Pacific Journal of Mathematics

RESTRICTIONS OF RANK-2 SEMISTABLE VECTOR BUNDLES ON SURFACES IN POSITIVE CHARACTERISTIC

Atsushi Noma

Volume 189 No. 1 May 1999

RESTRICTIONS OF RANK-2 SEMISTABLE VECTOR BUNDLES ON SURFACES IN POSITIVE CHARACTERISTIC

Atsushi Noma

We work over an algebraically closed field of positive characteristic. Let E be a semistable rank-2 vector bundle with respect to a very ample line bundle $\mathcal{O}(1)$ on a smooth projective surface. The purpose here is to give an effective bound d_0 such that if $d \geq d_0$ the restriction of E to a general member $C \in |\mathcal{O}(d)|$ is semistable.

1. Introduction.

Let E be a rank-r torsion free sheaf on a normal projective variety of dimension $n \geq 2$ defined over an algebraically closed field k. Assume that E is semistable with respect to a very ample line bundle $\mathcal{O}(1)$: Namely, if we set $\mu(F) = (c_1(F) \cdot \mathcal{O}(1)^{n-1})$ for a subsheaf F of E, $\mu(E) \geq \mu(F)$ holds for all subsheaf F of E.

A problem of finding a condition when the restriction E|C to a member $C \in |\mathcal{O}(d)|$ is semistable on C has been considered by several authors ([1], [3], [6], [7], [8]): Maruyama [6] proved that if r < n then E|C is semistable for general $C \in |\mathcal{O}(d)|$ for every $d \ge 1$; Mehta and Ramanathan [7] proved that there exists an integer d_0 such that if $d \ge d_0$ then E|C is semistable for general $C \in |\mathcal{O}(d)|$; Flenner [3] proved that if k is of characteristic 0 and d satisfies $\frac{\binom{d+n}{d}-d-1}{d} > (\mathcal{O}(1)^n) \cdot \max(\frac{r^2-1}{4},1)$ then E|C is semistable for general $C \in |\mathcal{O}(d)|$. In other direction, in characteristic 0, Bogomolov [1] and Moriwaki [8] obtained an effective bound d_0 for some special restriction E|C to be semistable.

The purpose here is to give an effective bound d_0 in positive characteristic when E is a rank-2 vector bundle on a surface: If $d \ge d_0$ the restriction E|C of E to a general member $C \in |\mathcal{O}(d)|$ is semistable.

Our result is the following.

Theorem. Let S be a smooth projective surface over an algebraically closed field k of characteristic char(k) = p > 0 and $\mathcal{O}_S(1)$ a very ample line bundle on S. Let E be a rank-2 semistable vector bundle with respect to $\mathcal{O}_S(1)$ on S. Set deg $S = (\mathcal{O}_S(1)^2)$, $\Delta(E) = c_2(E) - (1/4)c_1^2(E)$, and $\nu = \min\{(\mathcal{M} \cdot \mathcal{O}_S(1)^2), \Delta(E) = c_2(E) - (1/4)c_1^2(E), \Delta(E) = c_2(E) - (1/4)c_1^2(E), \Delta(E) = c_2(E) - (1/4)c_1^2(E), \Delta(E) = c_2(E) - (1/4)c_1^2(E)$

 $\mathcal{O}_S(1) > 0 : \mathcal{M} \in \operatorname{Pic} S$. Let d be an integer with

$$d > \begin{cases} \frac{\Delta(E)}{\nu} + \frac{\sqrt{\Delta(E)}}{2\sqrt{3} \deg S}, & if \ \Delta(E) > 0, \\ 0, & if \ \Delta(E) \le 0. \end{cases}$$

Then the restriction E|C to a general $C \in |\mathcal{O}_S(d)|$ is semistable on C.

The theorem is proved based on ideas of Ein [2] and Flenner [3].

2. Proof of Theorem.

Set $L = \mathcal{O}_S(d)$. Let \mathbb{P}^{2*} be the projective space of lines in \mathbb{P}^2 and \mathbb{F} the incidence correspondence $\{(x,\ell) \in \mathbb{P}^2 \times \mathbb{P}^{2*} : x \in \ell\}$, namely

$$\mathbb{F} = \mathbb{P}_{\mathbb{P}^2}(\Omega^1_{\mathbb{P}^2}(2)) \subseteq \mathbb{P}_{\mathbb{P}^2}(\wedge^2 H^0(\mathcal{O}_{\mathbb{P}^2}(1)) \otimes \mathcal{O}_{\mathbb{P}^2}) = \mathbb{P}^2 \times \mathbb{P}^{2*}.$$

Let $\phi \colon S \to \mathbb{P}^2$ be a (separable) finite morphism defined by a 2-dimensional, base-point-free, linear subsystem \mathfrak{d} of |L| containing a general curve $C \in |L|$. Pulling-back the correspondence \mathbb{F} by ϕ , we have the following diagram:

$$egin{array}{ccccc} X & \longrightarrow & \mathbb{F} & \stackrel{
ho_0}{\longrightarrow} & \mathbb{P}^{2*} \\ \pi\downarrow & \square & \downarrow \pi_0 & & & \\ S & \stackrel{
ho}{\longrightarrow} & \mathbb{P}^2 & & & & \end{array}$$

We denote the composite $X \to \mathbb{F} \to \mathbb{P}^{2*}$ by ρ .

Assume that the restriction E|C to a general curve $C \in \mathfrak{d} \subset |L|$ is not semistable. In other words, the restriction $\pi^*E|\rho^{-1}(\ell)$ to $\rho^{-1}(\ell)$ for a general $\ell \in \mathbb{P}^{2*}$ is not semistable, since $\rho^{-1}(\ell)$ is isomorphic to a divisor $C \in \mathfrak{d}$ and $\pi^*E|\rho^{-1}(\ell) \cong E|C$ under this isomorphism. Consider a relative Harder-Narasimhan filtration (HN-filtration) of π^*E over ρ , which has a property that its restriction to $\rho^{-1}(\ell)$ for a general $\ell \in \mathbb{P}^{2*}$ is the HN-filtration of $\pi^*E|\rho^{-1}(\ell)$ (see [4, (3.2)]). By assumption, the relative HN-filtration is $0 = \mathcal{E}_0 \subset \mathcal{E}_1 \subset \mathcal{E}_2 = \pi^*E$ and we may assume that \mathcal{E}_1 is locally free of rank 1 on X. Hence if W denotes the class of the tautological bundle of $X = \mathbb{P}_S(\phi^*(\Omega^1_{\mathbb{P}^2}(2)))$, we have $\mathcal{E}_1 \cong \mathcal{O}_X(aW) \otimes \pi^*\mathcal{M}$ for some $a \in \mathbb{Z}$ and $\mathcal{M} \in \mathrm{Pic}\,S$, since $\mathrm{Pic}\,X \cong \mathbb{Z}W \oplus \pi^*\mathrm{Pic}S$ (see [5, Ch. III Ex. 12.5]). Since $\mathcal{M}|\pi(\rho^{-1}(\ell)) \subset E|\pi(\rho^{-1}(\ell))$ is the HN-filtration of $E|\pi(\rho^{-1}(\ell))$ for a general $\ell \in \mathbb{P}^{2*}$, we have

$$(c_1(E) - 2\mathcal{M} \cdot L) < 0.$$

Consequently $H^0(\rho^{-1}(\ell), \pi^*(E \otimes \mathcal{M}^{\vee})|\rho^{-1}(\ell)) \cong k$ for a general $\ell \in \mathbb{P}^{2*}$, and hence $\rho_*\pi^*(E \otimes \mathcal{M}^{\vee})$ is of rank 1 and reflexive. Therefore we have $\rho_*\pi^*(E \otimes \mathcal{M}^{\vee}) = \mathcal{O}_{\mathbb{P}^{2*}}(-t)$ for some $t \in \mathbb{Z}$. The semistability of E implies

$$(2) t > 0$$

since $H^0(\mathbb{P}^{2*}, \rho_*\pi^*(E \otimes \mathcal{M}^{\vee})) = H^0(X, \pi^*(E \otimes \mathcal{M}^{\vee})) = H^0(S, E \otimes \mathcal{M}^{\vee})$ and (1) holds. The natural map $\mathcal{O}_X(-tW) = \rho^*\rho_*\pi^*(E \otimes \mathcal{M}^{\vee}) \to \pi^*(E \otimes \mathcal{M}^{\vee})$ induces an exact sequence

(3)

$$0 \to \mathcal{O}_X(-tW) \otimes \pi^*\mathcal{M} \to \pi^*E \to \mathcal{O}_X(tW) \otimes \pi^*\mathcal{O}_S(c_1(E) - \mathcal{M}) \otimes \mathcal{I}_Z \to 0$$

with a closed subscheme Z of codimension 2 in X.

The surjection in (3) induces a unique morphism $\sigma \colon X \setminus Z \to \mathbb{P}_S(E)$ with

$$\sigma^* \mathcal{O}_{\mathbb{P}(E)}(1) = \mathcal{O}_X(tW) \otimes \pi^* \mathcal{O}_S(c_1(E) - \mathcal{M}) | (X \setminus Z)$$

$$\sigma^* \Omega^1_{\mathbb{P}(E)/S} = \mathcal{O}_X(-2tW) \otimes \pi^* \mathcal{O}_S(2\mathcal{M} - c_1(E)) | (X \setminus Z),$$

by the universal property of projective bundle $\tau \colon \mathbb{P}_S(E) \to S$. If the differential

$$d\sigma \colon \sigma^* \Omega^1_{\mathbb{P}(E)/S} \to \Omega^1_{X/S} | (X \setminus Z)$$

is zero, then S-morphism σ factors through the relative Frobenius $F_{(X\setminus Z)/S}$: $X\setminus Z\to (X\setminus Z)^{(1)}$ of $X\setminus Z$ over S (see [2, (1.4)]). Namely there exists an S-morphism $\sigma_1\colon (X\setminus Z)^{(1)}\to \mathbb{P}_S(E)$ such that $\sigma=\sigma_1\circ F_{(X\setminus Z)/S}$. Here for an S-scheme Y, by $Y^{(r)}$ we denote the base change of the structure morphism $\eta\colon Y\to S$ by the rth (absolute) Frobenius $F_S^r\colon S\to S$; $F_{Y/S}^r\colon Y\to Y^{(r)}$ is the S-morphism induced by the (absolute) Frobenius $F_Y^r\colon Y\to Y$ of Y and the structure morphism η by the property of products. Furthermore, if $d\sigma_1=0$, then there exists a morphism $\sigma_2\colon (X\setminus Z)^{(2)}\to \mathbb{P}_S(E)$ such that $\sigma=\sigma_2\circ F_{(X\setminus Z)/S}^2$. Proceeding in this way with [2, (1.4)], we claim that there exists a morphism $\sigma_r\colon (X\setminus Z)^{(r)}\to \mathbb{P}_S(E)$ such that $\sigma=\sigma_r\circ F_{(X\setminus Z)/S}^r$ and the relative differential

$$d\sigma_r \colon \sigma_r^* \Omega^1_{\mathbb{P}(E)/S} \to \Omega^1_{X^{(r)}/S} | (X \setminus Z)^{(r)}$$

is nonzero for some $r \geq 0$. In fact, suppose that we have a morphism $\sigma_r \colon (X \setminus Z)^{(r)} \to \mathbb{P}_S(E)$ such that $\sigma = \sigma_r \circ F^r_{(X \setminus Z)/S}$ for some $r \geq 0$. Here we set $\sigma_0 = \sigma$ if r = 0. Then we have the following diagram:

$$X \setminus Z \xrightarrow{F_{(X/Z)/S}^r} (X \setminus Z)^{(r)}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow^{\sigma_r}$$

$$X \xrightarrow{F_{X/S}^r} \qquad X^{(r)} \qquad \qquad \mathbb{P}_S(E)$$

$$\downarrow \pi \qquad \qquad \downarrow \pi_r \qquad \swarrow_{\tau}$$

$$S \qquad = \qquad S.$$

Since $X \cong \mathbb{P}_S(\phi^*(\Omega^1_{\mathbb{P}^2}(2)))$, we have $X^{(r)} \cong \mathbb{P}_S(F_S^{r*}\phi^*(\Omega^1_{\mathbb{P}^2}(2)))$. If W' is the class of the tautological line bundle of $X^{(r)}$ over S, then $F_{X/S}^{r*}\mathcal{O}_{X^{(r)}}(W') \cong \mathcal{O}_X(p^rW)$ and $\Omega^1_{X^{(r)}/S} \cong \pi_r^*(p^rL) \otimes \mathcal{O}_{X^{(r)}}(-2W')$. On the other hand, $F_{X/S}^{r*}\pi_r^*\mathcal{A} \cong \pi^*\mathcal{A}$ for every $\mathcal{A} \in \operatorname{Pic} S$. Since $\sigma = \sigma_r \circ F_{(X \setminus Z)/S}^r$ and $\operatorname{Pic} X^{(r)} \cong \mathbb{Z}W' \oplus \pi_r^*\operatorname{Pic} S$, the morphism σ_r induces an exact sequence

$$\begin{split} 0 &\to \mathcal{O}_{X^{(r)}} \left(-\frac{t}{p^r} W' \right) \otimes \pi_r^* \mathcal{M} \to \pi_r^* E \\ &\to \mathcal{O}_{X^{(r)}} \left(\frac{t}{p^r} W' \right) \otimes \pi_r^* \mathcal{O}_S(c_1(E) - \mathcal{M}) \otimes \mathcal{I}_{Z'} \to 0, \end{split}$$

and we have $t/p^r \in \mathbb{Z}$, where Z' is a codimension 2 closed subscheme of $X^{(r)}$. Since t > 0, the latter implies that σ factors through the relative Frobenius over S only in finite times. Therefore for some $r \geq 0$, the morphism σ_r must have the nonzero relative differential $d\sigma_r$, as required.

We take such $r \geq 0$ and $\sigma_r \colon (X \setminus Z)^{(r)} \to \mathbb{P}_S(E)$. If $C \in \mathfrak{d} \subset |L|$, since $C \cong \rho^{-1}(\ell) \cong F^r_{X/S}(\rho^{-1}(\ell))$ for some $\ell \in \mathbb{P}^{2*}$, we can consider $C \subset X^{(r)}$. Then we have $\mathcal{O}_{X^{(r)}}(W')|C \cong \mathcal{O}_C$ and $\pi_r^* \mathcal{A}|C \cong \mathcal{A}|C$ for every $\mathcal{A} \in \operatorname{Pic} S$. The restriction $d\sigma_r|C$ to general $C \in \mathfrak{d}$ is nonzero by the choice of r. This implies that

(4)
$$(L \cdot 2\mathcal{M} - c_1(E)) \le p^r(L^2) \le t(L^2),$$

since

$$\sigma_r^* \Omega^1_{\mathbb{P}(E)/S} | C = \mathcal{O}_C(2\mathcal{M} - c_1(E))$$

$$\Omega^1_{X^{(r)}/S} | C = \mathcal{O}_C(p^r L),$$

and since $t/p^r \in \mathbb{Z}$.

Restricting the exact sequence (3) to a general member $W \in |\mathcal{O}_X(W)|$ not containing any associate points of Z, we have an exact sequence

$$0 \to \mathcal{O}_W(-tW) \otimes \pi^* \mathcal{M} | W \to \pi^* E | W$$

$$\to \mathcal{O}_W(tW) \otimes \pi^* \mathcal{O}_S(c_1(E) - \mathcal{M}) | W \otimes \mathcal{I}_{Z \cap W} \to 0.$$

On the other hand, we note that $W^3 = 0$ and $W^2 \cdot \pi^* \mathcal{A} = (\mathcal{A} \cdot L)$ for any $\mathcal{A} \in \text{Pic } S$, since $W^2 - \pi^* L \cdot W + (\pi^* L^2) = W^2 - c_1(\phi^*(\Omega^1_{\mathbb{P}^2}(2))) \cdot W + c_2(\phi^*(\Omega^1_{\mathbb{P}^2}(2))) = 0$. Thus from the exact sequence above, noting that

 $W \to S$ is birational via π , we have

$$c_2(E) = c_2(\pi^* E | W)$$

$$= -t^2(\mathcal{O}_W(W)^2) + t(\mathcal{O}_W(W) \cdot \pi^* \mathcal{O}_S(2\mathcal{M} - c_1(E)) | W)$$

$$+ (\pi^* \mathcal{M} | W \cdot \pi^* \mathcal{O}_S(c_1(E) - \mathcal{M}) | W) + \deg(Z \cap W)$$

$$= t(L \cdot 2\mathcal{M} - c_1(E)) - (\mathcal{M} \cdot \mathcal{M} - c_1(E)) + \deg(Z \cap W)$$

$$\geq t(L \cdot 2\mathcal{M} - c_1(E)) - (\mathcal{M} \cdot \mathcal{M} - c_1(E)),$$

and hence

$$\Delta(E) \ge 2t(L \cdot \mathcal{M} - (1/2)c_1(E)) - ((\mathcal{M} - (1/2)c_1(E))^2).$$

By the Hodge index theorem for L and $\mathcal{M} - (1/2)c_1(E)$, we have

(5)
$$\Delta(E) \ge 2t(L \cdot \mathcal{M} - (1/2)c_1(E)) - \frac{(L \cdot \mathcal{M} - (1/2)c_1(E))^2}{(L^2)}.$$

From (4) and (5), it follows that

$$\Delta(E) \ge 3 \frac{(L \cdot \mathcal{M} - (1/2)c_1(E))^2}{(L^2)}.$$

When $\Delta(E) \leq 0$, this contradicts (1). When $\Delta(E) > 0$, we have

(6)
$$(L \cdot \mathcal{M} - (1/2)c_1(E)) \le \sqrt{\frac{\Delta(E)(L^2)}{3}}.$$

On the other hand, from (5), it follows

$$\frac{\Delta(E)}{(L \cdot \mathcal{M} - (1/2)c_1(E))} + \frac{(L \cdot \mathcal{M} - (1/2)c_1(E))}{(L^2)} \ge 2t.$$

Since $L = \mathcal{O}_S(d)$, by using the assumption $(\mathcal{O}_S(1) \cdot \mathcal{M} - (1/2)c_1(E)) \ge \nu/2$ to the first term and (6) to the second term, we have

$$\frac{1}{d} \left(\frac{\Delta(E)}{\nu} + \frac{\sqrt{\Delta(E)}}{2\sqrt{3 \deg S}} \right) \ge t.$$

By assumption of d, we have t < 1 hence $t \le 0$, which contradicts (2). This completes the proof.

Remark. Let S, $\mathcal{O}_S(1)$, E and d be as in Theorem.

- (1) Let \mathfrak{d} be a 2-dimensional linear subsystem of $|\mathcal{O}_S(d)|$ defining a separable, finite morphism from S to \mathbb{P}^2 . The proof of theorem implies that the restriction E|C is semistable for a general member $C \in \mathfrak{d}$.
- (2) Assume that $\Delta(E) > 0$ and that the restriction E|C to be a general member of $C \in |\mathcal{O}_S(1)|$ is not semistable with HN-filtration $0 = \mathcal{E}_0 \subset \mathcal{E}_1 \subset \mathcal{E}_2 = E|C$. Then it follows from (6) that

$$\deg \mathcal{E}_1 - (1/2) \deg(E|C) \le \sqrt{\deg S \cdot \Delta(E)/3}$$

holds. This inequality is exactly that of Ein in [2, (4.1)] when $S = \mathbb{P}^2$ and $\mathcal{O}_S(1) = \mathcal{O}_{\mathbb{P}^2}(1)$.

(3) I do not know the bound in Theorem is optimal or not. For example, let E be the mth Frobenius pull-back $F^{m*}(\Omega_{\mathbb{P}^2}(2))$ of the twisted cotangent bundle on \mathbb{P}^2 , which plays an important role in the proof of Theorem. We know that E is semistable (see for example [2]) and $\Delta(E) = p^{2m}/4$. Thus Theorem implies that E|C is semistable on a general curve C of degree d if $d > p^{2m}/4 + p^m/(4\sqrt{3})$. On the other hand, from a calculation of $H^0(C, E(-(p^m+1)/2)|C)$ by using the Euler sequence, it follows that E|C is semistable for general C of degree d if $d > (3p^m+5)/4$ for $p \neq 2$.

References

- [1] F.A. Bogomolov, On stability of vector bundles on surfaces and curves, in 'Einstein Metrics and Yang-Mills Connections', eds. T. Mabuchi and S. Mukai, Lecture Notes in Pure and App. Math., 145 (1993), 187-221, Dekker, New York.
- [2] L. Ein, Stable vector bundles on projective spaces in char p > 0, Math. Ann., 254 (1980), 53-72.
- [3] H. Flenner, Restrictions of semistable bundles on projective varieties, Comment. Math. Helevetici, **59** (1984), 635-650.
- [4] O. Forster, A. Hirschowitz and M. Schneider, Type de scindage généralisé pour les fibrés stables, in 'Vector bundles and differential equations', Proceedings, Nice, 1979, ed. A. Hirschowitz, Progress in Math., 7 (1980), 65-81, Birkhäuser, Basel, Boston, Stuttgart.
- [5] R. Hartshorne, Algebraic Geometry, Graduate Texts in Math., 52 (1977), Springer-Verlag, Berlin/New York.
- [6] M. Maruyama, Boundedness of semi-stable sheaves of small ranks, Nagoya Math. J., 78 (1980), 65-94.
- [7] V. Mehta and A. Ramanathan, Semi-stable sheaves on projective varieties and their restriction to curves, Math. Ann., 258 (1982), 213-224.
- [8] A. Moriwaki, Arithmetic Bogomolov-Gieseker's inequality, Amer. J. Math., 117 (1995), 1325-1347.

Received July 21, 1997 and revised March 10, 1998.

YOKOHAMA NATIONAL UNIVERSITY 79-2 TOKIWADAI, HODOGAYA-KU YOKOHAMA 240-8501 JAPAN

E-mail address: noma@ed.ynu.ac.jp