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We recall the notion of Walsh functions over a finite abelian
group as it was given for example in Larcher, Niederreiter and
Schmid, 1996. These function systems play an important role
for various “digital lattice rules” in multivariate numerical
integration. We consider the following problem:

Assume, that a function f can be represented by a Walsh-
series over a group G1 with a certain speed of convergence.
Take another group G2. What can be said about the speed of
convergence of the Walsh-series of f over G2?

Answers to this question are essential for certain numerical
integration error estimates. We are able to give some results,
partly best possible ones.

A connection of the above problem to “digital differentia-
bility” of functions and applications to numerical integration
are given. Open problems are stated.

1. Introduction.

The classical Walsh function system {waln|n = 0, 1, 2, . . . } ,waln : [0, 1) → C
(in the Paley enumeration) can be defined in the following way:

For a non-negative integer n and a real x in [0, 1) let

n = nv · 2v−1 + · · ·+ n1 and

x =
x1

2
+
x2

22
+ · · ·

(with xi 6= 1 for inifinitely many i) be the digit representation in base 2 .
Then

waln (x) := (−1)x1·n1+···+xv·nv .

The set {waln|n = 0, 1, 2, . . . } is a complete orthonormal function system
in L2 ([0, 1)) . (See for example [23].)

There exist various generalizations of this concept in the literature. Chres-
tenson [1] studied Walsh functions in an arbitrary base b. (“Representation
in base 2” is replaced by “representation in base b” and “−1” is replaced
by “e

2πi
b ”.) Vilenkin [26] introduced the now so called Vilenkin systems,
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and Onneweer studied his concept of Rademacher and Walsh functions over
groups [20].

Motivated by problems in multivariate quasi-Monte Carlo integration and
also by investigations on the distribution of certain number-theoretical point
sets (see [7], and also [6] and [8]), in [9] Walsh-function systems WG,ϕ over
finite abelian groups G of, say, order b, and with respect to certain bijections
ϕ between the “digits” {0, 1, . . . , b− 1} and the group G, were introduced
and used for applications. See also [21], [27], [10]. This concept contains the
classical Walsh systems in any base b (use G = Zb and ϕ the “identity”). In
some sense our concept, which is presented in Defintion 2 and in Definition
3 in the next section of this paper, is more general than the systems of
Onneweer and of Vilenkin. In other aspects, however, their systems are
more general than ours. For some details, see the examples in Section 2.

Solutions (or good estimates) concerning the following problem are of
great interest for applications:

Problem. Let a finite group G of order b and a corresponding bijection
ϕ be given. Assume, that the function f : [0, 1) → C can be represented
by a series of Walsh-functions from WG,ϕ := {G,ϕwaln|n = 0, 1, 2, . . . }, say,
f (x) =

∑∞
n=0 f̂ (n) · G,ϕwaln (x). Assume further, that this Walsh series has

a certain speed of convergence in the following way:
There are α > 1 and C > 0, such that |f̂ (n) | ≤ C ·n−α for all n = 1, 2, . . . .

We say “f belongs to G,ϕE
α (C)”.

Let now H be another finite abelian group with, say, order c and ψ a
corresponding bijection. We now ask: is there a β > 1 and a C ′ > 0, such
that f ∈ H,ψE

β (C ′)?
That is: We are looking for the following “base change coefficient”:

Definition 1. For given finite abelian groups G,H and corresponding bijec-
tions ϕ and ψ and for α > 1 let the base change coefficient β (G,ϕ,H, ψ, α)
be defined by

β (G,ϕ,H, ψ, α) := sup{β > 1| for all C > 0 there is a C ′ > 0 with
G,ϕE

α (C) ⊆ H,ψE
β (C ′)}.

(We set β (G,ϕ,H, ψ, α) = 1 if there is no such β.)

Until now, an exact solution to this question was given only in [12] for
the case G = Z2,H = Z2h , and ϕ,ψ identities. We obtained

β (Z2, id,Z2h , id, α) = α− βh with

βh =
h− 1
2h

+

∑h−2
k=0 log sin

(
π
4 + π

2

{
4[h/2]−1
3·2k+1

})
h · log 2

.
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We have 0 ≤ βh < 1/2 for all h and

lim
h→∞

βh =
1
2

+
log sin 5π

12

log 2
= 0.4499 . . . .

Partial results for G = Z2h and H = Z2 (the problem is not “commuta-
tive”!) were given in [13].

It is the aim of this paper to give in some sense “exact” solutions to the
above problem for many cases and good estimates for β in all other cases.

Further we demonstrate a connection of our problem to questions concern-
ing the “digital differentiability” of a function. This is done in analogy to the
connection between the differentiability of functions in the usual sense and
the speed of convergence of their Fourier-series. Finally we give applications
of our results to error estimation in quasi-Monte Carlo integration.

In Section 2 we shall recall the concept of Walsh functions over groups
and give their basic properties.

In Section 3 we shall recall the notion of the “digital derivative” and give
the connection to our problem.

In Sections 4, 5 and 6 we give solutions to our problem, respectively
estimates concerning the quantity β.

In Sections 4 and 5, especially, we give in some sense “exact” answers for
the following cases (let G be of order b and let H be of order c):
Case 1: b 6 |cN for all positive integers N .
Case 2: bM = cN for some positive integers M,N .

In Section 6 we give estimates of β for the remaining
Case 3: b|cN for some positive integer N but bM 6= cN for all positive
integers M and N.

In a short Section 7 for the sake of the reader we will summarize the
results on the base change coefficient given in Sections 4, 5 and 6.

In Section 8, as a consequence of the results in Sections 4, 5 and 6 we give
the main error estimate in the theory of “digital lattice rules” in its, until
now, most general form.

Finally in Section 9 we state some of the most interesting open problems
in the field.

2. Walsh functions over groups.

We recall the definitions for the concept of Walsh functions over a finite
abelian group given in [9] and in [21].

Let G be a finite abelian group of order b . Let

G ∼= Zb1 × · · · × Zbm
and

ϕ : {0, 1, . . . , b− 1} → G ∼= Zb1 × · · · × Zbm
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k 7→ ϕ (k) := (ϕ1 (k) , . . . , ϕm (k))

be a bijection with ϕ (0) = 0.
For g = (g1, . . . , gm) ∈ G let the character χg ∈ Ĝ be defined by

χg (y) :=
m∏
l=1

e
2πi·gl·yl

bl

for y = (y1, . . . , ym) ∈ G. Of course Ĝ = {χg|g ∈ G}.

Definition 2. For a non-negative integer n with b-adic representation n =
nv ·bv−1+· · ·+n1 we define the function G,ϕwaln : [0, 1) → C in the following
way:

G,ϕwaln (x) :=
v∏
j=1

χϕ(nj) (ϕ (xj)) ,

where x =
∑∞

j=1 xj · b−j is the b-adic representation of x (with inifinitely
many of the xj different from b− 1).

Definition 3. The set

WG,ϕ := {G,ϕwaln|n = 0, 1, . . . }

is called the Walsh function system over G with respect to ϕ.

In most cases we will write Gwal instead of G,ϕwal, if it is clear which
bijection ϕ we use.

Note, that in classical Fourier theory, i.e. representation with respect to
the characters e2πikx, k ∈ Z of the Torus group T, also something similar
to the bijections ϕ occurs, as we have to identify the unit interval with the
torus.

Examples:
a) LetG = Zb and ϕ be the “identity” between {0, . . . , b− 1} and Zb . We

then obtain the classical systems of Walsh-Paley and of Chrestenson.
b) In [20] Onneweer defines Walsh functions on the infinite product of

groups. A “continuation” of his functions to [0, 1) is easily possible in
an obvious way.

Our Walsh functions are products of characters on one fixed group.
Onneweer’s functions are products of characters on possibly different
groups. In this sense Onneweer’s concept is more general, however his
groups must be of prime order, and he just uses identities for ϕ. In
this sense our concept is more general.

c) The bijection ϕ indeed strongly influences the structure of WG,ϕ. Con-
sider for example WZ4,id and WZ4,ϕ with the transposition ϕ = (1 2) on
Z4. The first four functions in each of the systems can be illustrated by
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the following diagrams. (Different grey tones represent different func-
tion values and the same grey tones correspond to the same function
values on each side.)

0 1
x

0

1

2

3

n  

0 1
x

0

1

2

3

n  

Figure 1. Z4,idwaln, n = 0, 1, 2, 3 and Z4,ϕwaln, n = 0, 1, 2, 3.

d) Concerning the connection between our concept and Vilenkin systems,
see [21]. Again we have the situation, that both concepts have a “non-
empty intersection” but neither is a “sub-concept” of the other.

Of course one may ask, why we did not extend the investigations of
this paper also to Onneweer systems and Vilenkin systems. There are
two reasons for this: The problem studied in this paper was motivated
by investigations on numerical integration by digital nets, initiated for
example in [9]. The methods developed there were restricted to the
classes WG,ϕ. They cannot be extended in a reasonable way to, say,
Onneweer systems.

It should without problems be possible to obtain results for Onne-
weer and Vilenkin systems with the methods and results of this paper
(or in an analogous way). However, since these systems are based on
sequences of different groups of possibly different orders, the condi-
tions for non-trivial connections between two different systems would
be quite technical and quite restrictive. So we have concentrated our-
selves in this paper to the more natural (and for our applications more
important) classes WG,ϕ.

In the following, we will give some basic properties of Walsh functions
over groups, which will be used later on.

For G,ϕ with |G| = b given, we define digital summation ⊕ = ⊕G,ϕ on
R+

0 in the following way: For u, v ∈ R+
0 let

u =
∞∑
i=w

ui · b−i and v =
∞∑
i=w

vi · b−i
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be the b-adic representations of u and v. Then

u⊕ v :=
∞∑
i=w

zi · b−i

with zi := ϕ−1 (ϕ (ui) + ϕ (vi)) for i = w,w + 1, . . . . Note that ϕ (0) = 0!
Further define

	u :=
∞∑
i=w

ϕ−1 (−ϕ (ui)) · b−i,

which is the additive inverse of u, since u⊕ (	u) = 0.
The following properties (compare these with the analogous properties

of the function class {e2πikx; k ∈ Z}) are easily checked by insertion of the
definitions. (Note, how the proper definition of digital summation enabled
us to carry the character properties over to R+

0 .)

Lemma 1. For G,ϕ given, and ⊕ := ⊕G,ϕ we have:

a) Gwalp (x) · Gwalq (x) = Gwalp⊕q (x) for all p, q = 0, 1, 2, . . . and x ∈
[0, 1).

b) Gwaln (x) · Gwaln (y) = Gwaln (x⊕ y) for all n = 0, 1, 2, . . . and x, y ∈
[0, 1).

c) Gwaln (x) = 1
Gwaln(x) = Gwal	n (x) = Gwaln (	x).

We omit the easy proof.
The next lemma proves, that integrals of Walsh functions over certain

intervals can be omitted.

Lemma 2. Let m > 0 and n, a be integers with bm−1 ≤ n < bm and 0 ≤
a < bm−1 . Then ∫ a+1

bm−1

a
bm−1

Gwaln (x) dx = 0.

Proof. ∫ a+1

bm−1

a
bm−1

Gwaln (x) dx = Gwaln
( a

bm−1

)
·
∫ 1

bm−1

0
Gwaln (x) dx

and (with n =
∑m

i=1 ni · bi and x =
∑∞

i=m xi · b−i)∫ 1
bm−1

0
Gwaln (x) dx =

∫ 1
bm−1

0
χϕ(nm) (ϕ (xm)) dx

=
1
bm

·
∑
g∈G

χϕ(nm) (g) = 0

since ϕ (nm) 6= 0. �
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From Lemma 1 and Lemma 2 we immediately obtain the orthonormality
of WG,ϕ:

Lemma 3. ∫ 1

0
Gwaln (x) dx =

{
1 if n = 0
0 if n ≥ 1

.a)

∫ 1

0
Gwaln (x) · Gwalm (x) dx =

{
1 if n = m

0 if n 6= m
.b)

Indeed, WG,ϕ also is a complete orthonormal system in L2 ([0, 1)) . We do
not use the completeness in the following. A proof can be found in [21].

For Walsh functions, some Dirichlet kernels take a very simple form:

Lemma 4. For any non-negative integer v we have
bv−1∑
j=0

Gwalj (x) =

{
bv for x ∈

[
0, 1

bv

)
0 otherwise

.

Proof. For a non-negative integer j with b-adic representation j =
∑v

i=1 ji ·
bi−1 let di(j) := ji denote the i-th digit of j.

Let x =
∑∞

i=1 xi · b−i. Then

bv−1∑
j=0

Gwalj (x) =
bv−1∑
j=0

v∏
i=1

χϕ(di(j)) (ϕ(xi))

=
b−1∑

j1,... ,jv=0

v∏
i=1

χϕ(ji) (ϕ(xi))

=
v∏
i=1

∑
g∈G

χg (ϕ(xi))

=

{
bv if xi = 0 for i = 1, . . . , v
0 otherwise

.

The result follows. �

The next lemma provides a useful method to lower the index of a Walsh
function, when it is of a special form.

Lemma 5. Let l,m,M be arbitrary positive integers. Let d := bM and let
j and n be integers with 0 ≤ j, n < d . Then

Gwalj·dm−1

( n
dl

)
=

{
1 if l 6= m

Gwalj
(
n
d

)
if l = m

.
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Proof. For M = 1 we have

Gwalj·bm−1

(n
bl

)
=

{
1 if l 6= m

χϕ(j) (ϕ(n)) if l = m
.

If m = l then moreover

χϕ(j) (ϕ(n)) = Gwalj
(n
d

)
.

Therefore for M ≥ 2 we get: Let n =
∑M

i=1 ni · bi−1 and j =
∑M

i=1 ji · bi−1,
then Gwalj·dm−1

(
n
dl

)
=

= Gwalj1·bM·m−M+···+jM ·bM·m−1

( nM
bM ·l−M+1

+ · · ·+ n1

bM ·l

)
= Gwalj1

(nM
b

)
· Gwalj2

(nM−1

b

)
· · · · · GwaljM

(n1

b

)
if l = m, and 1 if l 6= m by Lemma 1 and since the result holds for M = 1.

On the other hand

Gwalj
(n
d

)
= Gwalj1+···+jM ·bM−1

(
n1 + · · ·+ nM · bM−1

bM

)
= Gwalj1

(nM
b

)
· · · · · GwaljM

(n1

b

)
and the result follows. �

A function f : [0, 1) → C of the form

f (x) =
∞∑
n=0

f̂G (n) · Gwaln (x)

with certain f̂G (n) ∈ C, shall be called a Walsh series over G with respect
to ϕ.

In the following we will only deal with absolutely convergent Walsh series.
Thus we will always have

f̂G (n) =
∫ 1

0
f (x) · Gwaln (x) dx.

Recall the definition of the classes G,ϕE
α (C) given in Section 1:

f ∈ G,ϕE
α (C) :⇔ |f̂G (n) | ≤ C · n−α for n = 1, 2, . . . .

3. Digital derivatives and speed of convergence of Walsh series.

In [20] a derivative for functions defined on groups G, that are the direct
product of countably many groups of prime order, was introduced. Such
functions can be continued to functions on [0, 1) quite naturally in the same
manner as it was done for our Walsh functions WG,ϕ. In this sense the
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following notion of a (digital) derivative with respect to G and ϕ is an
analog to Onneweer’s concept of a derivative.

Definition 4. For G of order b, a corresponding bijection ϕ, a function
f : [0, 1) → C, for x ∈ [0, 1) and positive integers n let

dnf (x) :=
n∑
j=0

bj−1
b−1∑
k=0

k

b−1∑
l=0

G,ϕwall

(
k

b

)
· f
(
x⊕ l

bj+1

)
.

We say, that f is digitally differentiable in x with respect to G and ϕ if

f [1] (x) := lim
n→∞

dnf (x)

exists. f [1] (x) is called the digital derivative of f in x.
Higher derivatives f [n] (x) ; n = 2, 3, . . . can be defined in the usual way.
A function f ∈ Lp ([0, 1)) , 1 ≤ p < ∞ is called strongly differentiable

with respect to G and ϕ if there exists g ∈ Lp ([0, 1)) with

lim
n→∞

‖dnf − g‖p = 0.

We then denote g by df.

Example. As an illustration for the difficulty in combining this concept of
a derivative with “geometric intuition”, consider for example the function
f := 1[0,1/8), the indicator function of the interval [0, 1/8), and its derivative
with respect to Z2 and identity.

1/8 1

1

1

-2

-1
-1/2

7/2

Figure 2. The indicator function of [0, 1) and its digital derivative with
respect to Z2 and id.

We may state the following question: Assume, that f : [0, 1) → C is
differentiable α times with respect to G and ϕ. How often is f differentiable
with respect to another group H with corresponding bijection ψ?

Or: Given G,ϕ,H, ψ as above and a positive integer α. What can be said
about the quantity

γ (G,ϕ,H, ψ, α) := sup{γ| if f is α times differentiable with re-
spect to G and ϕ, then f is at least γ times differentiable with
respect to H and ψ}?
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A certain connection between β (G,ϕ,H, ψ, α) as defined in Section 1 and
γ (G,ϕ,H, ψ, α) is given by the subsequent Theorem 1.

First we need two further lemmata. They already show, that the digital
derivative plays the same role for Walsh functions over groups as the usual
derivative does for exponential function, i.e. for Fourier analysis.

Lemma 6. For G of order b and ϕ fixed, Gwalw is strongly differentiable
with d (Gwalw) = w · Gwalw.

Proof. Let 0 ≤ l < b. Let w =
∑∞

i=1wi ·bi−1 and j be a non-negative integer.
Then

Gwalw

(
l

bj+1

)
=

m∏
v=1

e
2πi·ϕv(wj+1)·ϕv(l)

bv

= Gwall
(wj+1

b

)
.

(Here we used the representation G ∼= Zb1 × · · · × Zbm for G again.)
So

dn (Gwalw(x))

=
n∑
j=0

bj−1
b−1∑
k=0

k

b−1∑
l=0

Gwall

(
k

b

)
· Gwalw

(
x⊕ l

bj+1

)

= Gwalw (x) ·
n∑
j=0

bj−1
b−1∑
k=0

k

b−1∑
l=0

Gwall

(
wj+1 	 k

b

)
= w · Gwalw (x)

by Lemma 4 and for all n large enough. �

Lemma 7. If f : [0, 1) → R is strongly differentiable, then d̂fG (m) =
m · f̂G (m) for all m.

Proof. Note that for positive integers j, l we have∫ 1

0
f

(
x⊕ l

bj+1

)
· Gwalm (x) dx =

∫ 1

0
f (x) · Gwalm

(
x	 l

bj+1

)
dx.

So

d̂nfG (m)

=
∫ 1

0

n∑
j=0

bj−1
b−1∑
k=0

k

b−1∑
l=0

Gwall

(
k

b

)
· f
(
x⊕ l

bj+1

)
· Gwalm (x) dx

=
∫ 1

0
f (x) · Gwalm (x) dx ·

n∑
j=0

bj−1
b−1∑
k=0

k

b−1∑
l=0

Gwall

(
mj+1 	 k

b

)
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= f̂G (m) ·
n∑
j=0

bj−1
b−1∑
k=0

k
b−1∑
l=0

Gwall

(
mj+1 	 k

b

)
= f̂G (m) ·m,

with m =
∑∞

j=1mj · bj−1, by Lemma 4, for all n large enough. �

As is the aim of this section, a certain connection between the quantities β
and γ is now given by the following result. (Compare with analogous results
for Fourier series as they appear for example in [5] in a higher dimensional
form.)

Theorem 1.
a) Let α > 1 be an integer. If a Walsh series f over G and ϕ is α times

strongly differentiable as a function in L1 ([0, 1)) , then f ∈ G,ϕE
a (C)

for some C > 0.
b) If for some integer α > 2 we have f ∈ G,ϕE

α (C) for some C > 0,
then f is at least α − 2 times strongly differentiable with respect to G
and ϕ.

Proof. a) Let g := d[α]f ∈ L1 ([0, 1)) . So ĝG (m) exists for all m and, by
Lemma 7, equals mα · f̂G (m) .

Further |mα · f̂G (m) | ≤
∫ 1
0 |g (x) | dx =: C for all m and therefore

f ∈ G,ϕE
a (C) .

b) If for α > 2 we have f ∈ G,ϕE
a (C) then

∑∞
n=0 n

α−2 · f̂G (n) · Gwaln (x)
is absolutely convergent and therefore, by Lemma 7, the strong α-th
derivative of f with respect to G and ϕ.

�

Consequently we have, for example, the following relation between the
quantities β and γ: If α > 1 and β (G,ϕ,H, ψ, α) > 1, then γ (G,ϕ,H, ψ, α)
≤ β (G,ϕ,H, ψ, α) .

4. The base change coefficient in the case:
|G| 6 | |H|N for all positive N .

In this case there is no “convergence connection” between the Walsh series
representations over G and H. We have the following result.

Theorem 2. If G,H are such, that for all positive integers N we have
|G| 6 | |H|N , then β (G,ϕ,H, ψ, α) = 1 for all α > 1.

Proof. With b := |G|, let

f (x) :=
b−1∑
i=0

Gwali (x) =

{
b for x ∈ [0, 1/b)
0 otherwise.
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So for all α > 1 we have f ∈ GE
α (bα) . We show, that for all ε > 0 and all

K > 0, f /∈ HE
1+ε (K) .

Let c := |H| and 1/b =
∑∞

i=1 κi ·c−i be the representation of 1/b in base c.
This representation is periodic and non-terminating. So for k =

∑m
i=1 ki·ci−1

we have

f̂H (k) =
∫ 1/b

0
Hwalk (x) dx =

∫ 1/b

Pm−1
i=1 κi·c−i

Hwalk (x) dx

by Lemma 2. Therefore

f̂H (k) = Hwalk

(
m−1∑
i=1

κi
ci

)
·
∫ P∞

i=m κic
−i

0
Hwaln (x) dx

= Hwalk

(
m−1∑
i=1

κi
ci

)
·

 1
cm

κm−1∑
j=0

χϕ(km) (ϕ(j))+

+
∞∑

i=m+1

κi
ci
· χϕ(km) (ϕ(κm))

)
=:

1
cm

· T (k) .

Since the sequence of the κi is periodic, T (k) attains only finitely many
different values.

A finite Walsh polynomial over H is certainly continuous in x = 1/b
(the number b contains prime factors not dividing c!) and therefore cannot
represent f.

So there is a T > 0 with T = |T (k) | for infinitely many k. And for these
k we have ∣∣∣f̂H (k)

∣∣∣ ≥ 1
cm
T ≥ T

c
· 1
k
.

The result follows. �

5. The base change coefficient in the case:
|G|M = |H|N for some positive M and N .

In this case the “convergence connection” is non-trivial and we can give the
exact form of β (G,ϕ,H, ψ, α) . This quantity β shows great similarities to a
quantity studied in [27], which measures a certain distance between groups.

Before we state the main results in Theorem 3 and Theorem 4, we give
some auxiliary technical results, which will be needed in the proofs. The first
lemma in this section establishes the fact, that in the currently considered
case the scalar product of Walsh functions is non-zero only for constrained
index ranges.

Lemma 8. Let G,H be groups with order b and c. Let the corresponding
bijections ϕ and ψ be fixed. Assume, that there exist v, w ≥ 1, such that
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bv|cw−1. Then for all j, k with bv−1 ≤ j < bv we have

γ (j, k) :=
∫ 1

0
Gwalj (x) · Hwalk (x) dx = 0.

Proof. Note that Gwalj (x) is constant on
[
l
bv ,

l+1
bv

)
for all 0 ≤ l < bv. So by

Lemma 2 and with A := cw−1/bv we have

γ (j, k) =
bv−1∑
l=0

Gwalj

(
l

bv

)
·
∫ A·l

cw−1 + A
cw−1

A·l
cw−1

Hwalk (x) dx = 0.

�

In the next lemma we see, how we can estimate β(G,ϕ,H, ψ, α) by esti-
mating certain sums involving the γ(j, k) defined in the last lemma.

Let G,H,ϕ, ψ, b, c be as above (bv|cw−1 for some positive v, w) and let γ
be defined like in Lemma 8.

For non-negative integers m, k let

P (m) := min {n : bm|cn}

Q (m) := min
{
n : k < cP (n)

}
.

Lemma 9. Let α, β > 1 and C1, C2 > 0 be reals and f ∈ GE
α (C1) , such

that ∣∣∣∣∣∣
∞∑

j=bQ(k)−1

f̂G (j) · γ (j, k)

∣∣∣∣∣∣ < C2

kβ

for all k ≥ 1. Then for all x ∈ [0, 1) , we have

f (x) = f̂G (0) +
∞∑
k=1

 ∞∑
j=bQ(k)−1

f̂G (j) · γ (j, k)

 · Hwalk,

therefore

f̂H (k) =
∞∑

j=bQ(k)−1

f̂G (j) · γ (j, k)

for k > 0 and f ∈ HE
β (C2) .

Proof. By Lemma 8 for j with bm−1 ≤ j < bm we have

Gwalj (x) =
cP (m)−1∑
k=0

γ (j, k) · Hwalk (x) .
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So (since γ (j, 0) = 0 for j > 1 )

f (x) =
∞∑
j=0

f̂G (j) · Gwalj (x)

= f̂G (0) +
∞∑
m=1

bm−1∑
j=bm−1

f̂G (j)
cP (m)−1∑
k=0

γ (j, k) · Hwalk (x)

= f̂G (0) +
∞∑
m=1

cP (m)−1∑
k=0

 bm−1∑
j=bm−1

f̂G (j) · γ (j, k)

 · Hwalk (x)

= f̂G (0) +
∞∑
k=1

∑
m,

cP (m)−1>k

 bm−1∑
j=bm−1

f̂G (j) · γ (j, k)

 · Hwalk (x)

= f̂G (0) +
∞∑
k=1

 ∞∑
j=bQ(k)−1

f̂G (j) · γ (j, k)

 · Hwalk (x) .

�

For the remaining part of this chapter, let M,N be positive integers, such
that bM = cN =: d. We show, that in this case, the γ(j, k) can be evaluated
in terms of γ(jl, kl) with only finitely many indices jl, kl.

Lemma 10. Let j, k be positive integers with j, k < dL and let j =
∑L

l=1 jl ·
dl−1, k =

∑L
l=1 kl · dl−1 be their d-adic representations. Then

γ (j, k) =
L∏
l=1

γ (jl, kl) .

Proof. In the following we use Lemma 5:

γ (j, k) =
∫ 1

0
Gwalj (x) · Hwalk (x) dx

=
1
dL

dL−1∑
n=0

Gwalj
( n
dL

)
· Hwalk

( n
dL

)
=

1
dL

d−1∑
n1,... ,nL=0

(
L∏

m=1

Gwaljm·dm−1

(nm
dm

))

·

(
L∏

m=1

Hwalkm·dm−1

(nm
dm

))
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=
L∏

m=1

(
1
d

d−1∑
n=0

Gwaljm·dm−1

( n

dm

)
· Hwalkm·dm−1

( n

dm

))

=
L∏

m=1

(
1
d

d−1∑
n=0

Gwaljm
(n
d

)
· Hwalkm

(n
d

))
=

L∏
l=1

γ (jl, kl) .

�

We define a quantity, using those finitely many γ(j, k), which will help us
in estimating the sum of the above Lemma 9.

Definition 5. Let G and H be finite abelian groups of order b and c. Let
ϕ,ψ be corresponding bijections. Assume, there are positive integers M,N,
such that bM = cN =: d. Then

βG,H,ϕ,ψ := logd

 max
k=0,... ,d−1

d−1∑
j=0

|γ (j, k)|

 .

(logd denotes logarithm to base d.)

The quantity βG,H,ϕ,ψ also was studied in [27].
The following theorem is the main result of this section:

Theorem 3. Let G and H be finite abelian groups of order b and c. Let
ϕ,ψ be corresponding bijections. Assume, there are positive integers M,N,
such that bM = cN =: d. Then for all α > 1 + βG,H,ϕ,ψ we have

β (G,H,ϕ, ψ, α) = α− βG,H,ϕ,ψ.

Proof. Let f ∈ G,ϕE
α (C) . Let dL−1 ≤ k < dL, k =

∑L
i=1 ki · di−1. By

Lemma 8 we have γ (j, k) = 0 if j < dL−1 or j ≥ dL. By l (j) we denote
the l-th digit of a non-negative integer j in base d. Then by Lemma 9 and
Lemma 10: ∣∣∣f̂H (k)

∣∣∣ =
∣∣∣∣∣∣
dL−1∑
j=0

f̂G (j) · γ (j, k)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
dL−1∑
j=0

f̂G (j) ·

(
L∏
l=1

γ (l(j), kl)

)∣∣∣∣∣∣
≤ C

d(L−1)·α

d−1∑
j1,...jL=0

L∏
l=1

|γ (l(j), kl)|

≤ C

d(L−1)·α

 max
k=0,... ,d−1

d−1∑
j=0

|γ (j, k)|

L
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≤ C · dα · kβG,H,ϕ,ψ−α

and therefore (again using Lemma 9) f ∈ H,ψE
α−βG,H,ϕ,ψ (C · dα) so that

β (G,H,ϕ, ψ, α) ≥ α− βG,H,ϕ,ψ.
On the other hand, consider the function

f (x) =
∞∑
j=1

f̂G (j) · G,ϕwalj (x)

with f̂G (j) of the following form: Let k0 be such, that
d−1∑
j=0

|γ (j, k0)| = max
k=0,... ,d−1

d−1∑
j=0

|γ (j, k)| .

For L ≥ 1 let K (L) := k0 + k0 · d+ · · ·+ k0 · dL−1 and for dL−1 ≤ j < dL

we set

f̂G (j) :=
1

dL·α
· |γ (j,K (L))|
γ (j,K (L))

.

Then f ∈ G,ϕE
α (1) .

Further for all L ≥ 1 we have∣∣∣f̂H (K (L))
∣∣∣ =

∣∣∣∣∣∣
dL−1∑
j=0

f̂G (j) · γ (j,K (L))

∣∣∣∣∣∣
=

1
dL·α

d−1∑
j1,... ,jL=0

L∏
l=1

|γ (jl, k0)|

=
1

dL·α

L∏
l=1

d−1∑
j=0

|γ (j, k0)| ≥
1

dα−βG,H,ϕ,ψ
· 1

K(L)α−βG,H,ϕ,ψ
,

so that β (G,ϕ,H, ψ, α) ≤ α− βG,H,ϕ,ψ, and the result follows. �

The constant βG,H,ϕ,ψ is computable in finitely many steps for every
G,H,ϕ, ψ, and, as already mentioned in Section 1, βG,H,ϕ,ψ was explicitely
computed for G = Z2,H = Z2h and ϕ,ψ identities in [12].

In the following we give an estimate for the quantity β (G,H,ϕ, ψ, α)
based on Theorem 3.

Let G,H,ϕ, ψ, d be as above. We say G and H are of comparable order
with common multiple d = |G|M = |H|N . We define the bijection τ : GM →
HN “induced by ϕ and ψ”: Let

ϕ̄ :
{
0, . . . , bM − 1

}
→ GM ,

x = aM · bM−1 + · · ·+ a1 7→ ϕ̄ (x) := (ϕ (aM ) , . . . , ϕ (a1)) .
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Let

ψ̄ :
{
0, . . . , cN − 1

}
→ HN ,

y = eN · cN−1 + · · ·+ e1 7→ ψ̄ (y) := (ψ (eN ) , . . . , ψ (e1)) .

Then τ := ψ̄ ◦ ϕ̄−1.

Theorem 4. Let G and H be of comparable order. Let ϕ and ψ be cor-
responding bijections and τ the bijection induced by ϕ and ψ. Then for all
α > 1 we have

α− 1/2 < β (G,ϕ,H, ψ, α) ≤ α

with equality on the right side if and only if τ is a group isomorphism.

Proof. We have βG,H,ϕ,ψ ≥ 0 by definition. By Theorem 1 in [27], βG,H,ϕ,ψ
= 0 if and only if τ is a group isomorphism. From Theorem 3 the right side
of the inequality follows.

Now let γ (l) := (γ (0, l) , . . . , γ (d− 1, l)) ∈ Cd. By Cauchy’s inequality
we have

βG,H,ϕ,ψ = logd

(
max

l=0,... ,d−1
‖γ (l)‖1

)
≤ logd

(
max

l=0,... ,d−1

√
d · ‖γ (l)‖2

)
= logd

√
d = 1/2.

Moreover we never have βG,H,ϕ,ψ = 1/2, since γ (0, l) = 0 for l > 0 and
‖γ (0)‖1 = 1, so that in the above application of Cauchy’s inequality the
inequality is strict. Again from Theorem 3 the result follows. �

6. The base change coefficient in the case:
|G| divides |H|N for some positive N, but
|G|M 6= |H|N for all positive M and N .

In this section we will always assume, that the orders b and c of the groups G
and H satisfy b|cN for some positive integer N , that is: Let c have canonical
prime factorization c =

∏r
i=1 p

νi
i with νi ≥ 1 for i = 1, . . . , r , then b =∏r

i=1 p
µi
i with µi ≥ 0 for i = 1, . . . , r.

Definition 6. Let ρ = ρ (b, c) := min {νi/µi : i = 1, . . . , r} .

Definition 7. Let

σw := max
cw−1≤k<cw

∞∑
v=[(w−1)·ρ]+1

1
bv·α

bν−1∑
j=bν−1

|γ (j, k)|

and

λ = λ (G,ϕ,H, ψ, α) := − lim sup
w→∞

logc σw
w

.
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With this notation, we have:

Theorem 5. If λ (G,ϕ,H, ψ, α) > 1 then

β (G,ϕ,H, ψ, α) = λ (G,ϕ,H, ψ, α) .

Proof. For f ∈ G,ϕE
α (C) and for k with cw−1 ≤ k < cw and since λ > 1 we

have by Lemma 9:∣∣∣f̂H (k)
∣∣∣ =

∣∣∣∣∣∣
∞∑

j=bQ(k)−1

f̂G (j) · γ (j, k)

∣∣∣∣∣∣
≤ C · bα ·

∞∑
v=Q(k)

1
bv·α

bv−1∑
j=bv−1

|γ (j, k)| .

Remember that P (m) := min {n : bm|cn} , Q (k) := min
{
n : k < cP (n)

}
,

so

P (m) =
⌈
m · max

i=1,... ,r

µi
νi

⌉
and therefore

Q (k) = Q
(
cw−1

)
= min

{
n : w ≤

⌈
m · max

i=1,... ,r

µi
νi

⌉}
= [(w − 1) · ρ] + 1.

(Here by dye we denote the smallest integer larger or equal to y.) Conse-
quently ∣∣∣f̂H (k)

∣∣∣ ≤ C · bα · σw ≤ C ′ (ε) · 1
kλ−ε

for all ε > 0 and a suitable C ′ (ε) > 0, so β (G,ϕ,H, ψ, α) ≥ λ (G,ϕ,H, ψ, α) .
Now let ε > 0 be given. Let 1 ≤ ω1 < ω2 < . . . be any sequence ω of

positive integers. Then we define a function f (ω) in the following way:
Let ki with cωi−1 ≤ ki < cωi be such, that

[(ωi+1−1)ρ]∑
v=[(ωi−1)ρ]+1

1
bvα

bv−1∑
j=bv−1

|γ (j, k)|

attains its maximum for k = ki. Then set

f̂
(ω)
G (j) :=

1
bvα

· |γ (j, ki)|
γ (j, ki)

for all j with b[(ωi−1)ρ] ≤ bv−1 ≤ j < bv ≤ b[(ωi+1−1)ρ], and f̂
(ω)
G (j) = 0 for

all other j.
Thus f (ω) ∈ G,ϕE

α (1) .
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On the other hand∣∣∣f̂H (ki)
∣∣∣ ≥ [(ωi+1−1)ρ]∑

v=[(ωi−1)ρ]+1

1
bvα

bv−1∑
j=bv−1

|γ (j, ki)| −
∞∑

j=b[(ωi+1−1)ρ]

1
jα
.

We have∣∣∣∣∣∣σωi −
[(ωi+1−1)ρ]∑

v=[(ωi−1)ρ]+1

1
bvα

bv−1∑
j=bv−1

|γ (j, ki)|

∣∣∣∣∣∣ ≤
∞∑

j=b[(ωi+1−1)ρ]

1
jα

and therefore ∣∣∣∣f̂ (ω)
H (ki)

∣∣∣∣ ≥ σωi − 2
∞∑

j=b[(ωi+1−1)ρ]

1
jα
.

Let now the sequence ω be such, that λ ≥ − logc σωi
ωi

− ε for all i and such,
that

∞∑
j=b[(ωi+1−1)ρ]

1
jα

<
1
4
· 1
cωi·(λ−ε)

for all i. Then∣∣∣∣f̂ (ω)
H (ki)

∣∣∣∣ ≥ 1
cωi·(λ−ε)

− 2
4
· 1
cωi·(λ−ε)

≥ 1
2 · c(λ−ε)

· 1
kλ−εi

for all i.
Therefore β (G,ϕ,H, ψ, α) ≤ λ (G,ϕ,H, ψ, α) and the result follows. �

Although we now have an exact formula for β, it can, however, not be
computed in finite time. Consequently, until now we do not even know,
for example, the value of β (Z2, id,Z6, id, α) . But we can use Theorem 5
to obtain good estimates for β (G,ϕ,H, ψ, α) . Using the trivial estimate
|γ (j, k)| ≤ 1 together with Theorem 5 would lead to β (G,ϕ,H, ψ, α) ≥
(α− 1) · ρ · log (b) / log (c) . An upper bound and a sharper lower bound is
given by the following result.

Theorem 6. Let G and H be of order b and c and let ϕ and ψ be suitable
bijections. Assume, that there is a positive integer N , such that b|cN . Let
ρ = ρ (b, c) be defined as in Definition 6. Then with θ := ρ · log (b) / log (c)
we have

α · θ −min (θ/2, 2θ − 1) ≤ β (G,ϕ,H, ψ, α) ≤ α · θ + (1− θ) .

Remark. Note that 0 < θ ≤ 1 and that the upper and the lower bound
differ at most by 2/3. If b and c are as in Section 5 then θ = 1 and we obtain
the bounds from Theorem 4.
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Proof of the theorem. By Cauchy’s inequality we have for cw−1 ≤ k < cw

and with

σw (k) :=
∞∑

v=[(w−1)ρ]+1

1
bvα

bv−1∑
j=bv−1

|γ (j, k)| ,

that

|σw (k)| ≤
∞∑

v=[(w−1)ρ]+1

bv/2

bvα

 bv−1∑
j=bv−1

|γ (j, k)|2
1/2

.

By the Bessel inequality for L2 ([0, 1)) with the orthonormal basis WG,ϕ

bv−1∑
j=bv−1

|γ (j, k)|2 =
bv−1∑
j=bv−1

∣∣∣∣∫ 1

0
Hwalk (x) · Gwalj (x) dx

∣∣∣∣2

≤
bv−1∑
j=0

∣∣∣∣∫ 1

0
Hwalk (x) · Gwalj (x) dx

∣∣∣∣2 ≤ ‖Hwalk‖2
2

=
∫ 1

0
Hwalk (x) · Hwalk (x) dx = 1

for all v.
So

|σw (k)| ≤
∞∑

v=[(w−1)ρ]+1

bv/2

bvα
≤ C1 (b, α) · 1

bw·ρ·(α−1/2)

for all w and k (and a constant C1 (b, α) depending only on b and α) and
we obtain λ ≥ (α− 1/2) · θ.

To obtain a further lower bound for λ we estimate the coefficients γ (j, k)
“individually”: For k given with cw−1 ≤ k < cw, for v with

[(w − 1) ρ] + 1 ≤ v ≤ (w − 1) · log c
log b

and for j with bv−1 ≤ j < bv we have 1/cw−1 ≤ 1/bv and therefore by Lemma
2 and since Gwalj is constant on intervals of the form [A/bv, (A+ 1)/bv):

|γ (j, k)| =
∣∣∣∣∫ 1

0
Gwalj (x) · Hwalk (x) dx

∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
bv−1∑
a=0

1
cw−1

l
a·cw−1

bv

m∫
1

cw−1

h
a·cw−1

bv

i Gwalj (x) · Hwalk (x) dx

∣∣∣∣∣∣∣∣∣ ≤
bv

cw−1
.
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So

σw ≤

h
(w−1)· log c

log b

i∑
v=[(w−1)ρ]+1

1
cw−1

· 1
bv(α−2)

+
∞∑

v=
h
(w−1)· log c

log b

i
+1

1
bv(α−1)

≤ C2 (b, c, α) ·
(

1
cw

· 1
bw·ρ·(α−2)

+
1

cw·(α−1)

)
≤ C2 (b, c, α) ·

(
1

cw·(1+θ·(α−2))
+

1
cw·(α−1)

)
≤ C2 (b, c, α) · 1

cw·(1+θ·(α−2))

with the constant C2 (b, c, α) depending only on b, c and α, and since θ ≤ 1.
From the definition of λ (G,ϕ,H, ψ, α) we immediately get λ ≥ θ·α−2θ+1

and by Theorem 5 the lower bound for β (G,ϕ,H, ψ, α) follows.
To show the upper bound it suffices to prove the following: For any

positive integer w let v := [(w − 1) · ρ] + 1. Then there is a k with cw−1 ≤
k < cw, such that

bv−1∑
j=bv−1

|γ (j, k)| ≥ bv−1

cw
.

Since then for all w

σw ≥ C3 (b, c, α) · 1
bw·ρ·α

· b
w·ρ

cw
≥ C3 (b, c, α) · 1

cw·(1+θ·(α−1))

(here again the constant is depending only on b, c and α ), and by Theorem
5 the upper bound follows.

Now by Lemma 8 and 4:
bv−1∑
j=bv−1

|γ (j, k)| =
bv−1∑
j=0

|γ (j, k)|

≥

∣∣∣∣∣∣
∫ 1

0
Hwalk (x) ·

bv−1∑
j=0

Gwalj (x) dx

∣∣∣∣∣∣
= bv ·

∣∣∣∣∣
∫ b−v

0
Hwalk (x) dx

∣∣∣∣∣ .
Because of the special form of v the fraction A := cw−1/bv−1 is an integer,
but A/b is not. Let the integer E be such, that

E

cw−1
+ y =

1
bv
,
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where 0 < y < 1/cw−1. Then

E =
A

b
− cw−1 · y

and

1
b
· 1
cw−1

≤ y ≤
(

1− 1
b

)
· 1
cw−1

.

Now by Lemma 2∣∣∣∣∣
∫ b−v

0
Hwalk (x) dx

∣∣∣∣∣ =
∣∣∣∣∣
∫ E

cw−1 +y

E
cw−1

Hwalk (x) dx

∣∣∣∣∣
=
∣∣∣∣∫ y

0
Hwalk (x) dx

∣∣∣∣
=

1
cw−1

∣∣∣∣∣
∫ y·cw−1

0
Hwalkw (x) dx

∣∣∣∣∣ .
Here

1
b
≤ z := y · cw−1 ≤ 1− 1

b

and kw 6= 0 is such, that k = kw · cw−1 + · · ·+ k1.
By Lemma 4

c−1∑
l=1

∫ z

0
Hwall (x) dx =

∫ z

0

(
c∑
l=0

Hwall (x)

)
− 1 dx

=

{
c · z − z if z ≤ 1/c
1− z if z > 1/c

.

So there exists an l ∈ {1, . . . , c− 1} , such that∣∣∣∣∫ z

0
Hwall (x) dx

∣∣∣∣ ≥ 1
c
·min (c · z − z, 1− z) ≥ 1

b · c
.

Hereby we have shown the existence of a k with cw−1 ≤ k < cw and with

bv−1∑
j=bv−1

|γ (j, k)| ≥ bv−1

cw
.

This completes the proof. �
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7. Summary of the base change results.

In this section, for the sake of the reader, we collect and summarize the
results on the base change coefficient given in Sections 4-6.

Given two finite abelian groups, G,H, we distinguished three cases, ac-
cording to the relations between the group orders:

1) If |G| did not divide any (integral) power of |H|, we found, that the
relation between the convergence classes was quite bad. We obtained
the non-improvable result

β (G,ϕ,H, ψ, α) = 1

for all α > 1.
2) If some power of |G| equalled some power of |H|, the results showed

very good relations between the convergence classes:

β (G,ϕ,H, ψ, α) = α− βG,H,ϕ,ψ,

where βG,H,ϕ,ψ was a finitely computable constant (see Definition 5).
Estimates of βG,H,ϕ,ψ lead to an estimate of β(G,ϕ,H, ψ, α):

α− 1/2 < β (G,ϕ,H, ψ, α) ≤ α.

3) If |G| divided some power of |H|, we had to formulate the result using
the, in general, not finitely computable constant λ (see Definition 7).
Then

β (G,ϕ,H, ψ, α) = λ (G,ϕ,H, ψ, α) .
We were able to give good estimates for this constant, leading to the
inequalities

α · θ −min (θ/2, 2θ − 1) ≤ β (G,ϕ,H, ψ, α) ≤ α · θ + (1− θ),

where θ is a constant in (0, 1], depending only on the group orders (see
Definition 6 and the formulation of Theorem 6).

Note, that the second case is actually a special case of the third: It
corresponds to the value θ = 1. The resulting bounds for β(G,ϕ,H, ψ, α)
coincide.

8. An application to quasi-Monte Carlo integration.

In a series of papers (see for example [14], [11], [9], [15],...) a so-called
“digital lattice rule” for the numerical integration of functions defined on
the s-dimensional unit cube [0, 1)s was developed. The essential observation
of this method is, that certain classes of functions f : [0, 1)s → C can be
approximately integrated with the help of so-called “digital nets” in a much
more accurate way than with other methods. The main result of this “digital
lattice rule” is an integration error estimate, which was given in improved
and generalized form in [14], [9] and [27].
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In this section we will give just the necessary preliminaries to state and
prove the most general and sharpest form of this error estimate until now,
based on Theorems 3 and 6. The error estimate is then given in Theorem 7.

We begin by extending the concept of Walsh systems over groups to ar-
bitrary dimensions.

Definition 8. Let G be a finite abelian group and ϕ a corresponding bi-
jection. Let WG,ϕ be the system of Walsh functions over G and ϕ. For an
integer s ≥ 2 and non-negative integers n1, . . . , ns let

G,ϕwaln1,... ,ns : [0, 1)s → C

be defined by

G,ϕwaln1,... ,ns (x1, . . . , xs) :=
s∏
i=1

G,ϕwalni (xi) ,

and

W s
G,ϕ := {G,ϕwaln1,... ,ns : n1, . . . , ns ≥ 0}

is called the system of s-dimensional Walsh functions over G and ϕ.

Definition 9. For G and ϕ given, for an integer s ≥ 2 and real numbers
α > 1 and C > 0 let G,ϕEαs (C) denote the class of all functions f : [0, 1)s →
C which are representable by an s-dimensional Walsh series

f (x1, . . . , xs) =
∞∑

n1,... ,ns=0

f̂G (n1, . . . , ns) · Gwaln1,... ,ns (x1, . . . , xs)

with Walsh coefficients f̂G (n1, . . . , ns) ∈ C satisfying∣∣∣f̂G (n1, . . . , ns)
∣∣∣ ≤ C · (n1· · · · ·ns)−α

for all (n1, . . . , ns) 6= (0, . . . , 0). (Here n := max (1, n) .)

Definition 10. Let G and H be finite abelian groups and ϕ,ψ correspond-
ing bijections. For an arbitrary dimension s and real numbers α > 1 we
define: β (G,ϕ,H, ψ, α, s) := sup

{
β > 1 : for all C > 0 there is a C ′ > 0

with G,ϕE
α
s (C) ⊆ H,ψE

β
s (C ′)

}
.

Again β (G,ϕ,H, ψ, α, s) := 1 if no such β exists.

For this multi-dimensional extension we can show:

Lemma 11. β (G,ϕ,H, ψ, α, s) = β (G,ϕ,H, ψ, α).

Proof. The proof is exactly the same as the proof of Lemma 2 in [12]. We
omit the obvious adaptions. �
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The concept of digital (t,m, s)-nets – these are point sets in the s-dimen-
sional unit cube of a special structure – was introduced by Niederreiter ([9],
[16], see also [17]) and was subsequently investigated in detail by various
authors. (Special examples of digital (t,m, s)-nets already can be found in
Sobol’ [25] and Faure [4].)

Definition 11. Let b ≥ 2, s ≥ 1, and 0 ≤ t ≤ m be integers. Then a
point set P = {x0 . . . ,xN−1} consisting of N = bm points of [0, 1)s forms a
(t,m, s)-net in base b if the number of n with 0 ≤ n ≤ N − 1, for which xn
is in the subinterval J of [0, 1)s, is bt for all J =

∏s
i=1

[
aib

−di , (ai + 1)b−di
)

with integers di ≥ 0 and 0 ≤ ai < bdi for 1 ≤ i ≤ s, and with s-dimensional
volume bt−m.

Definition 12. Let b ≥ 2, s ≥ 1, and m ≥ 1 be integers. We consider the
following construction principle for point sets P consisting of bm points in
[0, 1)s. We choose:

(i) A commutative ring R with identity and |R| = b;
(ii) a bijection τ : R→ Zb = {0, 1, . . . , b− 1} with τ(0) = 0;
(iii) elements c(i)jr ∈ R for 1 ≤ i ≤ s, 1 ≤ j ≤ m, and 0 ≤ r ≤ m− 1.

For n = 0, 1, . . . , bm − 1 let

n =
m−1∑
r=0

ar(n)br with all ar(n) ∈ Zb

be the digit expansion of n in base b. We put

x(i)
n =

m∑
j=1

y
(i)
nj b

−j for 0 ≤ n < bm and 1 ≤ i ≤ s,

with

y
(i)
nj = τ

(
m−1∑
r=0

c
(i)
jr τ

−1(ar(n))

)
∈ Zb

for 0 ≤ n < bm, 1 ≤ i ≤ s, 1 ≤ j ≤ m.
If for some integer t with 0 ≤ t ≤ m the point set

xn =
(
x(1)
n , . . . , x(s)

n

)
∈ [0, 1)s for n = 0, 1, . . . , bm − 1

is a (t,m, s)-net in base b, then it is called a digital (t,m, s)-net constructed
over R with respect to the bijection τ.

The most powerful construction methods for digital (t,m, s)-nets of high
quality (i.e. with small t) are based on methods from algebraic geometry.
See for example [18], [19].
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Lemma 12. Let R be a finite commutative ring of order c with additive
group H and let ψ : {0, . . . , c− 1} → R be a bijection with ψ (0) = 0.
Let x0, . . .xN−1 be a digital (t,m, s)-net constructed over R with respect to
τ = ψ−1. Then for all α > 1, C > 0 we have∣∣∣∣∣

∫
[0,1)s

f (x) dx− 1
N

N−1∑
n=0

f (xn)

∣∣∣∣∣ ≤ K · ctα · (logN)s−1

Nα

for all f ∈ H,ψE
α
s (C) , where K is a constant depending only on s, c, C and

α.

Proof. This is Theorem 1 in [9], stated in a slightly simplified form. �

In this result for the construction of the digital point set, a ring has to be
used, which is based on the same additive group G as the considered Walsh
system. However, only certain rings are well suited for the construction of
digital (t,m, s)-nets of highest quality.

Therefore it is sometimes more convenient to use a ring R for the con-
struction of the digital net which is based on another additive group H as
the considered Walsh system, which is based on, say, a group G. So we need
a corresponding, more general integration error estimate.

In Theorem 4 in [27] such an estimate was given for the case |G| = |H| .
We are now able to give an error estimate for the case, that for some positive
integer L we have: |G| divides |H|L . Our result - given in the subsequent
Theorem - contains the above mentioned result of Wolf in [27] (Th.4).

Theorem 7. Let G and H be finite abelian groups of orders b and c, and ϕ
and ψ corresponding bijections. Let R be a commutative ring with additive
group H. Assume, that there exists a positive integer L, such that b|cL. Let
ρ (b, c) be defined like in Definition 6 and let

θ := ρ (b, c) · log b
log c

.

Let x1, . . . ,xN be a digital (t,m, s)-net constructed over R with respect to
τ = ψ−1.

a) For all α > 1/θ + min (1/2, 2− 1/θ) and all C > 0 we have∣∣∣∣∣
∫

[0,1)s
f (x) dx− 1

N

N−1∑
n=0

f (xn)

∣∣∣∣∣
≤ K · ct·(α·θ−min(θ/2,2θ−1)) · (logN)s−1

Nα·θ−min(θ/2,2θ−1)

for all f ∈ G,ϕE
α
s (C) .

b) Assume, that for some positive integers M and L even bM = cL holds.
Let βG,H,ϕ,ψ be defined like in Definition 5.
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For all α > 1+ βG,H,ϕ,ψ and all C > 0 we have∣∣∣∣∣
∫

[0,1)s
f (x) dx− 1

N

N−1∑
n=0

f (xn)

∣∣∣∣∣
≤ K · ct·(α−βG,H,ϕ,ψ) · (logN)s−1

Nα−βG,H,ϕ,ψ

for all f ∈ G,ϕE
α
s (C) .

(In both cases again the K denote constants depending only on s, b, c, C
and α.)

Proof. Note, that in the proofs of the lower bound in Theorem 6 and of
Theorem 3 we indeed even have proved a little more. From the proofs we
even obtain the following:

• For all α > 1/θ + min (1/2, 2− 1/θ) and all C > 0 we have

G,ϕE
α (C) ⊆ H,ψE

α·θ−min(θ/2,2θ−1)
(
C ′
)

for some C ′ > 0;
respectively if G and H are of comparable order:

• For all α > 1+ βG,H,ϕ,ψ and all C > 0 we have

G,ϕE
α (C) ⊆ H,ψE

α−βG,H,ϕ,ψ
(
C ′
)

for some C ′ > 0.
From this and Lemma 12 the assertion of Theorem 7 now immediately

follows. �

The results of Theorem 7 (but also the result of Theorem 2, stating that
there are no base change connections in Case 1), also are reflected in numer-
ical results. As a small sample, we give in the following some results on the
numerical integration of a function f ∈ Z2,idE

3
s (c) (i.e. b = 2) with digital

nets over Z2,Z5,F8 and Z10, and with the Hammersley-Halton sequence.
As can be seen, we obtain excellent results for nets over Z2 and F8 (Case

2), good results for Z10 (Case 3) and the “worst” results for Z5 (Case 1)
and the Hammersley-Halton sequence. In the last case (Case 1), the struc-
ture of the digital net does not play a role any more in integrating the
function f . Only the small discrepancy of any digital net of high quality
provides an integration error about as small as the error obtained by using
the Hammersley-Halton sequence.

In the following table, there are two sections: In the first, the point sets
contain between 220 and 221 points, in the second the range is from 223 to
224. In each section, the first column describes the point set, in the second
the number of integration points N is listed and in the third and fourth
column, the integration error of a test function f in 7, resp. 8 variables is
shown. The function f is the test function described for example in [12].
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We use the digital nets over Z5 and Z10 described in [9], digital nets over
F8 as they are used in [12] and digital nets over Z2 as they are generated in
[24].

Method N dim 7 dim 8
Z2 1048576 2.3280821e-12 1.3543555e-11
Z5 1953125 4.3304898e-04 2.5758582e-04
F8 2097152 2.0078383e-13 5.1528231e-10
Z10 1000000 1.3743740e-05 5.0843230e-06
Hamm. 1048576 2.0067839e-03 2.2115463e-04
Z2 8388608 2.3425705e-14 1.7175150e-13
Z5 9765625 5.2695372e-05 2.3610550e-04
F8 16777216 9.9364960e-15 1.0041967e-13
Z10 10000000 1.2159300e-05 5.4922667e-06
Hamm. 8388608 7.9642499e-05 3.2087933e-05

Table 1. N denotes the number of integration points, under dim 7 and
dim 8 the integration errors of the 7- respective 8-dimensional test function

are listed.

Finally we mention, that the above investigations also could be extended
to investigations on the connection between Walsh series and Haar series
(the problem does not really occur between different classes of Haar series)
and the corresponding results could be used to reprove and improve results of
Entacher ([2],[3]) on the numerical integration of Haar series. A forthcoming
paper concerning this is in preparation. (See also [22].)

9. Some open problems.

Of course many questions remain open. In the following we restate just some
of the – in our opinion – most challenging problems once more explicitely.
Problem 1: In practice, given G and H of comparable order, in the choice
of bijections we are quite free. So it is obvious to choose ϕ and ψ, such that
βG,H,ϕ,ψ is minimal. We know (Theorem 4) that

0 ≤ βG,H,ϕ,ψ <
1
2
.

Is

sup
G,H

min
ϕ,ψ

βG,H,ϕ,ψ <
1
2

?

In fact we conjecture

sup
G,H

min
ϕ,ψ

βG,H,ϕ,ψ = lim
h→∞

βZ2,Z2h
,id,id
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=
1
2

+
log sin 5π

12

log 2
= 0.4499...

(See also [27].)
Problem 2: Is

βZ2,Z2h
,id,id = min

ϕ,ψ
βZ2,Z2h

,ϕ,ψ ?

We conjecture, yes.
Problem 3: We know a closed form for the exact values of βZ2,Z2h

,id,id (see
Section 1). However, we do not know a closed form for the exact values of
βZ

2h
,Z2,id,id.

Problem 4: Of course also in “Case Three”, b|cN for some N, a solution in
the form of Theorem 3 for groups of comparable order would be desirable.
However, this seems to be quite difficult.

Until now we do not even know the exact value of β (G,ϕ,H, ψ, α) in
“easiest” cases, like, for example, β (Z2, id,Z6, id, α) .
Problem 5: Any improvement of the inequality given in Theorem 6 would
be of interest.
Problem 6: Is it possible to give more exact results than Theorems 5 and
6 in the case that G and H are not of comparable order, but |G| and |H|
have the same prime factors?

(For example, it might be easier to compute β (Z6, id,Z12, id, α) than to
compute β (Z2, id,Z6, id, α) . )
Problem 7: Give at least numerical estimates for β (G,ϕ,H, ψ, α) for cer-
tain examples in “Case Three”, maybe based on Theorem 5.
Problem 8: Motivated by Theorem 3 for “Case Two” and Theorem 6 it
seems that in “Case Three” we should have

β (G,ϕ,H, ψ, α) = α · θ + δ (G,ϕ,H, ψ)

with some quantity δ (G,ϕ,H, ψ) not depending on α. Is this true?
Problem 9: Concerning the constant γ considered in Section 3, we know
that γ (G,ϕ,H, ψ, α) ≤ β (G,ϕ,H, ψ, α). Can γ also be estimated from
below by some expression depending on β?

This is motivated by Theorem 1. However, note that β is defined just
over Walsh series, not over arbitrary functions as γ is.
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