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ON THE BOUNDEDNESS OF SINGULAR INTEGRALS

Eugene Fabes, Irina Mitrea, and Marius Mitrea

We present a simple, elementary proof of the T (1) theorem
of G. David and J.-L. Journé, as well as related results, which
is based on a Krein type lemma.

1. Introduction.

Establishing the L2-boundedness of singular integral operators is a funda-
mental problem in harmonic analysis which has always enjoyed center stage.
For a broader view of this active area of research see, e.g., [Ca], [CMM],
[MM], [CDM], [DJ], [DJS], [CJS], [Me], [Ch], [St] and the references
therein.

The main aim of this note is to indicate yet another way of proving such
L2 boundedness results which is inspired by an old lemma of M. G. Krein
([Kr]). Essentially, the latter asserts that if a linear operator T and its
formal adjoint T t are bounded on a Banach space X which is densely and
continuously embedded in a Hilbert space H, then T extends to a bounded
operator on H. We use this to give a new proof of the celebrated T (1)
theorem of David and Journé ([DJ]) in its full strength.

The actual context in which this lemma applies for a singular integral
operator T satisfying the usual set of hypotheses of the T (1) theorem is
when H = L2 and X = Cα. Of course, one first needs to localize the
problem for the latter space to embed properly in the former but, more
importantly, one has to ensure boundedness for T at the level of Hölder
continuous functions. However, this is essentially well known and requires
appropriate cancellations for T which, in turn, are secured by subtracting off
paraproducts. Other choices for X are possible but the one just described
yields perhaps the most elementary proof.

This proof is, in principle, quite flexible; in fact, we shall prove a “real-
valued” version of the T (b) theorem (cf. [MM], [DJS]), i.e. when the
constant 1 is replaced by an arbitrary positive, measurable function b which
is bounded away from zero and infinity. The approach can be adapted to
spaces of homogeneous type in the sense of [CoWe] and we believe that the
same strategy may also be successful in other cases of interest.
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2. Statement of theorem.

Recall that a distribution k ∈ D′(Rn × Rn) is called a standard kernel if its
singular support lies on the diagonal and, for some constant C > 0, satisfies

|k(x, y)| ≤ C|x− y|−n, ∀x 6= y,(2.1)

|∇xk(x, y)|+ |∇yk(x, y)| ≤ C|x− y|−(n+1) ∀x 6= y.(2.2)

Let ‖k‖ := inf {C; (2.1) − (2.2) hold}. A linear, continuous operator T :
D(Rn) −→ D′(Rn) is called a singular integral operator (of Calderón-Zyg-
mund type) if its Schwartz distribution kernel is standard. Also, T is said to
have the weak boundedness property if there exists a constant C such that

(2.3) |〈Tφ, ψ〉| ≤ C Rn(‖φ‖∞ +R‖∇φ‖∞)(‖ψ‖∞ +R‖∇ψ‖∞)

holds uniformly for φ, ψ ∈ C∞c (BR(z)), R > 0, z ∈ Rn. Here, and elsewhere,
BR(z) stands for the Euclidean ball of radius R centered at z ∈ Rn. We set

(2.4) ‖T‖WBP := inf {C; so that (2.3) holds uniformly

in the natural parameters}.

To state the main result, recall that BMO stands for the (John-Nirenberg)
space of functions of bounded mean oscillations in Rn. Also, a measurable
function b : Rn → C is called accretive if there exists κ > 0 (the accretivity
constant) such that Re b(x) ≥ κ > 0 for a.e. x ∈ Rn. Finally, Mb is the
operator of (pointwise) multiplication by b.

Theorem 2.1 ([DJ], [MM], [DJS]). Let b1, b2 be two essentially bounded,
accretive, real-valued functions and let T be a linear continuous operator
from b1C

∞
c (Rn) into (b2C∞c (Rn))′. Assume that Mb2TMb1 satisfies the

weak boundedness property and that, if K(x, y) stands for its distributional
kernel, then singsuppK(x, y) ⊆ diag(Rn × Rn) and the kernel k(x, y) :=
b2(x)−1K(x, y)b1(y)−1 satisfies (2.1)-(2.2).

Then, if T (b1), T t(b2) ∈ BMO, where T t is the formal adjoint of T , it
follows that T can be extended to a bounded operator on L2(Rn) with operator
norm controlled by ‖k‖, ‖T (b1)‖BMO, ‖T t(b2)‖BMO and ‖Mb2TMb1‖WBP.

As usual, T (b1) is defined as a “non-standard” distribution in view of
the fact that it pairs well with elements from b2C

∞
c (Rn) having vanishing

moment. Something similar applies to T t(b2).
Before commencing the actual proof, we shall record a couple of reduction

steps which are going to be important in subsequent arguments. The first
one, i.e. the reduction to the case when T (b1) = T t(b2) = 0, is classical. As
usual, this is accomplished by subtracting from T two paraproduct operators
L, M satisfying

(2.5) L(b1) = T (b1), Lt(b2) = 0 and Mt(b2) = T t(b2), M(b1) = 0.
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The existence of such operators is well known; cf., e.g., [DJS], [Me], [Da].
In the case when b1 = b2 = 1, the operators L and M have a particularly
simple form; see, e.g., [DJ], [Ch]. Re-denoting by T the difference T−L−M,
it follows that T satisfies the same hypotheses as in Theorem 2.1 and, in
addition, T (b1) = T t(b2) = 0.

Next, note that it suffices to show that T maps L2(BR(0)) boundedly
into itself with norm controlled by the same constitutive constants as in the
statement of Theorem 2.1, uniformly in R. That this implies the desired
conclusion is easily seen by letting R go to ∞ and using Fatou’s lemma.
Furthermore, it is enough to prove this only for R = 1, i.e. for

(2.6) T : L2(B1(0)) −→ L2(B1(0)).

This is a manifestation of the dilation invariant nature of our assumptions.
Specifically, if (Dρf)(x) := f(ρx) is the dilation operator of factor ρ > 0,
then DRT (DR−1f) = TRf where TR is the operator associated with the ker-
nel Rnk(Rx,Ry). It is trivial to check that this kernel satisfies (2.1)-(2.2)
with the same constant ‖k‖. Also, MDRb2TRMDRb1 satisfies the weak bound-
edness property with the same constant which works forMb2TMb1 and, since
Dρ is an isometry of BMO for any ρ > 0, ‖TR(DRb1)‖BMO = ‖T (b1)‖BMO,
‖T t

R(DRb2)‖BMO = ‖T t(b2)‖BMO. Of course, DRb1, DRb2 remain bounded
and accretive with the same bounds as b1, b2.

3. Boundedness on Hölder spaces.

With an eye toward proving the boundedness of the operator in (2.6) (with
appropriate control) which suffices for our purposes, we shall now analyze the
action of operators of this type on spaces of Hölder continuous functions.
To state the main result in this direction recall that, for 0 < α < 1 and
Ω ⊆ Rn,
(3.1)

Cα(Ω):=

{
f : Ω → C; ‖f‖Cα := ‖f‖∞+ sup

x,y∈Ω
|x− y|−α|f(x)− f(y)| <∞

}
.

Proposition 3.1. Let T be a singular integral operator with kernel k and let
b1, b2 be two essentially bounded, accretive functions such that Mb2TMb1 has
the weak boundedness property and that T (b1) = 0. Then for any α ∈ (0, 1)
and any η ∈ C∞c (B2(0)) the operator

(3.2) MηTMη : b1Cα(B2(0)) −→ Cα(B2(0))

is bounded with operator norm controlled in terms of α, ‖k‖, η,
‖Mb2TMb1‖WBP, ‖b1‖∞, ‖b2‖∞ and the accretivity constants.

The proof of this proposition involves only elementary estimates and
closely related results have been known for a long time (compare with, e.g.,
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[DJS], [Me]). However, for the reader’s convenience, below we sketch a
simple argument. To facilitate the presentation, we first isolate a technical
result (which is precisely where the weak boundedness property is used).

Lemma 3.2. With the hypotheses of Proposition 3.1, there holds

(3.3)

∣∣∣∣∣
∫
|x−y|<δ

k(x, y)b1(y) dy

∣∣∣∣∣ ≤ C, x ∈ Rn

uniformly for 0 < δ < ∞, where C is controlled by the same parameters as
in the statement of Proposition 3.1.

Proof. To begin with, let us note that the integral in (3.3) may not converge
absolutely and, in fact, must be interpreted in a distributional sense, as
explained below.

Denote by χE the characteristic function of a set E ⊆ Rn. Also, fix
some even function ψ ∈ C∞c (B3(0)) with ψ ≡ 1 in B2(0) and set ψt,w(x) :=
ψ(x−w

t ) for t > 0 and w ∈ Rn. Then, since T (b1) = 0, we may formally
write ∫

|x−y|<δ
k(x, y)b1(y) dy

=
∫
|x−y|>δ

(k(x, y)− k(z, y)) b1(y) dy

− T (b1ψδ,x)(z)−
∫

Rn

k(z, y)b1(y)(χBδ(x) − ψδ,x)(y) dy

=: I1(x, z) + I2(x, z) + I3(x, z).(3.4)

Before going any further a comment is in order here. The point is that,
generally speaking, the above integrals are to be understood in the sense of
distributions. In particular, in order to derive size estimates, they should
be integrated against (arbitrary) test functions. It is precisely in this sense
that all our subsequent estimates must be interpreted even though, in order
to shorten and simplify the exposition, we shall continue to manipulate
such expressions in a formal manner. Of course, the main emphasis is to
obtain bounds which depend exclusively on the relevant constants (as in the
statement of Theorem 2.1).

Next, we shall average the identity (3.4). To this end, let φ ∈ C∞c (B1/2(0))
be an even, nonnegative function with

∫
Rn φdx = 1. Also, denote the argu-

ment of the complex number
∫
|x−y|<δ k(x, y)b1(y) dy by θ = θ(x, δ) ∈ [0, 2π).
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Then, by virtue of the accretivity of b2,

C

∣∣∣∣∣
∫
|x−y|<δ

k(x, y)b1(y) dy

∣∣∣∣∣
≤ Re

∫
Rn

b2(z)δ−nφδ,x(z)eiθ
(∫

|x−y|<δ
k(x, y)b1(y) dy

)
dz

=
3∑

j=1

Re
∫

Rn

b2(z)δ−nφ(x−z
δ )eiθIj(x, z)dz

=: II1(x) + II2(x) + II3(x).(3.5)

For II1(x), the mean value theorem, (2.2) and the fact that |x−z| ≤ 1
2 |x−y|

on the domain of integration give
(3.6)

|II1(x)| ≤ C‖k‖‖b1‖∞‖b2‖∞δ−n

∫
Rn

φ(x−z
δ )
∫

δ<|x−y|

|x− z|
|x− y|n+1

dydz ≤ C.

Also, II2(x) is clearly controlled by ‖Mb2TMb1‖WBP, whereas
(3.7)

|II3(x)| ≤ C‖b1‖∞‖b2‖∞
∫

Rn

δ−nφ(x−z
δ )

(∫
δ/2<|z−y|<7δ/2

|k(z, y)| dy

)
dz.

Since k is standard, the last inner integral is trivially bounded independently
of δ and z and the desired conclusion follows. �

Based on this result it is now easy to tackle the

Proof of Proposition 3.1. Fix some 0 < α < 1 and take an arbitrary
f ∈ Cα(B2(0)). Then, for x ∈ B2(0) we write

T (b1ηf)(x) =
∫
|x−y|≤4

k(x, y)b1(y)((ηf)(y)− (ηf)(x))dy

+ (ηf)(x)
∫
|x−y|≤4

k(x, y)b1(y)dy.

In particular,

(3.8) ‖T (Mηb1f)‖L∞(B2(0)) ≤ C‖f‖Cα(B2(0)).

Next, for x, h ∈ Rn with |x|, |x + h| ≤ 2, we may write on account of the
fact that T (b1) = 0

|T (b1ηf)(x+ h)− T (b1ηf)(x)| ≤ I + II + III,



26 E. FABES, I. MITREA, AND M. MITREA

where

I :=

∣∣∣∣∣
∫
|x−y|≥2|h|

(k(x+ h, y)− k(x, y)) b1(y)((ηf)(y)− (ηf)(x)) dy

∣∣∣∣∣ ,
II :=

∣∣∣∣∣
∫
|x−y|≤2|h|

k(x, y)b1(y)((ηf)(y)− (ηf)(x)) dy

∣∣∣∣∣ ,
III :=

∣∣∣∣∣
∫
|x−y|≤2|h|

k(x+ h, y)b1(y)((ηf)(y)− (ηf)(x)) dy

∣∣∣∣∣ .
We seek a bound of the order of |h|α‖f‖Cα(B2(0)) for each quantity above.
Based solely on (2.1)-(2.2), the first two integrals are handled in a crude,
straightforward fashion and we omit the details. It is only the last term
which requires one more application of Lemma 3.2. Indeed, we have

|III| ≤
∫
|x−y|≤2|h|

|k(x+ h, y)b1(y)((ηf)(y)− (ηf)(x+ h))| dy

+ |h|α‖ηf‖Cα(B2(0))

∣∣∣∣∣
∫
|x−y|≤2|h|

k(x+ h, y)b1(y) dy

∣∣∣∣∣
=: III1 + |h|α‖ηf‖Cα(B2(0))III2.(3.9)

The first integral, III1, is treated essentially as II above, producing a bound
of the same order. Finally, for the second integral, Lemma 3.2 and (2.1) give

|III2| ≤

∣∣∣∣∣∣∣
∫

|x+h−y|<|h|

. . .

∣∣∣∣∣∣∣+
∫

|h|<|x+h−y|<3|h|

∣∣. . . ∣∣
≤ C0 + C1‖b1‖∞‖k‖

∫
|h|<|z−y|<3|h|

dy

|z − y|n
dy ≤ C2.(3.10)

This yields the right estimate for III also. To sum up, we have proved that

(3.11) sup
x,y∈Rn

|x− y|−α|T (Mηb1f)(x)− T (Mηb1f)(y)| ≤ C‖f‖Cα(B2(0))

which, together with (3.8), readily implies the desired conclusion. �

4. A functional analysis lemma and the end of the proof of
Theorem 2.1.

What allows us to pass from continuity on spaces of Hölder continuous
functions to continuity on spaces of square integrable functions is a certain
functional analytic argument which is a variation of a lemma due to M.G.
Krein [Kr] (cf. also [La], [Di]).
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Lemma 4.1. Let X be a Banach space and assume that

(4.1) (·, ·)i : X × X −→ C, i = 1, 2,

are two forms such that, for some M > 0,

(4.2) |(x, y)i| ≤M‖x‖X ‖y‖X ∀x, y ∈ X , i = 1, 2.

We also assume that each (·, ·)i, i = 1, 2, is accretive and symmetric in the
sense that

(4.3) Re(x, x)i ≥ κ‖x‖2
X , and (x, y)i = (y, x)i, ∀x, y ∈ X .

Consider next a linear normed space Y for which the inclusion ι : Y ↪→ X is
well defined, continuous and with dense range. Finally, let A,B : Y −→ Y
be two bounded, linear operators so that

(4.4) (Ax, y)1 = (x,By)2, ∀x, y ∈ Y.

Then both A and B extend to continuous operators on X with

(4.5) ‖A‖X→X , ‖B‖X→X ≤Mκ−1‖A‖1/2
Y→Y‖B‖

1/2
Y→Y .

Proof. For an arbitrary x ∈ Y, using (4.2)-(4.4) it follows that

(4.6) κ‖Ax‖2
X ≤ |(Ax,Ax)1| = |(x,BAx)2| ≤M‖x‖X ‖BAx‖X .

Therefore,

(4.7) ‖Ax‖X ≤ κ−1/2M1/2‖x‖1/2
X ‖BAx‖1/2

X

which, in particular, shows that it suffices to prove that BA extends to
a continuous operator on X with a suitable bound for its norm. To this
end, paralleling (4.6)-(4.7) but with BA in place of A (note that BA has
a bounded transpose in the sense of (4.4)) gives the estimate ‖(BA)x‖X ≤
κ−1/2M1/2‖x‖1/2

X ‖(BA)2x‖1/2
X . The key observation is that, in fact, any

power (BA)N will work in place of BA in this last inequality and, hence,
iterating j times according to powers of 2 gives

‖(BA)x‖X

(4.8)

≤ (M/κ)2
−1+···+2−j‖x‖2−1+···+2−j

X ‖(BA)2
j
x‖2−j

X

≤ (M/κ)2
−1+···+2−j‖x‖2−1+···+2−j

X ‖ι‖2−j

Y→X

(
‖(BA)2

j‖Y→Y

)2−j

‖x‖2−j

Y

≤ (M/κ)2
−1+···+2−j‖x‖2−1+···+2−j

X ‖ι‖2−j

Y→X ‖BA‖Y→Y‖x‖2−j

Y .

Passing to the limit j → ∞ yields ‖(BA)x‖X ≤ Mκ−1‖x‖X ‖BA‖Y→Y as
desired.
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Parenthetically, let us note that one can avoid arbitrarily high order it-
erations in the above reasoning. Indeed, for each x ∈ Y with ‖x‖X ≤ 1,
set

K(x) := sup {‖Ax‖X ; ∀A,B which satisfy the hypotheses of the lemma

and ‖A‖Y→Y , ‖B‖Y→Y ≤ 1} .

Now, by (4.7) it follows that K(x) ≤ κ−1/2M1/2K(x)1/2 and, further,
K(x) ≤ κ−1M , since K(x) is finite. The estimate (4.5) is then obtained
by rescaling. �

With all ingredients in place, we are now in a position to present the
final details in the proof of the Theorem 2.1. To this effect, let us recall
that we have reduced matters to showing that the operator T in (2.6) is
bounded with operator norm appropriately controlled. Further, it is trivial
to check that this is true if we can show that, for a fixed real valued function
η ∈ C∞c (B2(0)) with η ≡ 1 on B1(0),

(4.9) MηTMη : L2(B2(0)) −→ L2(B2(0))

is bounded with the right norm control. The important thing is that T (b1) =
T t(b2) = 0 so that Proposition 3.1 applied both to T and T t gives that

MηTMη : b1Cα(B2(0)) −→ Cα(B2(0))(4.10)

MηT
tMη : b2Cα(B2(0)) −→ Cα(B2(0))

are bounded with appropriate control.
At this point Lemma 4.1 applies to lift this to the L2 setting in the follow-

ing context. We take X := L2(B2(0)), Y := Cα(B2(0)), A := MηTMηMb1 ,
B := MηT tMηMb2 , where, if U is an operator then Ūf := Uf̄ , and

(4.11) (f, g)1 :=
∫
f b2ḡ dx, (f, g)2 :=

∫
fb1ḡ dx, f, g ∈ L2(B2(0)).

Since b1 and b2 are real-valued we have that (f, g)i = (g, f)i for i = 1, 2.
Next, the accretivity of bi entails the accretivity of the corresponding paring
(·, ·)i, i = 1, 2, whereas

(Af, g)1 =
∫
MηTMηMb1f Mb2 ḡ dx =

∫
f Mb1 MηT

tMηMb2 ḡ dx(4.12)

=
∫
f Mb1 MηT tMηMb2g dx = (f,Bg)2.

Note that the third equality above follows from the fact that Uf̄ = Ūf .
Thus, since Mb1 is a isomorphism of L2(B2(0)) onto itself, Lemma 4.1 gives
that MηTMη is bounded on L2(B2(0)) with the desired norm control. The
proof of the Theorem 2.1 is therefore finished.
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opérateur borné sur L2 pour les courbes Lipschitziennes, Annals of Math., 116
(1982), 361-388.

[CoWe] R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis,
Bull. Amer. Math. Soc., 83 (1977), 569-645.

[Da] G. David, Wavelets and Singular Integrals on Curves and Surfaces, Springer Ver-
lag LNM No. 1465, 1994.
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