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We give a new criterion for the propagation up to the
boundary of the analytic singularities of the solutions of mi-
crodifferential systems. The class of systems we are able to
treat is larger than in D’Ancona-Tose-Zampieri, 1990; namely
the condition of transversal ellipticity is here replaced by
the non-microcharacteristicity only for the conormal to the
boundary. The method also is far different. It is perhaps the
most effective application of the theory of the second microlo-
calization at the boundary by Uchida-Zampieri, 1990.

The microlocal theory of boundary value problems origi-
nated from the works by Kataoka and Schapira in the early
80’s. In this frame the propagation of the singularities is now
almost completely understood. Among other contributions
we quote: Schapira, 1986, Kataoka, 1980, Schapira-Zampieri,
1987. This new contribution covers one of the few problems
not yet explained at least in the case of transversal bicharac-
teristics.

Let M be a real analytic manifold, X a complexification of M , S a real
analytic hypersurface of M , M± the two open components of M \ S (in a
neighborhood of a point x ∈ S). Let T ∗X

π→ X be the cotangent bundle to
X endowed with the canonical 2-form σ = σR +

√
−1σI, and T ∗MX

πM→ M
the conormal bundle to M in X. (Sometimes, if no confusion may arise, we
write π instead of πM .) The latter is R-Lagrangian (i.e. σR|TT ∗MX = 0) and
I-symplectic (i.e. σI|TT ∗MX is non-degenerate). In particular if H = HR +√
−1HI is the Hamiltonian isomorphism, then we have three identifications:

H : T ∗T ∗X → TT ∗X

HR : T ∗T ∗X → TT ∗X,

HI : T ∗T ∗MX → TT ∗MX.

We shall deal with the sheaves of Sato’s microfunctions CM |X , CS|X and the
complexes of microfunctions at the boundary CM±|X . Let V be a smooth

involutive submanifold of Ṫ ∗MX(:def.= T ∗MX \T ∗XX), and Ṽ the R-Lagrangian
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390 GIUSEPPE ZAMPIERI

submanifold obtained as the union of the complexifications of the bichar-
acteristic leaves of V . Assume there are real analytic functions r and s on
T ∗MX such that

(1) s|V = 0, r|S×MT ∗MX = 0, and {s, r} ≡ 1.

Let W̃ be the union of the integral leaves of HR
<erC issued from Ṽ ∩{<erC =

0}; this also is an R-Lagrangian submanifold. Let M be a coherent EX -
module ( i.e. a microdifferential system) in a neighborhood of a point p ∈
S ×M V and denote by char(M) the characteristic variety of M. We note
that, since CM±|X |T ∗MX are concentrated in degree 0, they are endowed in
a natural way with a structure of EX -modules. Let x = π(p), recall the
identification π∗M (= tπ′M ) : T ∗xM → T ∗p T ∗MX, and take θ ∈ T ∗SM .

Theorem 1. Assume

±HI(π∗Mθ) /∈ Cp(char(M), Ṽ ),(2)

±HI(π∗Mθ) /∈ Cp(char(M), W̃ ),(3)

where C(·, ·) is the Withney normal cone (cf. [K-S 2]). Then

(4) Γπ−1(S)HomEX
(M, CM±|X)p = 0.

Observe now that we have an identification T ∗xM ↪→ T ∗xX ↪→ T ∗p T ∗X
where the first embedding is obtained by means of the complex structure of
X and the second by means of π∗. Let V C be the complexification of V in
T ∗X. As an application of Theorem 1 we get the boundary version of the
microlocal Holmgren’s Theorem by Bony [B]:

Example 1. Assume

CH(π∗θ) ∩ Cp(char(M), V C) = {0}.
(That is assume the embedding S ↪→ M be non-microcharacteristic for µ.)
Then (4) follows. To see how this follows from Theorem 1, one just needs
to remark that the assumption of Example 1 obviously implies (2) and (3).

Example 2. We take coordinates z ∈ X, x ∈M, (z; ζ) ∈ T ∗X, (x;
√
−1η) ∈

T ∗MX, z = x +
√
−1y, ζ = ξ +

√
−1η, write z = (z1, z

′, z′′), ζ = (ζ1, ζ
′, ζ ′′),

and assume

S = {x ∈M : x1 = 0}, V = {η1 = 0, η′ = 0}, p = (0;
√
−1dxn).

Then (2) is equivalent to

(5) |η1| ≤ c[|ξ1|+ |ζ ′|+ |ξ′′|+ |y′′|] ∀(z; ζ) ∈ charM,

and (3) is equivalent to

(6) |η1| ≤ c[|x1|+ |ζ ′|+ |ξ′′|+ |y′′|] (z; ζ) ∈ charM.

Let us consider the case M = EX
EXP where P = P (x,D) is a differential

operator with principal symbol σ(P ) = ζ2
1 + a(z′′, ζ ′)+ b(z′′, ζ ′, ζ ′′) with a, b
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real on T ∗MX homogeneous of order 2, and with b|T ∗MX ≤ 0. For S and V

defined a above, (2) and (3) hold. In fact{
<eσ(P )≤ξ2

1 − η2
1 + |a(z′′, ζ ′)| ≤ ξ2

1 − η2
1 + c|ζ ′|2 if ξ′′ = 0, y′′ = 0

=mσ(P )=2ξ1η1 if ξ′ = 0, ξ′′ = 0, y′′ = 0.

Thus if σ(P ) = 0, ξ′ = ξ′′ = y′′ = 0 then either η1 = 0 or ξ1 = 0 whence
|η1| ≤ c|η′|. By an easy variant of the local Bochner’s tube theorem this
implies

|η1| ≤ c[|ζ ′|+ |ξ′′|+ |y′′|] if σ(P ) = 0.

Thus for instance in R4 and with S defined by x1 = 0, the operator

P1 = D2
1 ±D2

2 + D2
3 + x2

3D
2
4,

verifies (4) at p = (0;±
√
−1dx4),

P2 = D2
1 ± xm

3 D2
2 + x2

3D
2
3 + (x2

3 + x2
4)D

2
4,

at any p = (0;
√
−1η) with η1 = 0, η2 = 0, and finally

P3 = D2
1 + x2

3D
2
2 + x2

3D
2
3 + (x2

2 + x2
3 + x2

4)D
2
4,

at any p = (0;
√
−1η) with η1 = 0. (The V ’s we may use here are V =

{η1 = 0, η2 = 0} as for P1, P2 and V = {η1 = 0} as for P3 respectively.) In
particular the two traces on S of a real analytic solution u of P3u = 0 on
M± are real analytic at 0.

Remark. In [D’A-T-Z, Corollary 1.2] one enconters the same statement
as in Theorem 1 but with (2) replaced by:

(2 -bis) ṪV T ∗MX ∩ Cp(char(M), Ṽ ) = ∅.

Note that (2-bis) implies (2) because HI(π∗θ) belongs to ṪV T ∗MX due to
(1). But the converse is false as for instance for the above symbol ζ2

1 + a+ b
(with b|T ∗MX ≤ 0) which fulfills (2-bis) only when a|T ∗MX < 0 (and (2) for

any a
>
< 0).

Proof of Theorem 1. We use the trick of the adjunction of an auxillary
variable due to M. Kashiwara. We put M̂ = M × R, Ŝ = S × R, X̂ =
X × C, M̂± = M± × R, denote by t (resp. τ) the new variable in R, (resp.
C), denote by j : X ↪→ X̂ the embedding, and pick up p̂ ∈ p×

(
{0} ×R Ṫ ∗RC

)
.

Then from the exact sequence:

0→ OX̂

τ→ OX̂ → j∗OX → 0,

we get, by applying the functor µhom(ZM̂± , ·), a new exact sequence

(7) 0→ (CM±|X)p
⊗δt→ (CM̂±|X̂)p̂

t→ (CM̂±|X̂)p̂.
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Therefore by the injectivity of the morphism ⊗δt on the left of (7) we can
treat our problem at p̂ ∈ V̂ = V × Ṫ ∗RC, or else assume from the beginning
V regular (involutive) i.e. suppose that the 1–form does not vanish on TV .
We can then find complex symplectic homogeneous coordinates (z, ζ) =
(x +

√
−1y; ξ +

√
−1η) ∈ T ∗X, (x;

√
−1η) ∈ T ∗MX such that r = x1, s =

η1, V = {(x;
√
−1η) ∈ T ∗MX; η1 = η′ = 0}. We put

X = C×X ′ ×X ′′, M = R×M ′ ×M ′′,

S = {0} ×M ′ ×M ′′, M± = R± ×M ′ ×M ′′,

M1 = R×X ′ ×M ′′, S1 = {0} ×X ′ ×M ′′ M±
1 = R± ×X ′ ×M ′′.(8)

We identify C ∼→ R2, z1 7→ (x1, y1), and complexify (x1, y1) to (xC
1 , yC

1 ) ∈ C2.
We set

X̃ = C2 ×X ′ ×X ′′, M̃ = R2 ×X ′ ×M ′′,

S̃ = ({0} × R)×X ′ ×M ′′, M̃± = (R± × R)×X ′ ×M ′′.

Note that (identifying M̃, S̃, M̃± to subsets of X), we have

V = M ×M̃ T ∗
M̃

X, Ṽ = T ∗
M̃

X, W̃ = T ∗
S̃
X.

We shall deal with the sheaves (resp. complexes of sheaves) of usual (resp.
“boundary”) microfunctions CS|X , CM |X , CS̃|X̃ , CM̃ |X̃ (resp. CM±|X , CM̃±|X̃).

Let T ∗X
tj′← X ×X̃ T ∗X̃

jπ
↪→ T ∗X̃, be the mappings canonically associated

to the embedding j : X ↪→ X̃. Let M be a coherent EX -module (i.e.
a microdifferential system) on X, and OC̄ (the module associated to) the
Cauchy-Riemann equation ∂̄z1 . The proof of Theorem 1 will require several
steps.

Proposition 2. (2) and (3) imply that the natural morphisms

RHomEX
(M, CM1|X) ∼→ RΓπ−1(M1)RHomEX̃

(M⊗OC̄, CM̃ |X̃)[+1](9)

RHomEX
(M, CS1|X) ∼→ RΓπ−1(S1)RHomEX̃

(M⊗OC̄, CS̃|X̃)[+1],

are isomorphisms.

(Remark that tj′ is injective over j−1
π (char(OC̄)). For this reason we

neglect the functor Rtj′∗j
−1
π in the terms on the right side of the above

isomorphisms. We shall often act similarly in the following.)

Proof. We consider the commuting diagrams:

X ↪→ X̃
↑ ↑

M1 ↪→ M̃,

X ↪→ X̃
↑ ↑
S1 ↪→ S̃.
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According to [K-S 1, Th. 2.3.1], what we need to prove is that the embed-
ding M1 ↪→ M̃ (resp. S1 ↪→ S̃) is microhyperbolic for the system OC̄ ⊗M.
(As for the additional condition (2.3.1) of loc. cit., this is always satisfied
in a suitable neighborhood U of p (and withM still being the induced sys-
tem of OC̄ ⊗M|U on tf ′f−1

π (U)).) Microhyperbolicity means that in the
identification:

(10) T ∗xM̃ ↪→ T ∗xM̃ ⊕ (T ∗
M̃

X̃)x ' T ∗x X̃ ↪→
π∗

T ∗p T ∗X̃,

(which follows from the fact that R2 ×M ′′ is totally real in C2 × X ′′), we
have

(11) HR
(
π∗

(
T ∗M1

M̃
)

x

)
∩ Cp

(
char

(
M⊗OC̄z1

)
, T ∗

M̃
X̃

)
= {0},

and

(12) HR
(
π∗

(
T ∗S1

S̃
)

x

)
∩ Cp

(
char

(
M⊗OC̄z1

)
, T ∗

S̃
X̃

)
= {0}

respectively. Let (xC
1 , yC

1 ; ξC
1 , ηC

1 ) be coordinates in T ∗C2
(xC

1 ,yC
1 )

; then (11) and

(12) are equivalent, for σ(P )(xC
1 , ξC

1 , z′, ξ′, z′′, ξ′′) = 0 and ξC
1 +
√
−1ηC

1 = 0,
to:

(13) |<eηC
1 | ≤ c[|<eξC

1 |+ |=mxC
1 |+ |ζ ′|+ |ξ′′|+ |y′′|],

and

(14) |<eηC
1 | ≤ c[|xC

1 |+ |ζ ′|+ |ξ′′|+ |y′′|]
respectively. But by the substitution <eηC

1 = −=mξC
1 , (13) and (14) are

immediate consequences of (2) and (3) respectively. �

Proposition 3. Assume (2) and (3). Then the natural morphism

(15) RHomEX
(M, CM±

1 |X
) ∼→ RΓπ−1(M1)RHomEX̃

(M⊗OC̄, CM̃±|X̃)

is an isomorphism.

Proof. (Again we neglect here the functor Rtj′∗j
−1
π in the right of (15).)

The morphism CA|X → Rtj′∗j
−1
π RΓπ−1(A)CÃ|X̃ (A = M±

1 , M1, S1) induces
the vertical arrows in the following commuting diagram in the category
Db(T ∗X):
(16)

RHomEX
(M, CS1|X) → RHomEX

(M, CM1|X) . . .
↓ ↓

RΓπ−1(S1)RHomEX̃
(M⊗OC̄, CS̃|X̃) → RΓπ−1(M1)RHomEX̃

(M⊗OC̄, CM̃ |X̃) . . .

· · · → ⊕
±

RHomEX
(M, CM±

1 |X)

↓
. . .⊕

±
RΓπ−1(M1)RHomEX̃

(M⊗OC̄, CM̃±|X̃).
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By Proposition 3 the two first vertical arrows are isomorphisms. Hence the
third is an isomorphism too. �

For V1 defined in T ∗MX by η′ = 0, let us recall the complex by [U-Z] of
2-hyperfunctions at the boundary along V1:

(17) B2,V1

M±|X = RΓπ−1(M)(CM±
1 |X

)[d],

(d = codim V1). We put

M̃2 = R2×M ′×M ′′, S̃2 = ({0}×R)×M ′×M ′′, M̃±
2 = (R±×R)×M ′×M ′′,

and

M̃3 = (R×C)×X ′×M ′′, S̃3 = ({0}×C)×X ′×M ′′, M̃±
3 = (R±×C)×X ′×M ′′.

Along with V1 we also consider in T ∗
M̃2

X̃, V2 = {η′ = 0}, V3 = {=mηC
1 =

η′ = 0}. We define similarly to (17):

B2,V2

M̃±
2 |X̃

= RΓπ−1(M̃2)(CM̃±|X̃)[d],(18)

B2,V3

M̃±
2 |X̃

= RΓπ−1(M̃2)(CM̃±
3 |X̃

)[d + 1].

According to [U-Z, Th. 2.6], B2,V1

M±|X |V1 and B2,Vi

M̃±
2 |X̃
|Vi , i = 2, 3 are all con-

centrated in degree 0, (whence they are naturally endowed with a struc-
ture of EX or EX̃–modules). We also recall the complexes of usual 2–
hyperfunctions by Kashiwara ([K]):

(19) B2,V1

M |X , B2,Vi

M̃ |X̃ (i = 2, 3), B2,V1

S|X , B2,Vi

S̃2|X̃
(i = 2, 3),

defined similarly to (17), (18). It is classical that they are all concentrated
in degree 0. We apply RΓπ−1(M)(·)[d] to (9), (15) and get

RHomEX
(M,B2,V1

M |X) ∼→ RΓπ−1(M)RHomEX̃
(M⊗OC̄,B2,V2

M̃2|X̃
)

RHomEX
(M,B2,V1

S|X ) ∼→ RΓπ−1(S)RHomEX̃
(M⊗OC̄,B2,V2

S̃2|X̃
)(20)

RHomEX
(M,B2,V1

M±|X) ∼→ RΓπ−1(M)RHomEX̃
(M⊗OC̄,B2,V2

M̃±
2 |X̃

).

The natural (restriction) morphism ZM1 → ZM , resp. ZM̃3
→ ZM̃ , induces

a morphism

(21) CM |X |V1 → B
2,V1

M |X , resp. B2,V2

M̃2|X̃

∣∣∣
V3

→ B2,V3

M̃2|X̃
.

It is classical (cf. [K]) that the first is injective. We show now:

Proposition 4. The morphism

(22) B2,V2

M̃2|X̃

∣∣∣
V3

→ B2,V3

M̃2|X̃

is injective.
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Proof. Fix p = (xo;
√
−1η′′dx′′) ∈ V3 and let Z2, resp. Z3, describe the

family of closed convex subsets of Rn+1
(=mxC

1 ,=myC
1 ,y′,y′′)

such that{
Z2 ⊂ {y| < y′′, η′′ >≥ ε(|y′′|+ |=mxC

1 |+ |=myC
1 |)},

Z2 ∩ {y′′ = 0, =mxC
1 = 0, =myC

1 = 0} ⊂ {0},
resp. {

Z3 ⊂ {y| < y′′, η′′ >≥ ε(|=mxC
1 |+ |y′′|)},

Z3 ∩ {=mxC
1 = 0, y′′ = 0} ⊂ {0}.

Thus the arrow in (22) can be represented, between the stalks at p, by:

lim
→

B,Z2

Hn
M̃2+

√
−1Z2

(B,OX)→ lim
→

B,Z3

Hn
M̃2+

√
−1Z3

(B,OX),

for B describing a fundamental system of neighborhoods of xo = π(p). Now
for any B (convex) and for any Z2, Z3, there exist Z ′

2 ⊃ Z2 such that
Z3 \Z ′

2 ⊂⊂ B. If then K2 = B̄ ∩ (M̃2 +
√
−1Z ′

2), K3 = B̄ ∩ (M̃2 +
√
−1Z3),

we have K3 \K2 = (M̃2 +
√
−1(Z3 \ Z ′

2)) ∩B and therefore

Hn−1
M̃2+

√
−1(Z3\Z′

2)
(B,OX) = Hn−1

K3\K2
(B,OX) = 0,

by a celebrated theorem due to M. Kashiwara. �

Note that the first morphism in (21) is a particular case of the second.
Hence Proposition 5 provides also a proof of the injectivity of the former.

The natural morphisms ZM±
1
→ ZM± , resp. ZM̃±

3
→ ZM̃± , in turn induce

morphisms:

(23) CM±|X |V1 → B
2,V1

M±|X resp. B2,V2

M̃±
2 |X̃

∣∣∣
V3

→ B2,V3

M̃±2|X̃
.

Neither of them is injective ([U-Z, Remark 2.7]). Nevertheless they can
be injective when restricted to solutions of non-characteristic systems. Let
V4 = tj′−1(V ) ∩ T ∗

M̃
X̃ (i.e. V4 is the submanifold of T ∗

M̃2
X̃ defined by

=mξC
1 = =mηC

1 = η′ = 0); note that V4 = V2∩char(OC̄z1
) = V3∩char(OC̄z1

).
We have:

Proposition 5. Let SC ↪→ X be non-characteristic for M, and consider
the sequence of morphisms:

HomEX
(M, CM±|X)|V → HomEX

(
M,B2,V1

M±|X

) ∣∣∣
V

(24)

∼→ Γπ−1(M)HomEX̃

(
M⊗OC̄z1

,B2,V2

M̃±
2 |X̃

) ∣∣∣
V4

↪→ HomEX̃

(
M⊗OC̄z1

,B2,V2

M̃±
2 |X̃

) ∣∣∣
V4

→ HomEX̃

(
M⊗OC̄z1

B2,V3

M̃±
2 |X̃

) ∣∣∣
V4

,
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with the first and the fourth arrow induced by (23), the second by (20), and
the third being the natural identification. Then the composition of the mor-
phisms in (23) is injective.

Remark 6. In particular the first morphism in (24) is injective. Our
proof will show that this is in fact injective on the whole V1 (not only on
V ) according to [U-Z, Th. 2.8]. However the full generalization of this
statement (in analogy with Proposition 4), i.e. the injectivity of the last
morphism in (24) is not clear to us because of the lack of a 2-microlocal
version of the watermelon-cut Theorem (cf. [S]).

Proof. We consider

(25)

B2,V2

M̃±
2 |X̃

∣∣∣
S̃2×M̃3

T ∗
M̃3

X̃
→ B2,V3

M̃±
2 |X̃

∣∣∣
S̃2×M̃3

T ∗
M̃3

X̃

↓ ↓
RΓF̃±B2,V2

S̃2|X̃

∣∣∣
S̃2×M̃3

T ∗
M̃3

X̃
[1] → RΓF̃±(B2,V3

S̃2|X̃
)
∣∣∣
S̃2×M̃3

T ∗
M̃3

X̃
[+1],

where F̃± = (S̃2 ×M̃2
T ∗

M̃2
X̃) ± R+θ with θ the exterior conormal to M̃+

in M̃ . Remark that the vertical arrows of (25) are induced by the natural
morphisms B2,Vi

M̃±
2 |X̃
→ B2,Vi

S̃2|X̃
[1] which factorize through RΓF̃±B2,Vi

S̃2|X̃
[1] (due

to supp(B2,Vi

M̃±
2 |X̃

) ∩ supp(B2,Vi

S̃2|X̃
) ⊂ F̃±). If we apply RHomEX̃

(M⊗OC̄z1
, ·)

to (25) and take the 0-th cohomology, the arrow on the bottom becomes
injective. In fact let Ỹ = S̃C

2 be the complexification of S2 (i.e. Ỹ =
CyC

1
×X ′×X ′′), denote by k : Ỹ → X̃ the natural embedding, and let V ′

i =
tk′k−1

π (Vi). By the aid of division formulas for B2,Vi

S̃2|X̃
, the above injectivity

is reduced to the injectivity of

B2,V ′
2

S̃2|Ỹ

∣∣∣
V ′
3

↪→ B2,V ′
3

S̃2|Ỹ
.

But this is, under different notations, the same statement as in Proposition
4. We consider now:

(26)

CM±|X |S×M1
T ∗M1

X → B2,V1

M±|X

∣∣∣
S×M1

T ∗M1
X

↓ ↓
RΓF±(CS|X)|S×M1

T ∗M1
X [1] → RΓF±(B2,V1

S|X )
∣∣∣
S×M1

T ∗M1
X

[1],

with F± = S ×M T ∗MX ± R+θ. The arrow in the bottom is injective, over
solutions of M, for the same argument as for (25). Concerning the first
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vertical arrow, this is represented at each point p ∈ S ×M T ∗MX by

(CM±|X)p '
(CM̄±|X

CS|X

)
p

↪→ H1
F±(CS|X)p,

(where CM̄±|X are the Kataoka’s microfunctions along the closed half-spaces
M̄±) whose injectivity is immediately proved by the aid of a Legendre trans-
formation (cf. [Kat] and [S]).

We are ready to conclude. We apply RHomEX
(M, ·) to (26) and

RHomEX̃
(M⊗OC̄z1

, ·) to (25) respectively (and neglect Rtj′∗j
−1
π ). We glue

the diagrams so obtained by means of the second and third of (20) and
by the natural morphism RΓπ−1(M)(·)→ ·. We thus obtain a long diagram
with the first vertical and all the bottom horizontal arrows injective over the
0-th cohomology. The composition of the upper horizontal arrows (which is
precisely the sequence of morphisms in (24)) is therefore also injective. �

End of proof of Theorem 1. Let ±θ be the exterior conormals to M̃± in
M̃ identified to vectors HR(±π∗θ) of TpT

∗X̃ (cf. (10)). Then clearly

(27) HR(±π∗(θ)) /∈ C(char(OC̄), Ṽ3).

Let SS(ZM̃±
3

) denote the microsupport of ZM̃±
3

in the sense of [K-S 2]. One
easily checks that

SS(ZM̃±
3

) =
(
M̃±

3 × T ∗
M̃3

X̃
)
± R+θ.

It is also easy to see that (27) implies

−HR(±π∗θ) /∈ C
(
char(OC̄),SS(ZM̃±

3
)
)

.

It follows, merely by definition of SS:

RΓπ−1(S̃3)RHomEX̃
(OC̄, CM̃±

3 |X̃
) = 0,

and thus, by applying RΓπ−1(M̃2)(·)[d + 1]:

(28) RΓπ−1(S̃2)RHomEX̃

(
OC̄,B2,V3

M̃±
2 |X̃

)
= 0.

In conclusion we have

Γπ−1(S)HomEX

(
M, CM±|X

)
|V ↪→ Γπ−1(S)HomEX

(
M,B2,V1

M±|X

) ∣∣∣
V

∼→ Γπ−1(S)HomEX̃

(
M⊗OC̄z1

,B2,V2

M̃±
2 |X̃

) ∣∣∣
V4

→ Γπ−1(S)HomEX̃

(
M⊗OC̄z1

,B2,V3

M̃±
2 |X̃

) ∣∣∣
V4

= 0,
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(where the first “↪→” follows from Remark 6, the second “ ∼→” from (20), the
third “→” from (23), and the last “=” from (28) respectively). On the other
hand the composition of “↪→”, “ ∼→” and “→” is injective by Proposition 5;
hence Γπ−1(S)HomEX

(M, CM±|X)|V = 0. The proof is complete. �

Aknowledgements. The author is grateful to an anonimous referee for
pointing out the problem in the second part of Remark 6 which lead to
Proposition 5.
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