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We consider classical particles on the line with the Weier-
strass ℘ function as potential. This system parameterizes spe-
cial solutions of the KP equation. We derive the trace formula
which relates the Hamiltonian of the particle system to the
residues of some Abelian differential (meromorphic one-form)
on the spectral curve. Such formula is important for the con-
struction action-angle variables and study invariant Gibbs’
states.

1. Introduction.

The subject of this note is a system of N classical particles on the line
interacting with the Hamiltonian

HN =
N∑

n=1

p2
n

2
− 2σ2

N∑
n,m=1

℘(qn − qm).

The parameter1 σ = 1 corresponds to attractive particles and σ = i =√
−1 corresponds to repulsive particles. The potential is the Weierstrass ℘

function with real period 2ω and pure imaginary period 2ω′. The system
includes the well known integrable in the sence of Liouville potentials sin−2 x,
sinh−2 x and x−2; which correspond to various degeneration of ℘.

In a remarkable article Airault, McKean, Moser, [AMM], discovered
a connection between particles with rational or elliptic potential and the
Korteweg-de Vries equation

ut +
3
2
uux −

1
4
uxxx = 0.

Few years later Krichever, [K], found an isomorphism between particles with
elliptic potentials and special solutions of the Kadomtzev-Petviashvilli (KP)
equation

3
4
σ2uyy =

(
ut +

3
2
uux −

1
4
uxxx

)
x

.

1Should not be confused with the Weierstrass σ, see Section 6.
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The case σ = 1 corresponds to the KP-2 equation and σ = i to KP-1.
The KP equation arises as a compatibility condition for the zero curvature
representation

[σ∂y − L2, ∂t − L3] = 0,

where

L2 = ∂2
x − u,

L3 = ∂3
x −

3
2
u∂x − w.

Any such solution is associated with a spectral curve ΓN of genus N , defined
by

RN (k, z) =
N∑

n=0

rn(z)kn = det(L̃+ 2k),

where L̃ is a N × N matrix which depends on q, p and z. The functions
rn(z) are elliptic, so the curve ΓN is an N -sheeted covering of the elliptic
curve. The matrix L̃ has a simple pole above z = 0 and can be expanded in
powers of z

L̃ =
1
z
L(−1) +O(1),

where Lnm = −2(1 − δnm) is a constant matrix. This “zero order” ap-
proximation provides all the information needed to solve the direct spectral
problem and obtain a formula for the solution in terms of Riemann theta
functions, see [K].

In this note we address a different question. Is there a formula of the type

HN =
N∑

α=2

I ′α,

where I ′α are parameters of the Riemann surface associated with the system?
We give an affirmative answer to this question here. The formula is needed,
see [MCV1, MCV2], to express the canonical measure as

e−Hd vol = e−H
∏

dI dφ = e−
P

I′
∏

dI dφ,

where d vol is produced from the basic symplectic structure Ω = dp∧dq and
I’s and φ’s are classical action-angle variables constructed from Ω. After
this is done one can try to compute the partition function, [V1].

Now analysis of the direct spectral problem requires a “second order”
approximation

L̃ =
1
z
L(−1) + L(0) + zL(1) +O(z2),
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Such an approximation provides the coefficients k(0)
1 and k

(1)
1 (Theorem 9)

for the expansion of the function k

k1(z) =
N − 1
z

+ k
(0)
1 + zk

(1)
1 +O(z2)

on the“upper” sheet of the curve. The desired formula can be easily obtained
by a simple application of Cauchy’s theorem. Moreover, in the repulsive
case the parameters I ′α are real for all configurations of particles. In order
to prove this we show that in the expansion

kα(z) = −1
z

+ k(0)
α +O(z), α = 2, . . . , N,

the coefficients k(0)
α are distinct for all α = 2, · · · , N and a generic configu-

ration of particles. That much information can be obtained by perturbation
techniques on “lower” sheets.

Presumably I ′α are moduli of the corresponding N -sheeted covers and the
actions relative to some symplectic structure Ω′ on the phase space, but this
is not proved. Compare [V2] for the case of the cubic Schrödinger curves.
We will return to this issue elsewhere.

2. Elliptic solutions of the KP hierarchy.

Consider the N particle Hamiltonian on the line

HN =
N∑

n=1

p2
n

2
− 2σ2

N∑
n,m=1

℘(qn − qm).

The Hamiltonian produces a system of first order equations of motion

•
qn =

∂H

∂pn
, n = 1, . . . , N,

•
pn = −∂H

∂qn
= 4σ2

∑
m6=n

℘′(qn − qm), n = 1, . . . , N.

The system can be written in the form

(1)
••
q n = 4σ2

∑
m6=n

℘′(qn − qm), n = 1, . . . , N.

The key step in the embedding of the particle system into the elliptic
solutions of the KP equation is the following theorem:
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Theorem 1 ([K]). The equations[
σ∂y − ∂2

x + 2
N∑

n=1

℘(x− qn(y))

]
ψ = 0,

ψ†

[
σ∂y − ∂2

x + 2
n∑

n=1

℘(x− qn(y))

]
= 0

have solutions of the form

ψ(x, y, k, z) =
N∑

n=1

an(y, k, z)Φ(x− qn, z)ekx+σ−1k2y

ψ†(x, y, k, z) =
N∑

n=1

a†n(y, k, z)Φ(−x+ qn, z)e−kx−σ−1k2y,

where2 Φ(x, z) = σ(z−x)
σ(z)σ(x)e

ζ(z)x, if and only if qn(y) satisfy the system of
equations (1).

The proof is obtained by requiring that singularities of the form (x−qn)−2

and (x − qn)−1 vanish. This condition can be written in a compact form
with the aid of N ×N matrices L and M

Lnm = σpnδnm + 2Φ(qn − qm, z)(1− δnm),

Mnm =

−℘(z) + 2
∑
s 6=n

℘(qn − qs)

 δnm + 2Φ′(qn − qm, z)(1− δnm).

Lemma 2 ([K]). The vectors a(y, k, z) and a†(y, k, z) satisfy the equations

(L+ 2k)a = 0 (σ∂y +M)a = 0

and

a†(L+ 2k) = 0 a†(σ∂y +M) = 0.

These equations determine the curve ΓN which is the subject of the next
section.

3. Riemann surface.

The matrix L can be simplified using a gauge transformation

L = GL̃G−1,

where Gnm = eζ(z)qnδnm. Then

L̃nm = σpnδnm + 2Φ0(qn − qm, z)(1− δnm)

2σ(z) denotes the Weierstrass function.
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and

Φ0(x, z) =
σ(z − x)
σ(z)σ(x)

.

The existence of a nontrivial vector a : (L̃+2k)a = 0 implies thatRN (k, z) =
det(L̃ + 2k) vanishes and this condition determines the curve. We denote
by P,Q, etc., points (k, z) on the curve.

Lemma 3 ([K]). The determinant RN (k, z) can be written in the form

RN (k, z) =
N∑

n=0

rn(z)kn,

where rn(z) are elliptic functions of z.

The curve ΓN is an N sheeted covering of the elliptic curve. The next
lemma describes symmetries of the curve.

Lemma 4. (i) σ = 1. The curve ΓN admits the antiholomorphic involu-
tion

τ1 : (k, z) → (k̄, z̄).
(ii) σ = i. The curve ΓN admits the antiholomorphic involution

τi : (k, z) → (−k̄,−z̄).

Proof. (i) For rectangular lattice σ(z) = σ(z̄) and Φ0(x, z) = Φ0(x̄, z̄).
Therefore RN (k, z) = RN (k̄, z̄).

(ii) Note first Φ0(x,−z) = −Φ0(−x, z) and ip+ 2k = −(ip + 2(−k̄)).
Therefore RN (k, z) = (−1)NRN (−k̄,−z̄). The proof is finished. �

The function Φ0(x, z) has a simple pole at z = 0 and can be expanded in
powers of z

Φ0(x, z) = −1
z

+ ζ(x) +
1
2
(℘(x)− ζ2(x))z +O(z2).

Therefore3 ,

L̃(p, q, z) =
1
z
L(−1)(p, q) + L(0)(p, q) + zL(1)(p, q) +O(z2),

where

L(−1)
nm = −2(1− δnm),

L(0)
nm = σpnδnm + 2ζ(qn − qm)(1− δnm),

L(1)
nm = (℘− ζ2)(qn − qm)(1− δnm).

The matrix L(−1) is a constant matrix. Its spectrum and eigenvectors can
be easily computed.

3We omit˜above L and a to simplify the notations.
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Let

aα =


1
eiβα

...
eiβα(N−1)

 and βα =
2π
N

(α− 1), α = 1, . . . , N.

Then (
L(−1) + 2kα

)
aα = 0

with kα = −1 for α = 2, . . . , N and k1 = N − 1.
The necessary information about the curve is obtained by perturbation

of this trivial case. The eigenvectors aα(z) and eigenvalues kα(z) can be
expanded in power series in z

aα(z) = a(0)
α + a(1)

α z + a(2)
α z2 + · · · , a(0)

α = aα,

kα(z) =
1
z
k(−1)

α + k(0)
α + k(1)

α z + · · · , k(−1)
α = kα.

The index “α” labels the sheets of the curve ΓN . We call the sheet α = 1 the
“upper” sheet. In fact, the upper sheet is distinguished by k(−1), the leading
term of the asymptotics. The “lower” sheets (α ≥ 2) are distinguished for
generic configuration of particles by different values of k(0) since all k(−1) =
−1. This is proved in Lemma 5. The proof of Lemma 6 shows that all
leading terms a(0)

α are distinct. This implies that all “lower” sheets can be
indexed according to these asymptotics and a(0)

α = aα.

Lemma 5. For generic configuration of particles k(0) are distinct.

Proof. To prove the statement we need first order perturbation theory for
multiple eigenvalues.

We choose N − 1 vectors e(0) in the subspace generated by a
(0)
α , α =

2, . . . , N ;

e(0) =
N∑

α=2

ηαa
(0)
α ,

where the η’s depend on e(0) and are such that(
L̃(z) + 2k(z)

)
eγ(z) = 0.

L(z), kγ(z), eγ(z) can be expanded in integer powers of z

kγ(z) =
1
z
k(−1)

γ + k(0)
γ + zk(1)

γ + · · · ,

eγ(z) = e(0)γ + ze(1)γ + · · · .
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Now we collect terms in the identity[
1
z
L(−1) + L(0) + · · ·+ 2

z
k(−1) + 2k(0) + · · ·

] [
e(0) + ze(1) + · · ·

]
= 0.

Terms in z0 produce

L(−1)e(1) + L(0)e(0) + 2k(−1)e(1) + 2k(0)e(0) = 0,

and(
L(−1)e(1), a(0)

α

)
+
(
L(0)e(0), a(0)

α

)
+2k(−1)

(
e(1), a(0)

α

)
+2k(0)

(
e(0), a(0)

α

)
= 0.

Using the selfadjointness of L(−1)(
L(−1)e(1), a(0)

α

)
=
(
e(1), L(−1)a(0)

α

)
= −2k(−1)

(
e(1), a(0)

α

)
.

Therefore (
L(0)e(0), a(0)

α

)
= −2k(0)

(
e(0), a(0)

α

)
or

N∑
α=2

ηα

(
L(0)a(0)

α , a
(0)
α′

)
= −2k(0)ηα′ .

The eigenvalues −2k(0) of the matrix (L(0)a
(0)
α , a

(0)
α′ ), α, α′ = 2, . . . , N ; are

distinct for generic configuration of particles. �

Lemma 6. For all configurations of particles the “zero” order approxima-
tions

ã(0) =

 ã(0)(1)
...

ã(0)(N)


of the eigenvectors ãα(z) = ã

(0)
α + ã

(1)
α z + · · · of the spectral problem (L̃ +

2k)ã = 0 normalized by the condition ã(0)(1) = 1 are given by the formula

ã(0)
α =


1
eiβα

...
eiβα(N−1)

 and βα =
2π
N

(α− 1), α = 1, . . . , N.

Proof. If A as n × n matrix then AA∧ = detA I, where A∧ is the matrix
which consists of auxiliary minors of A, see also [KNS]. For any column
r = 1, . . . , N

ã(p) =

[
L̃+ 2k

]∧
pr[

L̃+ 2k
]∧
1r
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in the vicinity of z = 04 .
We know that k(z) = −1

z + k(0) + · · · and

L̃ = −2
z
[E − I] + L̃(0) + · · · , Enm = 1.

Then [
L̃+ 2k

]∧
pr

=
[
−2E
z

+ [L̃(0) + 2k(0)] + · · ·
]∧

pr

.

Since rankE = 1 we have[
L̃+ 2k

]∧
pr

= −2
z

N∑
s=1

[L̃(0) + 2k(0)]∧ŝ pr + · · · ,

where the subscript ŝ means that the s-th column is replaced by

1
...
1

 .

For a generic configuration k(0) are distinct on all sheets of the curve. This
and the formula for ã(p) imply that all ã(0) are also distinct and therefore
match ã(0)

α . Since all ã(0)
α are fixed the statement is true for all configurations

of particles. �

The following two lemmas are simple consequences of the discussion above:

Lemma 7 ([K]). The determinant RN (k, z) can be written in the form

RN (k, z) = 2N

(
k −

(
N − 1
z

+ k
(0)
1 + · · ·

)) N∏
α=2

(
k −

(
−1
z

+ k(0)
α + · · ·

))
.

The genus of the curve ΓN can be easily computed using the Riemann-
Hurwitz formula.

Lemma 8 ([K, KBBT]). (i) The elliptic case: 2ω, 2ω′ < ∞. For gene-
ric configuration of particles the genus of the curve ΓN is N .

(ii) The rational case: 2ω, 2ω′ = ∞. The genus of the curve ΓN is 0.

4. Asymptotics for k(z).

The main result of this section is the following:

Theorem 9. On the “upper” sheet for k1(z) the following asymptotics hold

k1(z) =
N − 1
z

− σPN

2N
+ z

(
σ2HN

2N2
−
σ2P 2

N

4N3

)
+O(z2),

4Note that ã is not a function on the curve, since the entries of the matrix L̃ + 2k are
not elliptic functions.
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where

HN = KN − σ2VN =
N∑

n=1

p2
n

2
− 2σ2

N∑
n,m=1

℘(qn − qm),

and

PN =
N∑

n=1

pn.

To prove the theorem we need the following lemma which is the second
order perturbation theory of simple eigenvalues adapted to our considera-
tions.

Lemma 10. The following identities hold

2k(0) = −
(
L(0)a(0), a(0)

)
,

2k(1) =
1

2N

N∑
α=2

(
L(0)a(0)

α , a(0)
)
×
(
L(0)a(0), a(0)

α

)
−
(
L(1)a(0), a(0)

)
,

where

(f, g) =
1
N

N∑
n=1

fnḡn,

for any f, g ∈ CN .

Proof. We start with the identity(
1
z
L(−1) + L(−0) + zL(1) + · · ·

+
2k(−1)

z
+ 2k(0) + 2k(1) + · · ·

)(
a(0) + za(1) + · · ·

)
= 0.

Collecting the terms in z−1(
L(−1) + 2k(−1)

)
a(0) = 0.

Note,

a(0) = a
(0)
1 =


1
1
...
1

 .

Therefore k(−1) = N − 1, as it has to be.
Now we collect terms with z0

(2) L(−1)a(1) + L(0)a(0) + 2k(−1)a(1) + 2k(0)a(0) = 0
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and
(3)(
L(−1)a(1), a(0)

)
+(L(0)a(0), a(0))+

(
2k(−1)a(1), a(0)

)
+
(
2k(0)a(0), a(0)

)
= 0.

Note

(4)
(
L(−1)a(1), a(0)

)
=
(
a(1), L(−1)a(0)

)
=
(
a(1),−2k(−1)a(0)

)
,

which implies that the two terms in (3) cancel each other. From the defini-
tion (a(0), a(0)) = 1 we obtain the first statement of the lemma.

Now we derive the formulas for a(1) on the “upper” sheet, which will be
useful later on. Multiply (2) by a(0)

α , α = 2, . . . , N ,
(5)(
L(−1)a(1), a(0)

α

)
+
(
L(0)a(0), a(0)

α

)
+
(
2k(−1)a(1), a(0)

α

)
+
(
2k(0)a(0), a(0)

α

)
= 0.

The last term vanishes due to the orthogonality of eigenvectors correspond-
ing different eigenvalues. Similar to (4)(

L(−1)a(1), a(0)
α

)
=
(
a(1), L(−1)a(0)

α

)
= 2

(
a(1), a(0)

α

)
due to (

1
z
L(−1) + 2

(
−1
z

))
a(0)

α = 0, α = 2, . . . , N.

Therefore

2
(
a(1), a(0)

α

)
+
(
L(0)a(0), a(0)

α

)
+ 2(N − 1)

(
a(1), a(0)

α

)
= 0

and (
a(1), a(0)

α

)
= − 1

2N

(
L(0)a(0), a(0)

α

)
, α = 2, . . . , N.

The condition ||a(z)||2 = 1 +O(z2) implies

1 = (a(z), a(z)) = (a(0) + za(1) + · · · , a(0) + za(1) + · · · )

= (a(0), a(0)) + z
[
(a(0), a(1)) + (a(1), a(0))

]
+ · · · .

and (a(1), a(0)) = 0. Therefore

a(1) =
N∑

α=2

a(0)
α

(
a(1), a(0)

α

)
= − 1

2N

N∑
α=2

a(0)
α

(
L(0)a(0), a(0)

α

)
.

In order to prove the second formula of the lemma we collect terms with
z1

L(−1)a(2) + L(0)a(1) + L(1)a(0) + 2k(−1)a(2) + 2k(0)a(1) + 2k(1)a(0) = 0
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and

(6)
(
L(−1)a(2), a(0)

)
+
(
L(0)a(1), a(0)

)
+
(
L(1)a(0), a(0)

)
+ 2k(−1)

(
a(2), a(0)

)
+ 2k(0)

(
a(1), a(0)

)
+ 2k(1)

(
a(0), a(0)

)
= 0.

Note (
L(−1)a(2), a(0)

)
=
(
a(2), L(−1)a(0)

)
= −2k(−1)

(
a(2), a(0)

)
and two of the terms in the formula (6) vanish. Using the normalization
conditions (a(0), a(0)) = 1 and (a(1), a(0)) = 0 we obtain

2k(1) = −
(
L(0)a(1), a(0)

)
−
(
L(1)a(0), a(0)

)
.

Using the formula for a(1), we finally have

2k(1) =
1

2N

N∑
α=2

(
L(0)a(0)

α , a(0)
)
×
(
L(0)a(0), a(0)

α

)
−
(
L(1)a(0), a(0)

)
.

The lemma is proved. �

Now we use the lemma to compute the coefficients k(0) and k(1). Note,
first, that L(0) can be split into two parts L(0) = σA+B, where

Amn = pnδnm and Bnm = 2ζ(qn − qm)(1− δnm).

The matrix A is symmetric and B is skew-symmetric

2k(0) = −
(
L(0)a(0), a(0)

)
= −σ

(
Aa(0), a(0)

)
−
(
Ba(0), a(0)

)
= −σPN

N
.

The term with B vanishes due to skew-symmetry.
The computation of the next term k(1) is much more involved. Using the

decomposition for L(0) we have

2k(1) =
1

2N

N∑
α=2

[
σ
(
Aa(0)

α , a(0)
)

+
(
Ba(0)

α , a(0)
)]

×
[
σ
(
Aa(0), a(0)

α

)
+
(
Ba(0), a(0)

α

)]
−
(
L(1)a(0), a(0)

)
= I + II.

Step 1. Our goal is to evaluate the first term I. Arguments for the attrac-
tive and the repulsive case are different and we consider these two cases
separately.
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Repulsive case. σ = i. Using the symmetry of A and skew-symmetry of
B,

1
2N

N∑
α=2

[
i
(
Aa(0)

α , a(0)
)

+
(
Ba(0)

α , a(0)
)]
×
[
i
(
Aa(0), a(0)

α

)
+
(
Ba(0), a(0)

α

)]
= − 1

2N

N∑
α=2

∣∣∣i(Aa(0), a(0)
α

)
+
(
Ba(0), a(0)

α

)∣∣∣2
= − 1

2N

N∑
α=1

∣∣∣i(Aa(0), a(0)
α

)
+
(
Ba(0), a(0)

α

)∣∣∣2 +
1

2N

∣∣∣(Aa(0), a(0)
)∣∣∣2 .

The last term can be easily estimated

1
2N

∣∣∣(Aa(0), a(0)
)∣∣∣2 =

1
2N3

P 2
N .

To estimate the first term, we introduce α′ such that

α′ = N − α+ 2.

Then

βα′ =
2π
N

(α′ − 1) =
2π
N

(N − α+ 1)

and
βα + βα′ ≡ 0 (mod 2π).

Now

− 1
2N

N∑
α=1

∣∣∣i(Aa(0), a(0)
α

)
+
(
Ba(0), a(0)

α

)∣∣∣2
= − 1

4N

N∑
α=1

∣∣∣i(Aa(0), a(0)
α

)
+
(
Ba(0), a(0)

α

)∣∣∣2
+
∣∣∣∣i(Aa(0), a

(0)
α′

)
+
(
Ba(0), a

(0)
α′

)∣∣∣∣2
= − 1

4N

N∑
α=1

∣∣∣i(Aa(0), a(0)
α

)
+
(
Ba(0), a(0)

α

)∣∣∣2
+
∣∣∣−i(Aa(0), a(0)

α

)
+
(
Ba(0), a(0)

α

)∣∣∣2 .
Using the identity |a+ b|2 + |a− b|2 = 2|a|2 + 2|b|2 we obtain

I = − 1
2N

N∑
α=1

∣∣∣(Aa(0), a(0)
α

)∣∣∣2 +
∣∣∣(Ba(0), a(0)

α

)∣∣∣2 +
1

2N3
P 2

N .
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Attractive case. σ = 1. Again using properties of A and B we have

1
2N

N∑
α=2

[(
Aa(0)

α , a(0)
)

+
(
Ba(0)

α , a(0)
)]
×
[(
Aa(0), a(0)

α

)
+
(
Ba(0), a(0)

α

)]
=

1
2N

N∑
α=2

[(
Aa(0), a

(0)
α

)
−
(
Ba(0), a

(0)
α

)]
×
[(
Aa(0), a(0)

α

)
+
(
Ba(0), a(0)

α

)]
=

1
2N

N∑
α=2

∣∣∣(Aa(0), a(0)
α

)∣∣∣2 − ∣∣∣(Ba(0), a(0)
α

)∣∣∣2
+ 2i

1
2N

=
N∑

α=2

(
Aa(0), a

(0)
α

)(
Ba(0), a(0)

α

)
.

The second sum vanishes. Indeed,

2=
N∑

α=2

(
Aa(0), a

(0)
α

)(
Ba(0), a(0)

α

)
= =

N∑
α=1

(
Aa(0), a

(0)
α

)(
Ba(0), a(0)

α

)
+
(
Aa(0), a

(0)
α′

)(
Ba(0), a

(0)
α′

)
= =

N∑
α=1

(
Aa(0), a

(0)
α

)(
Ba(0), a(0)

α

)
+
(
Aa(0), a(0)

α

)(
Ba(0), a

(0)
α

)
= 0.

Therefore,

I = − 1
2N

N∑
α=1

−
∣∣∣(Aa(0), a(0)

α

)∣∣∣2 +
∣∣∣(Ba(0), a(0)

α

)∣∣∣2 − 1
2N3

P 2
N .

Combining the results for two cases σ2 = ±1, we obtain

I = − 1
2N

N∑
α=1

−σ2
∣∣∣(Aa(0), a(0)

α

)∣∣∣2 +
∣∣∣(Ba(0), a(0)

α

)∣∣∣2 − σ2

2N3
P 2

N .

Step 2. Now we estimate
N∑

α=1
|(Aa(0), a

(0)
α )|2 and |(Ba(0), a

(0)
α )|2. To do this

we introduce for two polynomials

P(z) =
N∑

k=1

pkz
k, Q(z) =

N∑
k=1

qkz
k,
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the inner product

〈P,Q〉 ≡
N∑

α=1

P(eiβα)Q(eiβα).

It is easy to see that

〈P,Q〉 = N

N∑
k=1

pkqk.

Therefore

N∑
α=1

∣∣∣(Aa(0), a(0)
α

)∣∣∣2 =
N∑

α=1

∣∣∣∣∣ 1
N

N∑
n=1

pne
−iβα(n−1)

∣∣∣∣∣
2

=
1
N2

〈
N∑

n=1

pnz
n,

N∑
n=1

pnz
n

〉
=

1
N

N∑
n=1

p2
n.

Similarly,

N∑
α=1

∣∣∣(Ba(0), a(0)
α

)∣∣∣2 =
1
N

N∑
n=1

(bn)2, bn =
N∑

s=1

bns.

Finally,

I =
σ2

2N2

N∑
n=1

p2
n −

1
2N2

N∑
n=1

b2n −
σ2

2N3
P 2

N

=
σ2

N2
KN − 1

2N2

N∑
n=1

b2n −
σ2

2N3
P 2

N .

Step 3. Now using the expression for II5

II = − 1
N

∑
s 6=s′

(℘− ζ2)(qs − qs′),

we will estimate

I + II =
σ2

N2
KN − 1

2N2

N∑
n=1

(
N∑

s=1

2ζ(qn − qs)

)2

− σ2

2N3
P 2

N

− 1
N

∑
s 6=s′

℘(qs − qs′) +
1
N

∑
s 6=s′

ζ2(qs − qs′).

5In the rational case ℘− ζ2 ≡ 0; L(1) and II vanish identically.
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We will prove that

− 1
2N2

N∑
n=1

(
N∑

s=1

2ζ(qn − qs)

)2

+
1
N

∑
s 6=s′

ζ2(qs − qs′)

=
N − 2
N2

∑
s 6=s′

℘(qs − qs′).(7)

This would imply

I + II =
σ2

N2
KN − 1

N2
VN − σ2

2N3
P 2

N

and complete the proof of the theorem.

Step 4. To prove the identity (7) we make some manipulations with the
sums

− 2
N2

N∑
n=1

[
N∑

s=1

ζ(qn − qs)

]2

+
1
N

∑
s 6=s′

ζ2(qs − qs′)

= − 2
N2

∑
s 6=n, s′ 6=n

ζ(qn − qs)ζ(qn − qs′) +
1
N

∑
s 6=s′

ζ2(qs − qs′)

=
1
N2

(N − 2)
∑
s 6=s′

ζ2(qs − qs′)− 2
∑

s 6=s′ 6=n

ζ(qn − qs)ζ(qn − qs′)


=

1
N2

 ∑
s 6=s′ 6=n

ζ2(qs − qs′) + 2ζ(qs − qn)ζ(qn − qs′)

 .
Fix k1 < k2 < k3 and consider all their permutations. Collect the terms
with such indices

2
N2

∑
k1<k2<k3

ζ2(qk1 − qk2) + ζ2(qk2 − qk3) + ζ2(qk3 − qk1)

+ 2ζ(qk1 − qk3)ζ(qk3 − qk2) + 2ζ(qk1 − qk2)ζ(qk2 − qk3)

+ 2ζ(qk2 − qk1)ζ(qk1 − qk3)

=
2
N2

∑
k1<k2<k3

(ζ(qk1 − qk2) + ζ(qk2 − qk3) + ζ(qk3 − qk1))
2 .

Using the identity

(ζ(u) + ζ(v) + ζ(s))2 = ℘(u) + ℘(v) + ℘(s)

for u+ v + s = 0, we obtain
2
N2

∑
k1<k2<k3

℘(qk1 − qk2) + ℘(qk2 − qk3) + ℘(qk3 − qk1).
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The last expression is invariant under permutations and therefore it is equal
2

6N2

∑
s 6=s′ 6=n

℘(qs − qs′) + ℘(qs − qn) + ℘(qs′ − qn)

=
N − 2
N2

∑
s 6=s′

℘(qs − qs′).

This completes the proof of the identity (7) and the theorem.

Example. For N = 2 the equation defining the curve Γ2 has the form

k2 + k
σP

2
+
(
σ2P 2

8
− σ2H

4
− ℘(z)

)
= 0.

Solving the quadratic equation

k1(z) = −σP
4

+
1
2

√
σ2P 2

4
− 4

(
σ2P 2

8
− σ2H

4
− ℘(z)

)
.

Expanding k1(z) at z = 0 we obtain

k1(z) =
1
z
− σP

4
+ z

(
σ2H

8
− σ2P 2

32

)
+O(z2).

5. Trace formula.

If the total momentum vanishes, PN = 0, then the result of Theorem 9
becomes

(8) k1(z) =
N − 1
z

+ z
σ2HN

2N2
+O(z2).

Theorem 11. The following identity holds

σ2

2N2
HN =

N∑
α=2

I ′α,

where I ′α = −k(1)
α .

σ = i. The antiinvolution τi does not permute the sheets of the curve. The
variables I ′α are real for all configurations of particles.
σ = 1. For some configurations of particles the antiinvolution τ1 permutes

some lower sheets α and τ1α. It also leaves the other sheets invariant. Vari-
ables I ′α and I ′τ1α corresponding permuting sheets form complex conjugate
paires. All other I ′s corresponding invariant sheets are real.

Proof. By Cauchy’s theorem

1
2πi

∫
γ1

k(P )℘(z(P ))dz(P ) = −
N∑

α=2

1
2πi

∫
γα

k(P )℘(z(P ))dz(P ),
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where γα is a small contour surrounding Pα, the point on the α’th sheet
above z = 0. The asymptotics (8) implies the result.

The second part of the proof is different for repulsive and attractive cases.
We treat them separately.

Repulsive case. σ = i. If the pair (k, z) satisfies

k(z) =
1
z
k(−1)

α + k(0)
α + k(1)

α z + · · ·

in the vicinity of Pα, then the pair (−k̄,−z̄) also satisfies similar expression
in the vicinity of Pτiα

−k̄(z) =
1
−z̄

k(−1)
τiα + k(0)

τiα + k(1)
τiα(−z̄) + · · · .

Therefore

k(z) =
1
z
k̄(−1)

τiα − k̄(0)
τiα + k̄(1)

τiαz − · · · .

Comparision shows that k(n)
α = k̄

(n)
τiα for n odd and k(n)

α = −k̄(n)
τiα for n even.

We know that k(−1)
1 = N − 1 and k(−1)

α = −1 for α = 2, . . . , N so that τi
leaves the upper sheet invariant.

The Lemma 5 states that the values of k(0)
α are distinct on different

sheets of the curve for a generic configuration of perticles. The matrix
(L(0)a

(0)
α , a

(0)
α′ ) (see the proof of Lemma 5) is skew symmetric and therefore

all k(0)
α are pure imaginary: k̄(0)

α = −k(0)
α . These together with the identity

k̄
(0)
α = −k(0)

τiα imply that τiα = α and antiinvolution τi does not permute
sheets. Therefore k(1)

α = k̄
(1)
α and approximation arguments complete the

proof.

Attractive case. σ = 1. Arguments as before lead to k(n)
α = k̄

(n)
τ1α for all

n. Skew-symmetry of the matrix L(0) is lost but for generic configuration
of particles k(0)

α are distinct. The antiinvolution τ1 leaves the upper sheet
invariant, but is can permute the lower sheets of the curve. An example after
the proof of the Theorem shows how it happens for N = 3. Therefore, some
lower sheets α and τ1α are interchanged by antiinvolution τ1 and some are
invariant. These and k(−1)

α = k̄
(−1)
τ1α , together with approximation arguments

complete the proof of Theorem. �

Example. For N = 3 we can explicitly compute expansion for kα(z) at
z = 0. In this case

R3(k, z) = 8k3 + 4σPk2 +
[
σ2(P 2 − 2H)− 24℘(z)

]
k + 8σJ + 8℘′(z),

where

8J = σ2p1p2p3 + 4p1℘(q2 − q3) + 4p2℘(q1 − q3) + 4p3℘(q1 − q2).
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If P = 0 the equation of the curve Γ3 becomes

k3 − k

[
σ2H

4
+ 3℘(z)

]
+ σJ + ℘′(z) = 0.

Cardano’s formula for the roots

k3 + pk − q = 0

has the form

k1(z) = 3

√
q

2
+
√
R+ 3

√
q

2
−
√
R,

k2(z) = ω2 3

√
q

2
+
√
R+ ω 3

√
q

2
−
√
R,

k3(z) = ω 3

√
q

2
+
√
R+ ω2 3

√
q

2
−
√
R,

where ω = e
2πi
3 , R = q2

4 + p3

27 . After elementary but tiresome calculations
we obtain

k1(z) =
2
z

+ z
σ2H

18
+O(z2),

k2(z) = −1
z

+
σ
√

3H
6

+ z

(
J√
3H

− σ2H

36

)
+O(z2),

k3(z) = −1
z
− σ

√
3H
6

+ z

(
− J√

3H
− σ2H

36

)
+O(z2).

Consider the case σ = 1. If H < 0, then τ1 permutes lower sheets of the
curve Γ3; I2 and I3 are complex conjugate. If H > 0, then τ1 leaves lower
sheets invariant; I2 and I3 are real.

Lemma 12. Let pn = 0, n = 1, . . . , N . Then the curve ΓN admits involu-
tion

τ− : (k, z) → (−k,−z).
The involution τ− leaves the upper sheet invariant and k(n)

1 = 0 for N even.
It can permute lower sheets and in this case k

(n)
α = k

(n)
τ−α for n odd and

k
(n)
α = −k(n)

τ−α for n even.
σ = 1. All k(0)

α , α = 2, . . . , N are pure imaginary.

Proof. Using the identity Φ(q,−z) = −Φ(−q, z) we have

L(q, p = 0,−z) + 2(−k) = [L(q, p = 0, z) + 2k]T (−1)N .

Therefore R(−k,−z) = (−1)NR(k, z) and the existence of τ− is proved.
If a pair (k, z) satisfies

k =
1
z
k(−1)

α + k(0)
α + k(1)

α z + · · · .
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Then
−k =

1
−z

k(−1)
τ−α + k(0)

τ−α + k(1)
τ−α(−z) + · · · .

Therefore k(n)
α = k

(n)
τ−α for n odd and k(n)

α = −k(n)
τ−α for n even. Since k(−1)

1 =
N − 1 and k

(0)
α = −1, α = 2, . . . , N ; τ− leaves the upper sheet invariant.

The involution τ− can permute the lower sheets. It is demonstrated by the
example for N = 3.
σ = 1. Skew-selfadjointness of the matrix L(0) is restored under the

conditions of the Lemma. �

6. Appendix.

The Weierstrass σ(z) has periods 2ω and 2ω′ and is defined as

σ(z) = z
∏{(

1− z

ω

)
exp

(
z

ω
+

z2

2ω2

)}
,

where ω = 2ωn+ 2ω′n′ and
∏

is taken with n, n′ ∈ Z1; n2 + n′2 > 0. ζ(z)
and ℘(z) are difined similarly:

ζ(z) =
d

d z
log σ(z), ℘(z) = − d

d z
ζ(z).

For more information see [HC].
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