all x ∈ Σ+− and f(0, 0, 1) ≡ 1 on M.

Define then g : Σ+− → O(M) by

g(x)(z) =
∫ z

zo

df(x)
f(x)

for all x ∈ Σ+−.

The integral is independent of the choice of the path of integration from
zo to z ∈ M, for, if γ and γ′ are two such integration paths, the map
Σ+− → C given by x 7→

∫
γ−γ′

df
f(x) for all x ∈ Σ+−, being a continuous

2πiZ−valued map which is zero at the point (0, 0, 1), is identically zero
on Σ+−. Consequently g is a well-defined continuous map from Σ+− into
O(M), and it satisfies eg(x)(z) = f(x)(z), for all (x, z) ∈ Σ+− ×M.
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Since H1(S2, CS2;O(M)) = 0, there are continuous functions g± : Σ± →
O(M) with g+ − g− = g on Σ+−. Define f+ = eg

+
, f− = eg

−
on Σ+ and

Σ−, respectively. We have f+

f− = f on Σ+−.
Define ϕ̃+ = 1

f+ϕ
+ on Σ+ and ϕ̃− = 1

f−ϕ
− on Σ−. Then ϕ̃+ and ϕ̃− are

continuous O(M)−valued functions on Σ+ and Σ−, respectively. Moreover,
ϕ̃+ = ϕ̃− on Σ+−. Accordingly, if we set ϕ̃ = ϕ̃+ on Σ+ and ϕ̃ = ϕ̃− on Σ−,
then ϕ̃ is a well-defined map from S2 to O(M) with Div ◦ ϕ̃ = ϕ.

As before, this implies that ϕ is homotopic to a constant, and the proof
for the case n = 2 is complete.

The lemma is proved.
Now we are ready to prove our main theorems concerning D+

P (M).

Theorem 6.4. If M is a complex-analytic manifold of dimension N ≥ 1
such that H1(M,Z) = 0 and H1(M,O) = 0, then there exists a continuous
map ς : D+

P (M) → O(M) with the property that Div ς(D) = D for all
D ∈ D+

P (M).

Proof. By Corollaries 5.6 and 5.7, D+
P is a metrizable ANR and so is also

paracompact. Also, all the homotopy groups of D+
P (M) vanish. By a theo-

rem of Hurewicz [Hu, p. 57], all the singular homology groups Hs
n(D

+
P (M))

vanish, whence, by the universal coefficients theorem, the singular cohomol-
ogy groups vanish. As the space is an ANR, this implies that the Čech
cohomology groups vanish. The theorem now follows from Lemma 6.2.

Corollary 6.5. If M is a complex-analytic manifold of dimension N ≥ 1
such that H1(M,Z) = 0 and H1(M,O) = 0, then given an arbitrary topo-
logical space X and a continuous map ψ → D+

P (M), there is a continuous
map ψ̃ : X → O(M) with Div ◦ ψ̃ = ψ.

There is a result in the direction converse to Theorem 6.4 that requires
fewer hypotheses on M.

Theorem 6.6. Let M be a complex-analytic manifold of dimension N ≥ 1.
If there exists a continuous map ς : D+

P (M) → O(M) with the property that
Div h(D) = D for all D ∈ D+

P (M), then the space D+
P (M) is contractible,

and every zero-free holomorphic function on M has a holomorphic loga-
rithm.

Remark. The condition that every-zero free holomorphic function on
M have a logarithm is not, in general, equivalent to the condition that
H1(M,Z) = 0, i.e., to the condition that every zero-free continuous function
have a continuous logarithm, though the equivalence is correct for Stein
manifolds and, indeed, on all complex manifolds M with H1(M,O) = 0.
This follows by considering the cohomology sequence associated with the
exact sheaf sequence 0 → Z → O → O∗ → 0.
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Proof. The existence of a continuous map ς : D+
P (M) → O(M) such that

Div ς(D) = D for all D ∈ D+
P (M) implies that D+

P (M) is an ANR, following
the proof of Corollary 5.7.

Also, the existence of ς implies that every continuous map µ from any
topological space X into D+

P (M) lifts to a continuous map µ̃ : X → O(M)
such that Div ◦ µ̃ = µ.

Then all the homotopy groups of D+
P (M) vanish, following the part of

the proof of Lemma 6.3 concerning the case n ≥ 3. It is known [Hu, Th.
8.2, p. 218] that an ANR with vanishing homotopy groups is contractible.

It remains to prove that every zero-free holomorphic function on M has
a logarithm.

Each continuous map α : S1 → D+
P (M) lifts to a continuous map α̃ :

S1 → O(M) \ {0} such that Div ◦ α̃ = α.
Given a function g ∈ O∗(M), choose a continuous map H : [0, 1] →

O(M) \ {0} with H(0) = 1 and H(1) = g. (Note: H(0) is the function
identically one.) Define ϕ : [0, 1] → D+

P (M) by ϕ(t) = DivH(t). This is
a continuous path which is closed, for DivH(0) = DivH(1) = 0−the zero
divisor.

This closed path ϕ lifts to a closed path Φ : [0, 1] → O(M) \ {0} with
Div Φ(t) = ϕ(t) for all t ∈ [0, 1]. (That Φ is a closed path means that
Φ(0) = Φ(1).) There is a continuous map σ : [0, 1] → O∗(M) such that
H(t) = σ(t)Φ(t) for all t. Then

g =
H(1)
H(0)

=
σ(1)Φ(1)
σ(0)Φ(0)

=
σ(1)
σ(0)

.

As σ is continuous and always zero-free, if c is a piecewise smooth closed
path in M, then 1

2πi

∫
c
dσ(t)
σ(t) is a continuous integer and so is constant. Thus,

1
2πi

∫
c

dσ(0)
σ(0)

=
1

2πi

∫
c

dσ(1)
σ(1)

.

This implies that 1
2πi

∫
c
dg
g = 0. As this is correct for all c, the function g

has a logarithm.
The theorem is proved.
We give an additional result in the direction of Theorem 6.4 in which the

geometric condition on M is replaced by a geometric condition on the space
of parameters.

Theorem 6.7. Let M be a complex manifold with H1(M,O) = 0, and
let X be a topological space with H1(X,Z) = 0. If µ : X → D+

P (M) is
a continuous map, then there is a continuous map µ̃ : X → O(M) with
Div ◦ µ̃ = µ.

Proof. If Ω ⊂ M is a domain biholomorphically equivalent to a ball, then
as there is a continuous map ςΩ : D+

P (Ω) → O(Ω) with Div ◦ ςΩ(D) = D for
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all D ∈ D+
P (Ω), we can define µ̃Ω : X → O(Ω) by µ̃Ω(x) = ςΩ(µ(x)|Ω) to

get a map with Div ◦ µ̃Ω(x) = µ(x)|Ω for all x ∈ X.
Consequently, there is a locally finite cover {Uj}j∈N such that the inter-

sections Uj1···jr are all contractible and such that for all j ∈ N, there is a
continuous function Fj : X × Uj → C with Fj(x, ·) ∈ O(Uj) for all x ∈ X
and with Div Fj(x, ·) = µ(x)|Uj for all x ∈ X and all j ∈ N.

Define ψjk : X × Ujk → C by ψjk(x, z) = Fj(x,z)
Fk(x,z) . From here, the proof

simply follows the last nine paragraphs of the proof of Proposition 4.1.

Corollary 6.8. If M be a complex-analytic manifold such that H1(M,O)=
0, then the following four conditions are equivalent:

1) H1(M,Z) = 0;
2) The space D+

P (M) is simply connected;
3) The space D+

P (M) is contractible;
4) There exists a continuous map h : D+

P (M) → O(M) with the property
that Div h(D) = D for all D ∈ D+

P (M).

Proof. That the condition 1) implies 4) is the content of Theorem 6.4.
Theorem 6.6 yields that 4) implies 3). Plainly, 3) implies 2). What remains
to be seen is that condition 2) implies condition 1).

To this end, we show that if D+
P (M) is simply connected, then each

zero-free holomorphic function on M is an exponential. Accordingly, let
g ∈ O(M) be zero free. Let H : [0, 1] → O(M) be a continuous function
with H(0) = 1, H(1) = g. The map ϕ = Div ◦ H : [0, 1] → D+

P is a
closed curve in D+

P . As D+
P is contractible there is a continuous map m :

[0, 1] × [0, 1] → D+
P (M) with m(1, s) = D1 for all s ∈ [0, 1], D1 some fixed

divisor, with m(0, s) = ϕ(s) for all s ∈ [0, 1] and with m(t, 0) = m(t, 1) for
all t ∈ [0, 1]. The preceding theorem provides a lift of the map m to a map
m̃ : [0, 1]× [0, 1] → O(M) with Div ◦ m̃ = m. This implies that the map ϕ
lifts to a closed map Φ : [0, 1] → O(M) with Div ◦ Φ = ϕ. We are now in
the situation encountered at the end of Theorem 6.6. The argument there
shows that g is an exponential. It follows that H1(M,Z) = 0.

The Corollary is proved.
Another corollary of Theorem 6.7 is the following:

Corollary 6.9. If M is a complex manifold with H1(M,O) = 0, then the
homotopy groups πn(D+

P (M)) vanish for n = 0, 2, 3, . . . .

7. Domains in Stein Manifolds.

Theorem 6.4 is established under two hypotheses: the analytic hypothesis
that H1(M,O) vanish and the geometric hypothesis that H1(M,Z) vanish.
Theorem 6.6 establishes the necessity of the geometric hypothesis. We shall
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show that for manifolds that are domains in Stein manifolds, the analytic
hypothesis can be abandoned.

Let M be a domain in a Stein manifold. A theorem of Rossi [Ro] implies
that M has an envelope of holomorphy, M̃, which is itself a Stein manifold.

For each g ∈ O(M), let g̃ ∈ O(M̃) denote the extension of g to M̃. The
map g 7→ g̃ effects a topological isomorphism between the Fréchet spaces
O(M) and O(M̃), which carries O∗(M) onto O∗(M̃).

We will need below the remark that ifH1(M,Z) = 0, thenH1(M̃,Z) = 0,
too. This is evident: The vanishing of H1(M,Z) implies that each zero-free
f ∈ O(M) is of the form eg, g ∈ O(M) whence each zero-free f̃ ∈ O(M̃)
is of form eg̃, g̃ ∈ O(M̃). As M̃ is a Stein manifold, the latter condition
implies that H1(M̃,Z) = 0.

Lemma 7.1. The map ψ : D+
P (M) → D+

P (M̃) defined by by ψ(Div g) =
Div g̃, is a homeomorphism.

Proof. The map ψ is injective. If f, g ∈ O(M) \ {0} and if Div f̃ = Div g̃,
then f̃/g̃ ∈ O∗(M̃), whence f/g ∈ O∗(M).

The map ψ is plainly surjective.
The inverse ψ−1 : D+

P (M̃) → D+
P (M) is continuous: If, for g̃o, g̃n ∈

O(M̃) \ {0}, n = 1, 2, . . . , Div g̃n → Div g̃o, then, with go = g̃o|M and
gn = g̃n|M, Div gn → Div go.

It is less evident that ψ itself is continuous.
To prove the continuity of ψ, let gn, n = 1, 2, . . . and go be elements of

O(M) \ {0} such that Div gn → Div go. Set Dn = Div gn and Do = Div go.
As Dn → Do, the set F = {D1, D2, . . . } is a normal family of nonnegative
divisors on M.

Put F̃ = {D̃1, D̃2, . . . }, where D̃n = Div g̃n. The set F̃ is a set of non-
negative divisors in the Stein manifold M̃. According to results of Oka and
Fujita - see [Ba] and the references it contains - the domain of normality of
the family F̃ is a domain of holomorphy in M̃, say M1. (The domain of
normality of a family of divisors is the largest domain on which the family is
a normal family.) As F is a normal family on M, we have M⊂M1 ⊂ M̃.
This implies that M1 = M̃, for M̃ is the envelope of holomorphy of M.
That is, the family F̃ is a normal family in M̃. Consequently, the sequence
{D̃n}∞n=1 has a convergent subsequence {D̃nj}∞j=1. Let D̃ be the limit of
this sequence. The divisor D̃ on M̃ is a divisor that on M agrees with Do.
This implies that D̃ = ψ(Do). We thus have that the sequence {D̃n}∞n=1

converges to ψ(Do). Accordingly, the map ψ is continuous.
The lemma is proved.

Theorem 7.2. If M is a domain in a Stein manifold N , and if H1(M,Z) =
0, then there is a continuous map ς : D+

P (M) → O(M) with Div◦ ς(D) = D

for all D ∈ D+
P (M).
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Proof. Denote by M̃ the envelope of holomorphy of M. It is a Stein
manifold and so satisfies H1(M̃,O) = 0. We shall regard M as being a
subset of M̃. Let ψ : D+

P (M) → D+
P (M̃) be the homeomorphism of Lemma

7.1. Theorem 6.4 applies to the manifold M̃, so there is a map σ : D+
P (M̃)

that satisfies Div ◦ σ(D) = D for all D ∈ D+
P (M̃). The desired map ς is

given by ς(D) = σ(ψ(D))|M.
The theorem is proved.

8. Line Bundles.

Some of the preceding results have analogues for holomorphic line bundles.
Given a complex manifold M and a holomorphic line bundle L π→M over
M, denote by L(M) the space of sections of L overM. Given a holomorphic
section, s, of L, there is an associated divisor Div s ∈ D+(M). If D+

L(M)
denotes the space of all these divisors, the map Div : L(M)\{0} → D+(M)
defined in this way is continuous as a consequence of the theorem of An-
dreotti and Norguet used above since the bundle L is locally trivial. As
D+
L(M) is a subset of the space D+(M), the natural topology on it is

metrizable,
In this section we shall be concerned mainly with line bundles L for which

the space L(M) is infinite dimensional over C.

Lemma 8.1. If M is a complex manifold for which H1(M,Z) vanishes,
then the group H1(D+

L(M),Z) vanishes.

Proof. The point is that for a given divisor D ∈ D+
L(M), the fiber Div−1(D)

consists of all multiples of some fixed section s ∈ L(M) by zero-free holomor-
phic functions on M. As we have seen earlier, the hypothesis that H1(M,Z)
vanish implies the connectedness of the space O∗(M). Granted this, the
proof can proceed exactly along the lines of the first part of the proof of
Lemma 5.2.

Theorem 8.2. Let M be a complex manifold for which the groups H1(M,Z)
and H1(M,O) both vanish. If L π→M is a holomorphic line bundle for
which the space L(M) is infinite dimensional, then there is a continuous
map ς : D+

L(M) → L(M) with Div ◦ ς(D) = D for all D ∈ D+
L(M).

Note. The hypotheses of this theorem involve the cohomology of M with
values in the sheaf OM, not with values in the sheaf LM of germs of sections
of the line bundle L as might be expected.

Proof. Fix an open cover U = {Uj}j∈N of the manifold M by contractible
Stein open sets Uj for which the intersections Ujk are also contractible.

For each j, let rj : D+
L(M) → D+(Uj) be the restriction map given by

rj(D) = D|Uj . The hypotheses imply that the the bundle L is trivial over Uj ;
let sj ∈ L(Uj) be a zero-free section. By Theorem 6.4, there is a continuous
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map σj : D+(Uj) → O(Uj) with Div ◦ σj(D) = D for every D ∈ D+(Uj).
Define then ςj : D+

L(M) → L(Uj) by

ςj = (σj ◦ rj)sj .

Thus, Div ◦ ςj(D) = D|Uj for all D ∈ D+
L(M).

Define gjk(D, z) = ςj(D)
ςk(D)(z) so that gjk is a continuous, zero-free function

on D+
L(M)× Ujk with the property that for each D, gjk(D, ·) ∈ O(Ujk).

If there are zero-free continuous functions gj on D+
L(M)×Uj with gj(D, ·)

∈ O(Uj) and gj

gk
= gjk on D+

L(M) × Ujk, then the the map ς : D+
L(M) →

L(M) defined to be g−1
j ςj on Uj is a well defined continuous map from

D+
L(M) to L with the property we seek.
For each D, the functions gjk(D, ·) define a cohomology class in the

group H1(M,O∗). Attached to this cohomology class is the Chern class
c(D) ∈ H2(M,Z). The exact cohomology sequence associated with the
sheaf sequence 0 → Z → OM → O∗

M → 0 shows that, under the hypothesis
that H1(M,O) vanish, the cocycle {gjk(D, ·)}j,k∈N is trivial if and only if
its Chern class is.

The Chern classes in question may be determined as follows: Since
H1(D+

L(M),Z) vanishes, the continuous zero-free functions gjk have con-
tinuous logarithms, say λjk on Ujk. The Chern class c(D) is the cohomology
class inH2(M,Z) determined by the integral 2-cocycle {cjkl(D)}j,k,l∈N given
by

cjkl(D) =
1

2πi
{λjk + λkl + λlj}.

This is a continuous integer-valued function, so as D+
L(M) is connected, it

is independent of D.
Fix a divisor Do ∈ D+

L(M). By definition, there is a section so ∈ L(M)
with Div so = Do. If we define κk = ςj(Do)

so
, then κj ∈ O∗(Uj), and

κj

κk
= gjk(Do, ·). Thus, the cohomology class {cjkl}j,k,l∈N is trivial: There

are integers {mjk}jk∈N with mkl −mjl +mjk = cjkl on Ujkl.
Then the family {log gjk(D, ·) − mjk}j,k∈Z is a continuous family of 1-

cocycles with values in OM for the covering U . Again invoke Michael’s
selection theorem provides continuous functions gj on D+

L(M) × Uj with
gj(D, z) depending holomorphically on z ∈ Uj and with gjk = gj − gk.

It follows that if ς(D)(z) = ςj(D)(z)
gj(D,z)

, then ς is a well defined map from

D+
L(M) to L(M) with Divς(D) = D for all D ∈ D+

L(M).
The Theorem is proved.
In contrast with the case of holomorphic functions-the case of the trivial

bundle, there is no apparent extension of this result to the case of arbitrary
domains in a Stein manifold. Whereas if D is a domain in a Stein manifold,
the sheaf OD of germs of holomorphic functions on D extends naturally to
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the sheaf OD̃ of germs of holomorphic functions on the envelope of holo-
morphy, D̃, of D, in general a locally free sheaf of rank 1 or, equivalently, a
holomorphic line bundle, on D will not extend to a locally free sheaf on D̃.

As a particular instance in which the theorem applies, the following may
be cited. Let Σ be a simply connected Stein manifold of dimension n. If
one has a continuous family {Dx}x∈X of divisors each of which is known to
be the divisor of a holomorphic n-form on Σ, then there is a corresponding
continuous family {Ωx}x∈X of holomorphic n-forms on Σ with Div Ωx = Dx.

As in the earlier-considered case of holomorphic functions, Theorem 8.2
yields some topological information about the space D+

L(M).

Corollary 8.3. If M is a complex manifold for which the groups H1(M,Z)
and H1(M,O) vanish and if L π→M is a holomorphic line bundle with
L(M) infinite dimensional, then the space of divisors D+

L(M) is a con-
tractible ANR. In particular, all of its homotopy groups vanish.

We conclude this section with some comments on the situation that ob-
tains when the space of sections L(M) is finite dimensional. This can occur
in either of two ways. It may be that L(M) = {0}. In this case D+

L(M) is
empty by definition.

Alternatively, dimC L(M) may be a positive integer, say d. Then neces-
sarily O(M) consists only of the constants: If s is a global section of L other
than zero section, then f 7→ fs is a linear isomorphism of O(M) into L(M).
If the latter space is finite dimensional, then necessarily O(M) reduces to
the constants. (Recall here the standing convention that we are dealing only
with connected manifolds.)

Thus, for D ∈ D+(L) the fiber π−1(D) is C∗. Consequently, D+
L(M) is

topologically equivalent to the complex projective space Pd−1(C).

9. Lifting Normal Families.

In this section we remark that, in essence, Stoll’s Theorem B has a solution
whenever his Problem A has a general solution.

Theorem 9.1. Let M be a complex-analytic manifold of dimension N ≥ 1.
Assume that there exists a continuous map h : D+

P (M) → O(M) with the
property that Div h(D) = D for all D ∈ D+

P (M). If N ⊂ D+
P (M) is a

compact set of nonnegative principal divisors on M, there exists a compact
set K ⊂ M and a compact set K of holomorphic functions on M with
DivK = N and such that, for each f ∈ K, there is a point zf ∈ K with
f(zf ) = 1.

Proof. First, fix a compact set Xo ⊂ M, and let Wo ⊃ Xo be an open set
with compact closure. Denote by No the set of all divisors in N the support
of which is disjoint from Wo. This is plainly a closed subset of N, so it is a
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compact set of divisors. Let h : D+
P (M) → O(M) be a continuous map as

in the statement of the theorem. As the map is continuous, the set h(N0)
is a compact subset of O(M), which we shall denote by Ko.

Let zo be a fixed point of the set K, and let εo denote the functional
of evaluation at the point zo, so that, for f ∈ O(M), εo(f) = f(zo). This
is a continuous linear functional, and on the compact set No it omits the
value zero. Accordingly, there are positive numbers ro and Ro such that
ro < |εo(f)| < Ro for every f ∈ Ko. Define h̃o : N → O(M) by

h̃o(D) =
h(D)

h(D)(zo)
.

Then for all D ∈ No, we have h̃o(D)(zo) = 1. Moreover, the set K̃o =
{h̃o(D) : D ∈ No} is a compact set in O(M).

To continue, denote by N1 the subset of N that consists of all the divisors
in N the supports of which meet W o. This is a compact set; it is not disjoint
from No. Let {zj}j=1,2,... be a countable dense set in M, and for each j,
let {Vj,k}k=1,2,... be a countable neighborhood basis for zj that consists of
relatively compact open sets. For each j, k = 1, 2, . . . , let

Nj,k =
{
D ∈ N1 : (suppD) ∩ V̄j,k = ∅

}
.

As V̄j,k is compact, the set Nj,k is open in N1. We have that⋃
j,k=1,2,...

Nj,k = N1,

so by compactness a finite number of the Nj,k cover N1. Choose such a finite
set, say {Njν ,kν}ν=1,... ,q. Let zν be the zj associated with Njν ,kν . Each of the
sets Kν = Njν ,kν , ν = 1, . . . , q, is compact. Consequently, each of the sets
Kν = h(Kν) is a compact subset of O(M). For every ν, let K̃ν =

{ f
f(zν) : f ∈

Kν
}
. The set K̃ν is compact, Div K̃ν = Kν , and if f ∈ K̃ν , then f(zν) = 1.

The compact set K we seek in M is the set {zo, z1, . . . , zq}, and the set
K is the set ∪ν=1,... ,q K̃ν .

The proof of the Theorem is completed.

Appendix. Proof of Theorem 1.0.

Our object here is to give a proof of Theorem 1.0 along lines somewhat
different from those occurring in Stoll’s proof. In fact, we shall prove a
formally different theorem:

Theorem 10.1. If Ω is a domain in CN that contains the closed unit ball
B̄N , then there is a map h : D+(Ω; 0) → O(BN ) that satisfies Div ◦ h(D) =
D|BN for all D ∈ D+(Ω; 0) and that is continuous when the space D+(Ω; 0)
is endowed with the relative weak* topology and the space O(BN ) is endowed
with its usual topology of uniform convergence on compacta.



332 G. LUPACCIOLU AND L. STOUT

This result is formally different from Theorem 1.0 in that here the space
of divisors is taken to have the relative weak* topology whereas in Theorem
1.0, it is understood to be endowed with the topology introduced by Stoll.
As convergence in Stoll’s sense implies convergence in the weak* sense, as
we noted in Section 5, the theorem just stated implies Theorem 1.0.

In the proof indicated below, it will be useful to know that on the space
D+(Ω) the relative weak* topology is identical with the relative strong topol-
ogy. In Section 5 we proved this, but the first proof given there, that is, the
proof of the equivalence of the relative weak* topology, the relative strong
topology and Stoll’s topology, depends on the work in Stoll’s paper [St],
which draws on Theorem 1.0. It was to avoid this circularity that we gave
in Section 5 an independent proof of the equivalence of the relative weak*
and the relative strong topologies on D+(M).

The proof we give for this follows well known lines; the whole point is to
get solutions that vary continuously.

To begin the proof of Theorem 10.1, fix Ω, and fix Ro > 0 small enough
that Ω ⊃ RoB̄N . Define ψ : (CN \ {0})× [0, 1] → CN to be the real-analytic
map given by

ψ(z, t) = (1− t)z + tRo
z

|z|
.

The partial map ψ(·, 0) is the identity, and ψ(·, 1) is the radial retraction of
CN \ {0} onto RoS2N−1.

For an irreducible complex hypersurface, V, in Ω that does not pass
through the origin, define a current TV ∈ D1(RoBN ) by the condition that
if β ∈ D2N−1(RoBN ), then

TV (β) =
∫
V×[0,1]

ψ∗β.(4)

The integral is well defined, for since the support of β is a compact subset of
RoBN , the support of ψ∗β is a compact subset of (V × [0, 1). The variety V
has locally finite volume (of dimension 2N−2) in Ω, so the real variety V ×R
has locally finite volume (of dimension 2N − 1) in Ω×R. This implies that
if γ ∈ D2N−1(Ω×R), then

∫
V×R γ is defined and that the map γ 7→

∫
V×R γ

is an element, [V × R], of D2N−1(CN × R). It also implies that if γ is any
(2N − 1)−form on CN × R with locally bounded, measurable coefficients
such that supp γ ∩ (V × R) is compact, then the integral

∫
V×R γ exists. In

particular TV (β) is defined when β ∈ D2N−1(RoBN ).
The current TV satisfies

dTV = −[V ]|RoBN(5)

where, as usual, [V ] denotes the current of integration over the variety V .
This fact is simply Stokes’s theorem: By definition, dTV (α) = TV (dα), which
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gives

TV (dα) =
∫
V×[0,1]

ψ∗dα =
∫
V×[0,1]

dψ∗α,

and, by Stokes’s theorem, this is∫
b(V×[0,1])

ψ∗α =
∫
b(V×[0,1])

ψ∗dα = −
∫
V
α.

If D =
∑

jmjVj is a nonnegative divisor on Ω with V1, V2, . . . distinct, ir-
reducible complex hypersurfaces in Ω none of which pass through the origin,
define

TD =
∑
j

mjT[Vj ].(6)

The family Vj , j = 1, 2, . . . , is locally finite in Ω, so the sum (6) is finite for
each choice of D. We have

dTD = −
∑
j

mj [Vj ]|RoBN .

Lemma 10.2. The map D 7→ TD is continuous from D+(Ω; 0) to D1(RoBN )
when the two spaces are given their respective weak* topologies.

Proof. Given a net {Dι}ι∈I in D+(Ω; 0) that converges to Do ∈ D+(Ω; 0)
in the sense that for each β ∈ D2N−2(Ω), limι∈I Dι(β) = Do(β), we are to
prove that for each β ∈ D2N−1(RoBN ), limTDι(β) = TDo(β), i.e., that if
Dι =

∑
jmιjVιj with {Vιj} for fixed ι a locally finite family of irreducible

complex hypersurfaces in Ω and if Do =
∑

jmojVoj is the corresponding
decomposition of Do, then

lim
ι

∑
j

mιj

∫
Vιj×[0,1]

ψ∗β =
∑
j

moj

∫
Voj×[0,1]

ψ∗β(7)

for each β ∈ D2N−1(RoBN ).
To this end, note first that there is δo > 0 sufficiently small that for ι ∈ I

sufficiently large, suppDι ∩ δoBN = ∅.
As Dι → Do in the weak* sense, the convergence also takes place in the

sense of the strong topology, i.e., uniformly on bounded sets in D2N−1(Ω).
(Recall the discussion at the end of Section 3.)

With β ∈ D2N−1(Ω), write β =
∑

|J |+|K|=2N−1 bJKdz
J∧dz̄K for a suitable

choice of functions bJK ∈ D0(RoBN ). The support of β is contained in the
ball (Ro − δ1)BN for some δ1 > 0. As ψ(z, t) = (1 − t)z + tRo( z|z|) ≥ |z|,
it follows that for every t ∈ [0, 1] and for all J,K supp bJK(ψ(z, t)), qua
function of z, is contained in the ball (Ro − δ1)BN . Moreover, if εo > 0 is
fixed, then the derivatives with respect to z of order no more than k of the
functions bJK(z, t) are bounded uniformly in t (and in J and K) on the



334 G. LUPACCIOLU AND L. STOUT

spherical region εo < |z| < Ro − δ1. That is to say, the set {bJK(·, t)}t∈[0,1]

is a bounded set in D0(RoBN \ εoBN ).
Write ψ∗β = B′ + B′′ ∧ dt where B′ ∈ D2N−1(RoBN ) does not contain

the factor dt and where B′′ ∈ D2N−2(RoBN ) is also free of the factor dt.
Then

TDι(β) =
∑
j

mιj

∫ 1

0

(∫
Vιj

B′′

)
dt.

The last paragraph implies that the family B′′ =
∑

J,K b
′′
JK(z, t)dzJ ∧ dz̄K

of forms of degre 2N − 2 in z and z̄ indexed by the parameter t ∈ [0, 1] is a
bounded family in D2N−2(RoBN ). Thus the convergence of

∑
jmιj

∫
Vιj
B′′

to
∑

jmoj

∫
V oj B

′′ is uniform in t. Accordingly, we can integrate with respect
to t, t ∈ [0, 1] to find that, as desired, TDι(β) → TDo(β).

The lemma is proved.
As noted above, ifD ∈ D+(Ω; 0), then the current−TD satisfies d(−TD) =

[D]|(RoBN ). Set −TD = S0,1 + S1,0 with S0,1 ∈ D0,1(RoBN ) and S1,0 ∈
D1,0(RoBN ). As d = ∂+ ∂̄ and as [D] is of bidegree (1, 1), it follows that the
current S0,1 satisfies the equation ∂̄S0,1 = 0 on RoBN . As a ∂̄−closed cur-
rent, it is ∂̄-exact. We want to see that it is possible to choose a ∂̄−primitive
for S0,1 that depends continuously on TD and so continuously on D. In fact,
this analysis will be carried out not on the full ball RoBN but rather on the
smaller ball BN .

We shall need the observation that TD is a current with measure coeffi-
cients, whence the same is true of S01.

Recall the well known explicit solution for ∂̄ on the ball that is given in
detail, e.g., in [Ru2]. Let η : BN × B̄N → [0, 1] be a function of class C∞
that satisfies i) η = 1 near the diagonal ∆ = {(z, z) : z ∈ BN} and ii) η = 0
on a neighborhood of BN × bBN . The map s : BN × B̄N → CN is defined by

s(z, ζ) = η(z, ζ)(ζ − z) + [1− η(z, ζ)](ζ̄ − z̄).

In terms of s the kernel Ks is defined by

Ks(z, ζ) = 〈ζ − z, s(z, ζ)〉−Nω′(s̄(z, ζ)) ∧ ω(ζ).

In this definition, the following notation is used. ω(ζ) denotes the holo-
morphic N−form dζ1 ∧ · · · ∧ dζN . If the vector s(z, ζ) has coordinates
(s1, . . . , sN ), then ω′(s̄(z, ζ)) is the (0, N − 1)−form given by

ω′(s̄(z, ζ)) =
N∑
j=1

(−1)j−1sj ∂̄ζs1 ∧ · · · [j] · · · ∧ ∂̄ζsN .

Finally, 〈ζ − z, s(z, ζ)〉 =
∑N

j=1(ζj − zj)sj . An application of the kernel
Ks is that with it, one can solve ∂̄ as follows. (See [Ru2, p. 351]). If
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α =
∑N

j=1 ajdζ̄j is a ∂̄−closed form of bidegree (0, 1) on B̄N with coefficients
of class C1 then the function uα given for z ∈ BN by

uα(z) =
1

NcN

∫
BN

Ks(z, ζ) ∧ α(ζ)(8)

is of class C1 on BN and satisfies there ∂̄uα = α.
In this statement, cN denotes the constant 1

N !(−1)N(N−1)/2(2πi)N .
Write

Ks(z, ζ) = 〈ζ − z, s(ζ, z)〉−N
N∑
j=1

Θj(z, ζ)ω[j](ζ̄) ∧ ω(ζ)

where by ω[j](ζ̄) we understand the form obtained from ω(ζ̄) by deleting the
factor dζ̄j . Thus,

Ks(z, ζ) ∧ α = 〈ζ − z, s(ζ, z)〉−N
N∑
j=1

(−1)jΘj(z, ζ)aj(ζ)ω(ζ̄) ∧ ω(ζ).

In this, Θj is a combination of the functions sj and their first derivatives
with respect to ζ̄.

As remarked above, the current S0,1 has measure coefficients, say

S0,1 =
N∑
j=1

µjdζ̄j .

Consider then the function

UD(z) =
1
nc′n

N∑
j=1

∫
(−1)jΘj(z, ζ)

〈ζ − z, s(ζ, z)〉N
dµj(ζ).(9)

Here the constant c′N is the constant chosen so that 1
cN
ω(ζ̄) ∧ ω(ζ) = 1

c′N
dL

where we understand by dL Lebesgue measure on CN . Notice that the
integration in (8) is supported in ∪suppµj . The function UD satisfies ∂̄uD =
S0,1.

The last assertion requires a preliminary remark about regularity. The
denominator 〈ζ − z, s(ζ, z)〉 has positive real part away from the diagonal,
and near the diagonal, it agrees with the |ζ − z|2N . It follows that the term

Θj(z,ζ)

〈ζ−z,s(ζ,z)〉N is majorized by constant
|ζ−z|2N−1 . As the convolution of a measure with

compact support and a locally integrable function is locally integrable, it
follows that the function UD is locally integrable on BN . Thus, the equation
∂̄UD = S0,1 is at least meaningful in the sense of distributions.

To prove that this equation is correct, we argue as follows. We are to see
that if β =

∑N
j=1 βjω(ζ) ∧ ω[j](ζ̄) is a smooth form on BN with compact



336 G. LUPACCIOLU AND L. STOUT

support, then ∫
BN

UD∂̄β = S0,1(β) =
N∑
j=1

∫
βj(z)dµj(z).

Introduce a smooth approximate identity {χε}ε>0 with χε(z)
= ε−2Nχ( z

ε2N ) for a nonnegative compactly supported smooth even function
χ on Cn with integral one. Introduce also the convolution Sε = χε ∗ S0,1.

This is a smooth form: Sε =
∑N

j=1 χε ∗µjdζ̄j , and it is ∂̄−closed, for S0,1

is ∂̄−closed. Let uSε be the solution of ∂̄u = Sε given by (8), so that, by
definition,

uSε(z) =
1

Nc′N

∫
|ζ|<1

∫ N∑
j=1

(−1)jΘj(z, ζ)χε(ζ − ξ)
〈ζ − z, s(ζ, z)〉N

dµj(ξ)dL(z).

For a smooth, compactly supported form β on BN∫
uSε ∂̄β =

∫
∂̄uSε ∧ β

=
∫
Sε ∧ β → S0,1(β) =

N∑
j=1

∫
βjdµj .

Also, if b is the compactly supported smooth function on BN such that∫
uSε ∂̄β =

∫
∂̄uSε(z)b(z)dL(z),

then ∫
uSε ∂̄β

=
∫

1
Nc′N

N∑
j=1

∫ ∫
(−1)jΘj(z, ζ)χε(ζ − ξ)b(z)

〈ζ − z, s(ζ, z)〉N
dµj(ξ)dL(ζ)dL(z)

=
∫

1
Nc′N

N∑
j=1

∫ ∫
(−1)jΘj(z, ζ)χε(ζ − ξ)b(z)

〈ζ − z, s(ζ, z)〉N
dL(ζ)dL(z)dµj(ξ).

As ε→ 0, this tends to

1
Nc′N

N∑
j=1

∫ ∫
(−1)jΘj(z, ξ)b(z)
〈(ξ − z, s(ξ, z))〉N

dL(z)dµj(ξ)

=
∫
UD(z)b(z)dL(z).
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This gives the desired equation∫
UD∂̄β = S0,1(β).

The integral (9) defines UD ∈ L1
loc(BN ), and UD satisfies ∂̄UD = S0,1,

whence ∂∂̄uD = D on BN . The divisor D|BN is principal: D|BN = Divf for
some f ∈ O(BN ), so D|BN = ∂∂̄ log |f | also. Thus the function wD = UD−
log |f | is pluriharmonic on BN . This implies that UD is pluriharmonic on
BN \suppD. It follows further that UD = log |feg| for some g ∈ O(BN ), and
thus, if we denote by VD the pluriharmonic conjugate of UD that vanishes
at the origin, then eUD+iVD = feg is holomorphic and has divisor D|BN .

Finally, we must verify that the map D 7→ eUD+iVD is continuous with
respect to the weak* (or strong) topology on the space of divisors and the
topology of uniform convergence on compacta on the space of holomorphic
functions on BN . Granted that we are specifying that VD is the plurihar-
monic conjugate of UD that vanishes at the origin, the function VD de-
pends continuously on UD. Thus, it is enough to see that as Dι → Do,
UDι(z) → UDo(z) uniformly on compacta in BN \ suppDo. For this, notice
that if K is a compact subset of BN \ suppDo, then there is an open set
W ⊂ BN with suppDι ∩W = ∅ for all ι > ιo. Since the convergence of Dι

to Do is in the strong sense, it follows that the corresponding functions UDι

converge to UDo uniformly on K, and we are done.
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