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In this paper we prove an equivariant version of Hörman-
ders embedding theorem for Stein manifolds. More concrete-
ly, let G be a connected Lie group sitting in its complexi-
fication GC and D ⊆ GC a G × G-invariant Stein domain.
Under slight obstructions on D we construct a Hilbert space
H equipped with a unitary G × G-action and a holomorphic
equivariant closed embedding e : D → H∗\{0}.

Introduction.

An interesting problem in the field of equivariant complex analysis is: Given
a connected Lie group G sitting in its universal complexification GC, how do
the G × G-invariant Stein domains in GC look like. K.-H. Neeb has shown
in [Ne98] that all domains of the form

D = G expGC(iDh),

where Dh ⊆ g is a Ad(G)-invariant convex domain consisting of elliptic
elements, i.e., all operators i adX, X ∈ Dh, are diagonalizble over the reals,
are Stein manifolds. Moreover there is also strong evidence for that these
D exhaust up to multiplication with NGC(G) all proper bi-invariant Stein
domains in GC (cf. [GG77], [Ne98]).

By Hörmander’s Embedding Theorem one knows that every Stein man-
ifold of dimension n can be embedded biholomorphically as a closed sub-
manifold of C2n+1 (cf. [Hö73]). Now the natural question is: Given a
biinvariant Stein domain D = G expGC(iDh) in GC, does there exist a G×G-
equivariant embedding into some complex Hilbert space H endowed with a
unitary G × G-action. In this paper we show that under quite natural as-
sumptions the answer is affirmative. More concretly, if Ad(G) is closed in
Aut(g), the center Z(G) is compact and the convex domain Dh is pointed,
then there exists a positive definite biinvariant holomorphic kernel K on D,
such that the map

eK : D → H∗
K\{0}, z 7→ Kz

defines a G × G-equivariant closed embedding. Here HK denotes the re-
producing kernel Hilbert space and Kz : HK → C, f 7→ f(z) the point
evaluations corresponding to K.
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Our method to construct such a kernel K is to sum up kernels Kλ associ-
ated to unitary highest weight representations (πλ,Hλ) of G over a certain
lattice Γ ⊆ it∗, where t denotes a compactly embedded Cartan subalgebra
of g. More precisely, we set

K =
∑
λ∈Γ

‖λ‖NKλ

with ‖ · ‖ denoting a norm on it∗ and N ∈ N. These kernels K have the
important property of tending to infinity at the boundary of D, i.e.,

lim
z→∂D

K(z, z) = ∞;

a result which is crucial for veryfying the closedness of the map eK .
We think that our results are a little bit surprising and we do not really

understand what is actually going on. For instance, what is the reason for
that one has to exclude zero in H∗

K to achieve the closedness of the map
eK , or, is it possible to find an equivariant closed holomorphic embedding
D → E into a complex topological vector space endowed with a continuous
G × G-action. We hope that our results give rise to a further discussion
leading to a better understanding of these phenomena.

I. The boundary behaviour of bi-invariant kernels.

In this first section we characterize the boundary behaviour of biinvari-
ant holomorphic positive definite kernels on a bi-invariant domain D =
G Exp(iDh) by means of the boundary behaviour on the abelian submani-
fold DT : = T Exp(i(Dh∩t)). If the convex invariant set Dh ⊆ g is a pointed
cone, we show that limz→∂D K(z, z) = ∞ if and only if limz→∂DT

K(z, z) =
∞. As abelian domains are comparable easily to deal with contrary to the
highly non-commutative bi-invariant domains D, this result allows us in the
sequel to make quite explicit computations.

Definition I.1. Let V be a finite dimensional real vector space and V ∗ its
dual.

(a) For each subset E ⊆ V we define its dual cone by E? : = {α ∈
V ∗ : (∀x ∈ E) α(x) ≥ 0}. We note that E? is a convex closed subcone of
V ∗.

(b) For a convex subset E ⊆ V we set

H(E) : = {x ∈ V : x+E = E}, and lim E : = {x ∈ V : x+E ⊆ E}.

We call H(E) the edge and lim E the limit cone of E. Note that H(E) is a
vector space, H(E) = H(E) if E is open and that lim E is a convex cone in
V .

(c) A convex set E is called pointed if it contains no affine lines. Note that
if E is open or closed then E is pointed if and only if its edge is zero. �
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Definition I.2. Let g be a finite dimensional Lie algebra over R.
(a) An element X ∈ g is called elliptic if adX operates semisimply with

purely imaginary spectrum. A convex cone W ⊆ g is said to be elliptic if
W 0 6= ∅ and all X ∈ W 0 are elliptic.

(b) For a subalgebra a ⊆ g we write Inn(a) : = 〈ead a〉 ⊆ Aut(g) for the
corresponding group of inner automorphisms. A subalgebra a ⊆ g is said to
be compactly embedded if Inn(a) is relatively compact in Aut(g).

(c) Let t ⊆ g be a compactly embedded Cartan subalgebra and recall that
there exists a unique maximal compactly embedded subalgebra k containing
t (cf. [HHL89, A.2.40]).

(d) Associated to the Cartan subalgebra tC in the complexification gC is
a root decomposition as follows. For a linear functional α ∈ t∗C we set

gα
C : = {X ∈ gC : (∀Y ∈ tC) [Y, X] = α(Y )X}

and write ∆: = {α ∈ t∗C\{0} : gα
C 6= {0}} for the set of roots. Then gC =

tC⊕
⊕

α∈∆ gα
C, α(t) ⊆ iR for all α ∈ ∆ and gα

C = g−α
C , where X → X denotes

complex conjugation on gC with respect to g.
(e) A root α is said to be compact if gα

C ⊆ kC and non-compact otherwise.
We write ∆kfor the set of compact roots and ∆n for the non-compact ones.
If g = r o s is a k-invariant Levi decomposition, then we set

∆r : = {α ∈ ∆: gα
C ⊆ rC} and ∆s : = {α ∈ ∆: gα

C ⊆ sC}

and recall that ∆ = ∆r∪̇∆s (cf. [Ne99, Ch. V]).
(f) A positive system ∆+ of roots is a subset of ∆ for which there exists

a regular element X0 ∈ it∗ with ∆+ : = {α ∈ ∆: α(X0) > 0}. A positive
system is said to be k-adapted if the set ∆+

n : = ∆n ∩∆+ is invariant under
the Weyl group Wk : = NInn(k)(t)/ZInn(k)(t) acting on t. We recall from
[Ne99, Ch. V] that there exists a k-adapted positive system if and only if
zg(z(k)) = k. In this case we call g quasihermitian. In this case it is easy
to see that s is quasihermitian too, and so all simple ideals of s are either
compact or hermitian.

(g) We associate to a positive system ∆+ the convex cones

Cmin : = cone{i[Xα, Xα] : Xα ∈ gα
C, α ∈ ∆+

n },

and Cmax : = (i∆+
n )? = {X ∈ t : (∀α ∈ ∆+

n ) iα(X) ≥ 0}. Note that both
Cmin and Cmax are closed convex cones in t.

(h) Write pt : g → t for the orthogonal projection along [t, g] and set
OX : = Inn(g).X for the adjoint orbit through X ∈ g. We define the
minimal and maximal cone associated to ∆+ by

Wmin : = {X ∈ g : pt(OX) ⊆ Cmin} and

Wmax : = {X ∈ g : pt(OX) ⊆ Cmax}

and note that both cones are convex closed and Inn(g)-invariant. �
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From now on we assume that g contains a compactly embedded Cartan
subalgebra t ⊆ g and that there exists an elliptic cone W ⊆ g. Then there
exists a k-adapted positive system ∆+ such that

Cmin ⊆ W ∩ t ⊆ Cmax

holds and Wmax is an elliptic cone (cf. [Ne96b, Th. II.11]). Moreover, we
have Wmin ∩ t = Cmin and Wmax ∩ t = Cmax (cf. [Ne97, Lemma I.1]).

Definition I.3. (a) Let W ⊆ g be a closed elliptic cone. Let G̃, resp.
G̃C, be the simply connected Lie groups associated to g, resp. gC, and set
G1 : = 〈exp g〉 ⊆ G̃C. Then Lawson’s Theorem (cf. [HiNe93, Th. 7.34,
35]) says that the subset ΓG1(W ) : = G1 exp(iW ) is a closed subsemigroup
of GC and the polar map

G1 ×W → ΓG1(W ), (g,X) 7→ g exp(iX)

is a homeomorphism.
Now the universal covering semigroup ΓG̃(W ) : = Γ̃G1(W ) has a similar

structure. We can lift the exponential function exp: g + iW → ΓG1(W ) to
an exponential mapping Exp: g + iW → ΓG̃(W ) with Exp(0) = 1 and thus
obtain a polar map

G̃×W → ΓG̃(W ), (g,X) 7→ g Exp(iX)

which is a homeomorphism.
If G is a connected Lie group associated to g, then π1(G) is a dis-

crete central subgroup of ΓG̃(W ) and we obtain a covering homomorphism
ΓG̃(W ) → ΓG(W ) : = ΓG̃(W )/π1(G) (cf. [HiNe93, Ch. 3]). It is easy to
see that there is also a polar map G × W → ΓG(W ), (g,X) 7→ g Exp(iX)
which is a homeomorphism. The semigroups of the type ΓG(W ) are called
complex Ol’shanskĭı semigroups.

The subset ΓG(W 0) ⊆ ΓG(W ) is an open semigroup carrying a com-
plex manifold structure such that semigroup multiplication is holomorphic.
Moreover there is an involution on ΓG(W ) given by

∗ : ΓG(W ) → ΓG(W ), s = g Exp(iX) 7→ s∗ = Exp(iX)g−1

which is antiholomorphic on ΓG(W 0) (cf. [HiNe93, Th. 9.15] for a proof
of all that). Thus ΓG(W ) is an involutive semigroup.

(b) A bi-invariant domain D ⊆ ΓG(W 0
max) is an open connected G × G

bi-invariant subset of ΓG(W 0
max). Note that

D = G Exp(iDh) = G Exp(iD)G,

where Dh ⊆ W 0
max and D = Dh ∩ t. Recall that D is a Stein manifold if

and only if Dh is convex (cf. [Ne98, Th. 6.1]). In this case D is called a
bi-invariant Stein domain. We call D pointed if Dh is pointed in g. The
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boundary of a left G-invariant subset E = G Exp(iEh) ⊆ ΓG(Wmax) is de-
fined as ∂E : = G Exp(i∂Eh). Note that ∂D = D\D for every bi-invariant
domain D, where the closure D is taken in ΓG(Wmax). �

Lemma I.4. Let W ⊆ g be an invariant elliptic pointed convex cone and
set C : = W ∩ t. Let (Xn)n∈N be a sequence in W 0 converging to X ∈ ∂W .
Then there exists a subsequence (Xnk

)k∈N and a sequence (Ynk
)k∈N in C0

with Ynk
∈ Inn(g).Xnk

and Ynk
→ Y ∈ ∂C.

Proof. W.l.o.g. we may assume that W is closed. According to [HiNe93,
Th. 7.27], we can reconstruct W 0 from C0, i.e., we have W 0 = Inn(g).C0.
In particular, we find a sequence (Yn)n∈N in C0 and a sequence (gn)n∈N in
Inn(g) such that gn.Xn = Yn. We claim that (Yn)n∈N is bounded.

The Convexity Theorem for Adjoint Orbits (cf. [KrNe96, Th. VIII.9])
implies that

(1.1) pt(Xn) ∈ conv(Wk.Yn) + Cmin ⊆ C

for all n ∈ N.
As C is pointed, a sequence (Zn)n∈N in C is unbounded if and only if

limn→∞α(Zn) = ∞ holds for one α ∈ intC?. Thus if (Yn)n∈N is un-
bounded, then (1.1) together with the invariance of C under Wk implies that
(pt(Xn))n∈N is unbounded. But this contradicts the fact that (pt(Xn))n∈N
being a continuous image of a Cauchy sequence is bounded, proving the
claim.

Let now (Ynk
)k∈N be a convergent subsequence of (Yn)n∈N and Y =

limk→∞ Ynk
the corresponding limit in C. It remains to show that Y ∈ ∂C.

To obtain a contradiction we assume that Y ∈ C0.
We write Sl(W ) for the special automorphism group of the cone W and

note that Inn(g) ⊆ Sl(W ) (cf. [HiNe93, Prop. 7.3(v)]). Then [HiNe93,
Prop. 1.11] implies that there exists a convergent subsequence of (gnk

)k∈N
in Sl(W ) which we also denote by (gnk

)k∈N. Write g for the corresponding
limit. Then

X = lim
k→∞

g−1
nk

.Ynk
= g−1.Y.

Since Sl(W ).W 0 = W 0 and Y ∈ W 0, this implies that X ∈ W 0; a contra-
diction, concluding the proof of the lemma. �

Definition I.5. Let M be a complex manifold and Hol(M) denote the
space of holomorphic functions on M . We write M for M equipped with
the opposite complex structure.

(a) A function K ∈ Hol(M ×M) is called a holomorphic positive definite
kernel if for every sequence z1, . . . , zn in M the matrix

(
K(zi, zj)

)
i,j

is pos-
itive semi-definite. We write P(M2) for the convex cone of all holomorphic
positive definite kernels on M . Note that every K ∈ P(M2) satsifies the
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inequality

(1.2) (∀z, w ∈ M) |K(z, w)| ≤
√

K(z, z)
√

K(w,w).

Recall that K ∈ P(M2) if and only if there exists a Hilbert space H ⊆
Hol(M) with continuous point evaluations Kz : H → C, f 7→ f(z) such that
K(z, w) = 〈Kw,Kz〉 holds for all (z, w) ∈ M ×M (cf. [Ne99, Ch. II]). In
this case we also write HK instead of H and refer to HK as the reproducing
kernel Hilbert space corresponding to K.

(b) An involutive semigroup is a semigroup S together with an involutive
antiautomorphism ∗ : S → S, i.e., (s∗)∗ = s and (st)∗ = t∗s∗ holds for all
s, t ∈ S.

A mapping α : S → R+ is called an absolute value if α(s∗) = α(s) and
α(st) ≤ α(s)α(t) hold for all s, t ∈ S. We denote by A(S) the collection of
all absolute values on S.

(c) Let S be an involutive semigroup acting on M from the left by holo-
morphic mappings. A positive definite kernel K is said to be S-invariant if
K(s.z, w) = K(z, s∗.w) holds for all s ∈ S, z, w ∈ M . We write PS(M2) for
the subcone of P(M2) of all S-invariant elements.

(d) An S-invariant positve definite kernel K ∈ PS(M2) is called α-bounded
for some α ∈ A(S) if

K(s.z, s.z) ≤ α(s)K(z, z)

holds for all z ∈ M , s ∈ S. The set of all α-bounded positve definite kernels
is denoted by PS(M2, α). Note that each K ∈ PS(M2, α) gives rise to an
involutive representation of S given by

πK : S → B(HK),
(
πK(s).f

)
(z) = f(s∗.z),

i.e., (πK ,HK) is a representation of S satisfying πK(s∗) = πK(s)∗ for all
s ∈ S (cf. [Ne99, Ch. II]). �

We equip G×G with the involution (g1, g2)∗ = (g−1
1 , g−1

2 ) for g1, g2 ∈ G.
Note that every K ∈ PG×G is trivially α-bounded with α = 1, and that

πK : G×G → U(HK),
(
πK(g1, g2).f

)
(z) = f(g−1

1 zg2)

is a unitary representation of G×G (cf. [Kr97, Lemma III.6]).

Lemma I.6. Let V be a finite dimensional real vector space, V ] : = V ⊕R
and E ⊆ V a convex subset. Set E] : = R+(E × {1}). Then E] is a convex
subcone of V ] and the following assertions hold:

(i) E is closed in E].
(ii) E is pointed if and only if E] is pointed.
(iii) If E is open or closed, then ∂E] =]0,∞[.(∂E × {1}) ∪ (lim E × {0}).

Proof. (i) This is clear.
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(ii) If E] is not pointed, then there exists a non-zero element y = (x, r) ∈
V ] such that Ry ⊆ E]. In view of E] = R+(E × {1}), we must have r = 0.
Now Ry + E] = E] implies that Rx + E = E, i.e., E is not pointed.

Conversely, if E is not pointed, then there exists a non-zero element x ∈ V
such that Rx ⊆ H(E). Then R(x, 0) ⊆ H(E]), i.e., C is not pointed.

(iii) Note that ]0,∞[(E0×{1}) is open and that ]0,∞[(E×{1}) is closed in
V ]\(V×{0}). Hence ∂E]∩V ]\(V×{0}) =]0,∞[(∂E×{1}). By the definition
of E] we have (x, 0) ∈ ∂E] if and only if there exists a sequence of positive
real numbers (λn)n∈N and a sequence (xn)n∈N such that limn→∞ λn = 0 and
limn→∞ λnxn = x. In view of [Ne99, Prop. III.1.5(iii)], this means that
x ∈ lim E, concluding the proof of (iii). �

Lemma I.7. Let V be a finite dimensional real vector space and E ⊆ V a
convex set. Further let V1 : = V/H(E), denote q : V → V1 the corresponding
quotient homomorphism and set E1 : = q(E). Then we have q(∂E) = ∂E1.

Proof. As E +H(E) = E it follows that E0 +H(E) = E0 and E +H(E) =
H(E). Thus q(E) = E1, and q(E0) = E0

1 since q is an open mapping. This
proves the lemma. �

Proposition I.8. Let g] = g⊕ R, G] = G× R, and

D] : = ΓG]

(
D]

h

)
⊆ ΓG]

(
W 0

max ⊕ R
) ∼= ΓG(W 0

max)⊕ C.

(i) The map j : D → D], s 7→ (s, i) is a G × G-equivariant holomorphic
closed embedding inducing a map

PG]×G]

(
D]2

)
→ PG×G(D2), K] 7→ K := K] ◦ j.

(ii) Let K ∈ PG×G(D2). Then the following statements are equivalent:
(a) limz→∂D K(z, z) = ∞.
(b) limX→∂Dh

K(Exp(iX),Exp(iX)) = ∞. Moreover, if K = K] ◦ j

with some K] ∈ PG]×G](D]2), then (a)-(b) are implied by
(c) lim

X→∂D]
h
K](Exp(iX),Exp(iX)) = ∞.

(iii) Let a : = H(Dh) be the edge of Dh, g1 : = g/a and q : g → g1 the
corresponding quotient morphism. Further let A : = 〈exp(a)〉, G1 : =
G/A and D1 : = G1 Exp(iDh,1). Then the quotient morphism q̃ : D →
D1 induced by q gives rise to an injection

q̃∗ : PG1×G1(D
2
1) → PG×G(D2), K1 7→ K := K1 ◦ q̃

and the following statements are equivalent:
(a) limX→∂Dh

K(Exp(iX),Exp(iX)) = ∞.
(b) limX→∂Dh,1

K1(Exp(iX),Exp(iX)) = ∞.
(c) limX→∂D1 K1(Exp(iX),Exp(iX)) = ∞.
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Proof. (i) Obviously, j is holomorphic and G × G-equivariant. Further
the closedness of j follows from Lemma I.6(i) together with the Polar De-
composition of a complex Ol’shanskĭı semigroup. The second assertion is
clear.

(ii) (a)⇒(b) is obvious.
(b) ⇒(a): This follows from the biinvariance of K.

The remaining statement follows from Lemma I.6(iii).
(iii) (a) ⇐⇒ (b): In view of q(∂Dh) = ∂Dh,1 (cf. Lemma I.7), this follows

from the equivalence of (a) and (b) in (ii).
(b)⇒(c) is clear.
(c)⇒(b) follows from the Inn(g)-invariance of the map

Dh,1 → R+, X 7→ K1(Exp(iX),Exp(iX))

together with Lemma I.4. �

II. A kernel tending to infinity at the boundary.

In this section we construct a kernel K ∈ PG×G(D2) tending to infinity at
the boundary. In view of Proposition I.8, this reduces to the case where
D = ΓG(W ) is a pointed complex Ol’shanskĭı semigroup. But Proposition
I.8(iii) tells us even more: We only have to check that limX 7→∂C K(Exp(iX),
Exp(iX)) = ∞. To start out we need some notation concerning highest
weight representations and their associated characters.

Definition II.1. Let ∆+ be a positive system.
(a) For a gC-module V and β ∈ (tC)∗ we write V β := {v ∈ V : (∀X ∈

tC)X.v = β(X)v} for the weight space of weight β and PV = {β : V β 6= {0}}
for the set of weights of V .

(b) Let V be a gC-module and v ∈ V λ a tC-weight vector. We say that v
is a primitive element of V (with respect to ∆+) if gα

C.v = {0} holds for all
α ∈ ∆+.

(c) A gC-module V is called a highest weight module with highest weight
λ (with respect to ∆+) if it is generated by a primitive element of weight λ.

(d) Let λ ∈ it∗ be dominant integral w.r.t. ∆+
k and F (λ) the corresponding

highest weight module for kC. Assume that ∆+ is k-adapted and set p± =⊕
α∈∆±n

gα
C. We define the generalized Verma module by

N(λ) : = U(gC)⊗U(kC+p+) F (λ).

Note that N(λ) is a highest weight module for U(gC) with highest weight λ.
We denote by L(λ) the unique irreducible quotient of N(λ).

(e) Let G be a connected Lie group with Lie algebra g. We write K
for the analytic subgroup of G corresponding to k. Let (π,H) be a unitary
representation of G. A vector v ∈ H is called K-finite if it is contained in
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a finite dimensional K-invariant subspace. We write HK,ω for the space of
analytic K-finite vectors.

(f) An irreducible unitary representation (π,H) of G is called a highest
weight representation w.r.t. ∆+ with highest weight λ ∈ it∗ if HK,ω is a
highest weight module for gC w.r.t. ∆+ and highest weight λ. We say that
the irreducible highest weight module L(λ) is unitarizable if there exists a
unitary highest weight representation (πλ,Hλ) of G̃ with HK,ω

λ
∼= L(λ) as

gC-modules. We write HW (G, ∆+) ⊂ it∗ for the set of highest weights
corresponding to unitary highest weight representations of G w.r.t. ∆+ and
write HW (∆+) := HW (G̃, ∆+) for the set of all highest weights w.r.t. ∆+

which correspond to a unitarizable L(λ).
(g) Let λ ∈ HW (∆+). We call λ singular if the natural map N(λ) →

L(λ) has a non-trivial kernel and non-singular otherwise. �

For each unitary representation (π,H) of G we write (π∗,H∗) for the cor-
responding dual representation. Let B2(H) be the space of Hilbert Schmidt
operators on H. We define a representation of G×G on B2(H) by

πc : G×G → U(B2(H)), πc(g1, g2).A := π(g2)Aπ(g1)∗.

Note that there is a canonical isomorphism between (π∗ ⊗ π,H∗⊗̂H) and
(πc, B2(H)).

Now we fix a positive system ∆+ associated to Wmax.
Recall from [HiNe96, Th. 3.6, Th. B] that each highest weight represen-

tation (πλ,Hλ) of G extends to an holomorphic representation of ΓG(Wmax)
denoted by the same symbol. Moreover all operators πλ(s), s ∈ ΓG(W 0

max),
are of trace class (cf. [Ne94, Th. III.8]), so that Θλ(s) := trπλ(s) makes
sense for all s ∈ ΓG(W 0

max). We call Θλ the character of (πλ,Hλ) and note
that Θλ is holomorphic on ΓG(W 0

max) (cf. [Ne94, Th. IV.11]).
Associated to a k-adapted positive system, we define the function

φ : iC0
max → R+, X 7→ 1∏

α∈∆+
n

(
1− e−α(X)

)mα
,

where mα := dimC gα
C for all α ∈ ∆.

Lemma II.2. Let λ ∈ HW (G, ∆+) be non-singular and (πλ,Hλ) an as-
sociated highest weight representation of G. If ΘK

λ denotes the character of
F (λ), then

Θλ(ExpX) = φ(X)ΘK
λ (Exp(X))

for all X ∈ iC0
max.

Proof. [Kr97, Lemma IV.8(i)]. �

Proposition II.3. Let K be a connected Lie group with compact Lie alge-
bra k. Let t be a Cartan subalgebra of k, ∆+

k be a positive system of roots and
λ ∈ it∗ be a dominant analytically integral element. Further let ΘK

λ denote
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the character of the holomorphic representation (πK
λ , F (λ)) of KC and set

dλ : = dim F (λ).

(i) (∀X ∈ it) eλ(X) ≤ ΘK
λ (expKC(X)) ≤ dλ supw∈Wk

eλ(w.X).
(ii) If ‖ · ‖ denotes a norm on it∗, then there exists a constant c > 0 and

an element n ∈ N such that

dλ ≤ c‖λ‖n + c

holds for all integral elements λ.

Proof. (i) Let {vj : 1 ≤ j ≤ dλ} be an orthonormal basis of weight vectors
of F (λ). For each j let αj be the weight corresponding to vj . Then we have
for all X ∈ tC that

(2.1) ΘK
λ (expKC(X)) =

dλ∑
j=1

〈πK
λ (expKC(X)).vj , vj〉 =

dλ∑
j=1

eαj(X).

Since λ = αj for some 1 ≤ j ≤ dλ, this proves the first inequality.
To prove the second inequality, we first observe that both ΘK

λ (expKC(X))
and dλ supw∈Wk

eλ(w.X) considered as functions of X ∈ it∗ are invariant
under the Weyl group Wk. Thus we may assume that X ∈ −(∆+

k )? :=
{Y ∈ it∗ : (∀α ∈ ∆+

k )α(X) ≤ 0}. Since λ(X) = sup1≤j≤dλ
αj(X) whenever

X ∈ −(∆+
k )?, (2.1) implies that ΘK

λ (expKC(X)) ≤ dλeλ(X), concluding the
proof of (i).

(ii) This is a direct consequence of the Weyl Dimension Formula. �

Corollary II.4. If λ ∈ HW (G, ∆+) is non-singular, then there exist a
constant c > 0 and n ∈ N such that

eλ(X) ≤ Θλ(Exp(X)) ≤ (c‖λ‖n + c)φ(X) sup
w∈Wk

eλ(w.X)

holds for all X ∈ iC0
max.

Proof. As 1 = infX∈iC0
max

φ(X), the corollary follows from Lemma II.2 and
Proposition II.3. �

Lemma II.5. Let V be a finite dimensional real vector space, C ⊆ V a
convex cone with non-empty interior, Γ ⊆ V a lattice and Q ⊆ V a compact
subset. Then

Γ(C,Q) := {γ ∈ Γ: γ ∈ C, γ + Q ⊆ C}

is an additive subsemigroup of Γ, R+Γ(C,Q) is a closed convex cone and
the following equalities hold:

(i) R+Γ(C,Q) = C.
(ii) Γ(C,Q)? = C?.
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Proof. First we show that Γ(C,Q) is an additive semigroup. Let γ1, γ2 ∈
Γ(C,Q). Then γ1 + γ2 ∈ C since C is a convex cone and further we have for
all x ∈ Q

γ1 + γ2 + x = γ1 + (γ2 + x)︸ ︷︷ ︸
∈C

∈ C + C = C,

proving that Γ(C,Q) is an additive semigroup.
It follows in particular that Q+Γ(C,Q) is an additive semigroup and hence

the same holds for R+Γ(C,Q) = Q+Γ(C,Q). This proves that R+Γ(C,Q)
is a closed convex cone.

(i) Since Γ(C,Q) ⊆ C we obtain in particular that R+Γ(C,Q) ⊆ C.
To prove the converse inclusion, we assume that R+Γ(C,Q) 6= C. Then we

find an open ball B ⊆ V such that B ⊆ C0\R+Γ(C,Q). Since C0\R+Γ(C,Q)
is an open cone, this implies in particular that

(2.2) (∀λ > 0) λB ∩ Γ(C,Q) = ∅.
If λ is sufficiently large, then we have λB ⊆ C − x for all x ∈ Q, because

B + 1
λx is contained in C for sufficiently large λ and Q is compact. Let

λ0 > 0 such that λB ⊆ C − x for all x ∈ Q and λ > λ0.
In view of this and Γ(C,Q) = Γ ∩ C ∩

⋂
x∈Q(C − x), (2.2) implies in

particular that

(∀λ > λ0) Γ ∩ C ∩ λB = Γ(C,Q) ∩ λB = ∅;
a contradiction, concluding the proof of (i).

(ii) This follows from (i) and R+Γ(C,Q)
?

= Γ(C,Q)?. �

Let te := {X ∈ t : exp(X) = 1} and note that te is a lattice in span {te}.
Hence we find a lattice Γ ∈ it∗ which is contained in the set {α ∈ it∗ : (∀X ∈
te) α(X) ∈ 2πiZ}. From now on we fix a lattice Γ ⊆ it∗ having this property.

Lemma II.6. Let W ⊆ g be a pointed closed Inn(g)-invariant cone with
non-empty interior, ∆+ a positive system satisfying Cmin ⊆ C = W ∩ t ⊆
Cmax and ρ : = 1

2

∑
α∈∆+ mαα. Then

Γ(i intC?, 2ρ) := {λ ∈ Γ: λ ∈ i intC?, λ + 2ρ ∈ i intC?}
consists of non-singular G-analytically integral elements.

Proof. First note that Γ consists of G-analytically integral elements, hence
the same holds for the subset Γ(i intC?, 2ρ). We claim that Γ(i intC?, 2ρ) ⊆
Γ(i intC?, ρ). In fact, Lemma II.5 implies that Γ(i intC?, 2ρ) is an additive
semigroup, so that λ ∈ Γ(i intC?, 2ρ) implies that 2λ ∈ Γ(i intC?, 2ρ) which
means that 2λ + 2ρ ∈ i intC? or equivalently λ + ρ ∈ Γ(i intC?, ρ). This
proves the claim.

Further, Cmin ⊆ C implies that i intC? ⊆ i intC?
min and we therefore get

Γ(i intC?, 2ρ) ⊆ {λ ∈ Γ: λ + ρ ∈ i intC?
min}.
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In view of [Ne99, Ch. IX], this implies that all elements of Γ(i intC?, 2ρ)
are non-singular. �

Lemma II.7. Let V be a finite dimensional real vector space, C ⊆ V a
convex pointed cone with non-empty interior, Γ ⊆ V ∗ a lattice and Q ⊆ V ∗

a compact subset. We fix a norm ‖ · ‖ on V ∗ with ‖γ‖ ≥ 1 for all γ ∈ Γ\{0}
and consider for each N ∈ N0 the mapping

FN : V → R+ ∪ {∞}, x 7→
∑

γ∈Γ(int C?,Q)

‖γ‖Ne−γ(X).

(i) For all N ∈ N0 the series defining FN converges compactly on C0. In
particular, FN |C0 is continuous.

(ii) For all N ≥ 1 we have limx→∂C
X∈C0

FN (x) = ∞.

Proof. (i) Since C? is pointed we find for every x ∈ C0 a constant Cx > 0
such that ‖α‖ ≤ Cxα(x) holds for every α ∈ C?. Thus we find for every
compact subset K ⊆ C0 a constant CK > 0 such that

(∀x ∈ K)(∀α ∈ C?) ‖α‖ ≤ CKα(x).

This in turn implies that

sup
x∈K

∑
γ∈Γ(int C?,Q)

‖γ‖Ne−γ(x) ≤
∑

γ∈Γ(int C?,Q)

‖γ‖Ne
− 1

CK
‖γ‖

< ∞,

proving (i).
(ii) As ‖γ‖ ≥ 1 for all γ ∈ Γ\{0}, we have F 1 ≤ FN for all N ∈ N

and hence we only have to prove the assertion for N = 1. Let (xn)n∈N
be a sequence in C0 converging to x ∈ ∂C. Then there exists an element
0 6= α ∈ ∂C? such that α(x) = 0. Choose αn ∈ R+α with αn(xn) = 1. We
claim that limn→∞ ‖αn‖ = ∞. Indeed, otherwise we find a number L > 0
and a subsequence (αnk

)k∈N such that αnk
∈ [0, L]α. But then

1 = αnk
(xnk

) ≤ Lα(xnk
) → 0

yields a contradiction and proves the claim.
Next we claim that there exists a constant c > 0 and elements γn ∈

Γ(int C?, Q) such that ‖γn − αn‖ < c for all n ∈ N. Let r > 0 such that
B(β, r) : = {µ ∈ V ∗ : ‖β − µ‖ ≤ r} intersects Γ for all β ∈ V ∗. Now choose
µ ∈ intC? such that B(µ + tα, r) + Q ⊆ intC? holds for all t ≥ 0. Then we
find elements γn ∈ Γ(int C?, Q) ∩ B(µ + αn, r). These elements γn satisfy
‖γn − αn‖ ≤ c with c = r + ‖µ‖, proving our second claim.
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Now we get

F1(xn) =
∑

γ∈Γ(int C?,Q)

‖γ‖e−γ(xn) ≥ ‖γn‖e−(γn(xn)−αn(xn))e−αn(xn)

≥ ‖γn‖
e

e−‖γn−αn‖·‖xn‖ ≥ 1
e
e−c‖xn‖(‖αn‖ − c),

and so
lim

n→∞
F1(xn) ≥ lim

n→∞

1
e
e−c‖xn‖(‖αn‖ − c) = ∞.

This proves (ii). �

Theorem II.8. Let S = ΓG(W ) be a pointed complex Ol’shanskĭı semi-
group. Then for all N ∈ N the prescription

KN : S0 × S0 → C, (z, w) 7→
∑

λ∈Γ(i int C?,2ρ)

‖λ‖NΘλ(zw∗)

defines an element of PG×G(S02) satisfying

lim
z 7→∂S0

KN (z, z) = ∞.

Proof. First we show that KN ∈ PG×G(S02) for all N ∈ N. Since all kernels

Kλ : S0 × S0 → C, (z, w) 7→ Θλ(zw∗)

belong to PG×G(S02) (cf. [Ne94, Th. IV.11]), we only have to show that
the series defining KN converges uniformly on compact subsets. In view of
(1.2), a series of holomorphic positive definite kernels on a complex manifold
converges compactly if and only if it converges uniformly on compact subsets
on the diagonal. Therefore the bi-invariance of the kernels Kλ together with
the Polar Decomposition of S0 imply that it suffices to prove the compact
convergence of the series defining the function

ΘN : iW 0 → R+, X 7→
∑

λ∈Γ(i int C?,2ρ)

‖λ‖NΘλ(Exp(X)).

If C(W 0)G denotes the Ad(G)-invariant continuous functions on W 0 en-
dowed with the topology of uniform convergence on compact subsets, then
[Ne96b, Prop. III.6] entails that the restriction mapping C(W 0)G →
C(C0)Wk is an isomorphism of Fréchet spaces. Thus we have reduced the
problem to showing the compact convergence of the series defining ΘN |C0 .
In view of Corollary II.4, we therefore have to prove that the series defined
by

FN |iC0 : iC0 → R+, X 7→
∑

λ∈Γ(i int C?,2ρ)

‖λ‖Neλ(X)

converges compactly. But this is exactly the contents of Lemma II.7(i).
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In order to prove the second assertion, Proposition I.8(iii) implies that
we only have to check that limX 7→∂C

X∈C0
KN (Exp(iX),Exp(iX)) = ∞. Accord-

ing to Corollary II.4, this follows from limX→∂C
X∈C0

FN (X) = ∞ which is the

contents of Lemma II.7(ii). This proves the theorem. �

Corollary II.9. Let D ⊆ ΓG(W 0
max) be a bi-invariant Stein domain. Then

there exists a kernel K ∈ PG×G(D2) such that

lim
z 7→∂D

K(z, z) = ∞.

Proof. In view of Proposition I.8(ii), we may assume that Dh = D]
h is a

cone, and hence Proposition I.8(iii) implies that we even may assume that
Dh = D]

h,1 is a pointed cone. Now the corollary follows from Theorem
II.8. �

Remark II.10. One can modify Γ a little bit without affecting the contents
Theorem II.8 as follows. If one takes Γ′ = Γ ∪ F , where F ⊆ HW (G, ∆+)
is a finite set of highest weights, then Theorem II.8 remains true with Γ
replaced by Γ′.

III. The equivariant embedding theorem.

In this section we apply the results of Section II to construct a kernel K ∈
PG×G(D2) such that the map

eK : D 7→ H∗
K\{0}, z 7→ Kz

defines a G×G-equivariant holomorphic embedding with closed image.

Proposition III.1. Let M be a complex manifold, S an involutive semi-
group acting on M by holomorphic maps and K ∈ PS(M2). Then

eK : M → H∗
K , z 7→ Kz

is an S-equivariant holomorphic map.

Proof. From the S-invariance of K it follows that

eK(s.z) = Ks.z = πK(s).Kz = πK(s).eK(z)

for all s ∈ S and z ∈ M , proving the S-equivariance of the map eK . It
remains to show that eK is holomorphic. As HK is a Hilbert space, eK is
holomorphic if and only if the following conditions are satisfied:

(1) eK is locally bounded.
(2) There exists a total subset T ⊆ HK such that the mappings M →

C, z 7→ Kz(f) = 〈f,Kz〉 are holomorphic for all f ∈ T .



EQUIVARIANT EMBEDDINGS OF STEIN DOMAINS 69

If Q ⊆ D is a compact subset, then we have

sup
z∈Q

‖Kz‖2 = sup
z∈Q

K(z, z) < ∞,

proving (1). Finally T = {Kw : w ∈ M} is a total subset in HK and z 7→
Kz(Kw) = 〈Kw,Kz〉 = K(z, w) is holomorphic because K ∈ Hol(M ×M).
This proves (2) and concludes the proof of the lemma. �

Corollary III.2. If K ∈ PG×G(D2) is non-zero, then Kz 6= 0 for all z ∈ D
and the mapping

eK : D → H∗
K\{0}, z 7→ Kz

is G×G-equivariant and holomorphic.

Proof. It follows from [Ne97, Lemma III.6] that Kz 6= 0 for all z ∈ D and
thus the map eK is well defined. Now the assertions follow from Proposition
III.1. �

Definition III.3. A connected Lie group is called a (CA)-Lie group if
Ad(G) ⊆ Aut(g) is closed. Note that all connected reductive and nilpotent
Lie groups are (CA)-Lie groups. �

The next lemma is our key observation. The proof depends heavily on
the special choice of the lattice Γ(i intC?, 2ρ) and is a little bit tricky.

Lemma III.4. Let S = ΓG(W ) be a pointed complex Ol’shanskĭı semi-
group and suppose that G is a (CA)-Lie group. Let KN , N ∈ N, be as
in Theorem II.8 and (KN

sn
)n∈N a convergent sequence in HKN with limit

different from zero. Further let Z denote the center of G.
(i) The set {snZ : n ∈ N} is relatively compact in S0/Z.
(ii) If, in addition, Z is compact, then {sn : n ∈ N} is relatively compact

in S0.

Proof. (i) For simplicity, we write K instead of KN . Since K =
∑

λ ‖λ‖NKλ

is a direct sum of positive definite kernels corresponding to inequivalent
irreducible unitary representations of G × G, it follows in particular that
HK =

⊕̂
λHKλ (cf. [Ne99, Th. I.11, Rem. I.12(a)]). Thus (Ksn)n∈N

being a convergent sequence with non-zero limit implies in particular that all
sequences (Kλ

sn
)n∈N are convergent and at least one limit fλ = limn→∞Kλ

sn

is different from zero.
Step 1: The set {snZ : n ∈ N} is relatively compact in S/Z.

Let λ ∈ Γ(i intC?, 2ρ) be such that (Kλ
sn

)n∈N converges with limit differ-
ent from zero. Let

χλ : Z → S1, z = exp(X) 7→ e−λ(X)

and note that χλ is an element of Ẑ.
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The Bergman space corresponding to the character χλ is defined as

B2(S/Z, χλ) =
{

f ∈ Hol(S0) : (∀z ∈ Z, s ∈ S0) f(sz) = χλ(z)−1f(s),

‖f‖2
2 : =

∫
S0/Z

|f(s)|2 dµS0/Z(sZ) < ∞
}

,

where µS0/Z denotes the canonical left S-invariant measure on S0/Z (cf.
[Kr98, Sect. II]). Recall from [Kr98, Prop. II.4, Th. IV.5] that B2(S/Z, χλ)
is a closed subspace of the Hilbert space L2(S/Z, χλ) and that there exists
a positive constant c > 0 such that the prescription

HKλ → B2(S/Z, χλ), Kλ
z 7→ cKλ

z

defines an S × S-equivariant isometric embedding.
We obtain in particular that (Kλ

sn
)n∈N is a convergent sequence in

B2(S/Z, χλ) with limit fλ 6= 0. To obtain a contradiction, we now as-
sume that there exists a subsequence of (snZ)n∈N leaving every compact
subset of S/Z. To avoid further notation we denote this subsequence again
by (snZ)n∈N. Note that (s∗nZ)n∈N also leaves every compact subset of S/Z,
since the involution on S induces an involution ∗ : S/Z → S/Z. We write

ρ : S → B(B2(S/Z, χλ)), (ρ(s).f)(z) = f(zs)

for the right regular representation of S on B2(S/Z, χλ) and note that
(ρ,B2(S/Z, χλ)) is a holomorphic contraction representation of S (cf.
[Kr98, Prop. II.4]). Let s0 ∈ S0. Then ρ(s0).Kλ

sn
→ ρ(s0).fλ and

ρ(s0).fλ 6= 0 since ρ(s0) is an injective operator. It follows in particular
that there exists a convergent subsequence of (ρ(s0).Kλ

sn
)n∈N converging to

ρ(s0).fλ pointwise. Note that |Kλ
s | ∈ C0(S/Z) | S0/Z for all s ∈ S0 (cf.

[Kr98, Prop. II.4]). Thus we obtain from

ρ(s0).Kλ
sn

(z) = Kλ
sn

(zs0) = Kλ(zs0, sn) = Kλ(z, sns∗0)

= Kλ(s∗nz, s∗0) = Kλ
s∗0

(s∗nz)

for all z ∈ S0 that ρ(s0).Kλ
sn
→ 0 pointwise. This is a contradiction to

ρ(s0).fλ 6= 0 and proves our first step.
Step 2: Every cluster point of (snZ)n∈N lies in S0/Z.

As the Polar Decomposition of S is inherited by S/Z, i.e., the mapping

G/Z ×W → S/Z, (gZ, X) 7→ g Exp(iX)Z

is a homeomorphism, we can write sn = gn Exp(Xn), where gn ∈ G and
Xn ∈ iW 0. According to Step 1, we now may assume that both (gnZ)n∈N
and (Xn)n∈N converge. Let X ∈ iW be the limit of (Xn)n∈N. Note that it
suffices to show that X ∈ iW 0. As (Ksn)n∈N is convergent with non-zero
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limit, (‖Ksn‖2)n∈N is a convergent sequence in R+ with positive limit. The
bi-invariance of K further implies that

‖Ksn‖2 = K(sn, sn) = K(gn Exp(Xn), gn Exp(Xn))

= K(Exp(Xn),Exp(Xn)),

so that Step 2 follows from Theorem II.8.
(ii) This is a direct consequence of (i) and the compactness of Z. �

Lemma III.5. If S = ΓG(W ) is a pointed complex Ol’shanskĭı semigroup,
then there exists a finite set F ⊆ HW (G, ∆+) such that all representations
πKN : S → B(HKN ), N ∈ N, associated to Γ′ = Γ ∪ F (cf. Remark II.10)
are injective.

Proof. Since S is pointed, it follows from [Kr98, Prop. V.7] that πKN is
injective if and only if πKN |T is injective, where T = exp t. Evaluation of the
operators πKN (t), t ∈ T , on highest weight vectors vλ, λ ∈ Γ(i intC?, 2ρ),
now easily shows how one can choose F to obtain injective representations.
For more details we refer to [Ne96a, Sect. V]. �

Theorem III.6. Let D ⊆ ΓG(W 0
max) be a pointed bi-invariant Stein do-

main and suppose that G is a (CA)-Lie group and Z is compact. Then there
exists a kernel K ∈ PG×G(D2) such that the mapping

eK : D → H∗
K\{0}, z 7→ Kz

defines a G×G-equivariant holomorphic embedding with closed range.

Proof. In view of Proposition I.8(i) and Lemma I.6(ii), we may assume that
D = S0 = ΓG(W 0) is a pointed open complex Ol’shanskĭı semigroup. Now
let Γ′ as in Lemma III.5 and K = KN for some N ∈ N. As K 6= 0, the map
eK is a well defined G×G-equivariant holomorphic map (cf. Corollary III.2).
Lemma III.5 implies that the representation πK : S → B(HK) is injective so
that HK separates points by [Kr98, Prop. V.10], which in turn means that
eK is injective.

Next we show that imeK is closed. In fact, if Ksn → f 6= 0, then Lemma
III.4 implies that (sn)n∈N is a bounded sequence in S0 with all accumulation
points in S0. Thus we find a convergent subsequence (snk

)k∈N with limit
s ∈ S0. Now we get

f = lim
n→∞

Ksn = lim
k→∞

Ksnk
= lim

k→∞
eK(snk

) = eK(s) = Ks,

proving the closedness of imeK .
Finally another easy application of Lemma III.4 shows that eK is home-

omorphic onto its image, concluding the proof of the theorem. �
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Example III.7 (The Bergman kernel associated to Sl(2, R)). Let G = Sl(2, R)
and g : = sl(2, R). We choose

U =
(

0 1
−1 0

)
, T =

(
0 1
1 0

)
, and H =

(
1 0
0 −1

)
as a basis for g.

Then t := RU is a compactly embedded Cartan subalgebra. Let α ∈ it∗

be defined by α(U) = −2i. The root system of g is given by ∆ = {±α} with
root spaces gα

C = C(T + iH) and g−α
C = C(T − iH). We define a positive

system by ∆+ := {α} and write κ for the Cartan-Killing form on g. Then
the upper light cone

W : = {X = uU + tT + hH : u ≥ 0, κ(X, X) ≤ 0}
= {X = uU + tT + hH : u ≥ 0, h2 + t2 − u2 ≤ 0}

is an invariant pointed cone in g. Moreover, W is up to sign the unique in-
variant elliptic cone in g (cf. [HiNe93, Th. 7.25]). Thus up to isomorphism
S := ΓG(W ) is the unique complex Ol’shanskĭı semigroup corresponding to
G.

In the following we identify tC with C via the isomorphism tC → C, λ 7→
λ(iU). Then HW (G, ∆+) = HW (G, W ) = {λ ∈ Z : λ ≤ 0}, λ+2ρ ∈ i intC?

if and only if λ ≤ −3, and thus Γ(i intC?, 2ρ) = {λ ∈ Z : λ ≤ −3}. The main
point is that Γ(i intC?, 2ρ) coincides with the weights in the decomposition
of the Bergman kernel B of the Bergman space

B2(S) : =
{

f ∈ Hol(S0) : ‖f‖2
2 : =

∫
S0

|f(s)|2 dµGC(s) < ∞
}

(cf. [Kr98, Th. IV.7]). Further one knows that

B =
∑

λ≤−3

λ(1 + λ)2(4− λ2)Kλ

(cf. [Kr98, Th. IV.7, Ex. IV.8]) so that Theorem II.8 and Theorem III.6
imply that

lim
z→∂S

B(z, z) = ∞

and that the map

eB : S0 → B2(S)∗\{0}, s 7→ Bs

is a G×G-equivariant holomorphic embedding with closed range. �

Problems III.8. (a) What is the reason for that one has to exclude zero
in H∗

K to obtain the closedness of the map eK?
(b) Given a pointed biinvariant Stein domain D, does there exist an equi-

variant closed embedding of D into a complex topological vector space E
endowed with a continuous G×G-action?
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[Kr97] B. Krötz, The Plancherel theorem for bi-invariant Hilbert spaces, submitted.

[Kr98] , On Hardy and Bergman spaces on complex Ol’shanskĭı semigroups,
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