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Root vectors are important to understand quantized en-
veloping algebras. In this paper we establish a commutation
formula for root vectors. By means of the formula we show
that particular orders on root system are not necessary in
constructing some integral bases of a quantized enveloping
algebra (Theorem 2.4). Moreover using the formula we can
show that certain PBW bases are orthogonal bases of the bi-
linear form considered by Kashiwara in his work on crystal
bases, see 3.9.

In [CK] there is a commutation formula for root vectors, our formula
here is stronger. For the bilinear form obtained through Drinfeld dual (see
[L5, LS]) Lusztig and Levendorski-Soibelmana showed that certain PBW
bases are orthogonal, see loc. cit. However the proofs in [L5, LS] essentially
rely on the property [L5, 38.2.1] which does not hold for the bilinear form
in [K], so it is not easy to use the methods of [L5, LS| to prove Theorem
3.9.

The paper is organized as follows. In Section 1 we fix some notation. In
Section 2 we establish the commutation formula, then prove Theorem 2.4
and state two conjectures. In Section 3 we show that certain PBW bases
are orthogonal bases of the bilinear form considered in [K].

1. Preliminaries.

1.1. Let U be the quantized enveloping algebra over Q(v) (v an indeter-
minate) corresponding to a Cartan matrix (a;j) of rank n. Then U is an
associative Q(v)-algebra with generators E;, F;, K;, K;' (i = 1,2,...,n)
which satisfy the quantized Serre relations. The algebra U has a Hopf al-
gebra structure. Let U4 be the A = Z[v,v~!]-subalgebra of U generated
by all divided powers EZ-(a), Fi(a) and Kj, Ki_l. We refer to [L2] for the
definitions, noting that for defining the divided powers we need to choose
integers d; € {1,2,3} such that (d;a;;) is symmetric. As usual we denote
the positive parts and negative parts by U™, Uj{, U™, U} respectively.

1.2. Let R C Z™ be the root system with simple roots a; = (@14, a2, ..., ani)-
For = (1, ..., pin) € Z™, we also write (u, ) for u;. Define s; : Z" — Z™
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by sis = p— (1, @) )ev;. The reflections s1, so, ..., S, generate the Weyl group
W of the root System R. Denote by R* the set of positive roots. For

)\—Zazaz, M—Zb o, we define (A|p) = <Zalal,2dba >

=1 7j=1
have (A|n) = (u|A). The form (-|-) is non-degenerate and is W-invariant.
Let T; be the automorphisms 7] _; of U in [L5, 37.1.3]. For each w € W
we define Ty, as in [L5]. We shall write Q, ¥ : U — U°PP the Q-algebra

homomorphisms defined by
QF, =F, QF=E, QK =K' Qu=v
VE;,=E;, VF,=F, UK,=K;' Jv=o.
We have YT, ¥ = TZ-_I, QT; = T;Q). Let Q' : U — U be the Q(v)-algebra
automorphism defined by
OFE;=F, QF=E, QK =K

2. The commutation formula.

2.1. Let s;; 8, - s;, be a reduced expression of the longest element wg of
W, thus v = |RT|. We have a bijection [1,v] — RT defined by

J = Siy e Sij_1 (aij)'

This gives rise to a total order on RT. If 3 € R™ corresponds to j, we set
WG = Siy Siy " Sij_y- Then define

EY) =T, (M) e U, FY =T, (F")ev.

B
We have B € Uf and F}” € Uy (a € N).
(a) Let i = (41, ,iy,). It is known the following elements

Ef = BT (B T, Ty - T (BES)), A= (a,...,a,) €N,

1 11 11 12 ty—1
form an A-base of Uy, see [DL].

(b) Let w,u € W such that [(wu) = I(w) 4+ l(u) and let s;, ---s;, be a
reduced expression of u. Let U;{u be the A-submodule of UX generated by

the elements Ez(fl)ﬂ1(EZ'(;2)) Ty Ty (Effk)) (a1,--- ,a € N). Then

T w(Uj{u) is contained in Uj and Uju is independent of the choice of the
reduced expression. See [DL, L2].

2.2. We have seen that for each reduced expression s;, ---s;, of wg, one
can construct an A-basis {El“‘} Aenv of UX. Note that the element EiA is a
product of some divided powers of root vectors and the order of the factors
in the product is determined by the reduced expression. We will show that
we can arrange the product in any fixed total order on R* (see Theorem
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2.4). For the purpose we need the following result, which is stronger than
[CK, Lemma 1.7].

Theorem 2.3. Let s;, ---s;, be a reduced expression and 1 < j < k. Let
Bm = Siy -+ Si, 4 () (1 <m < k) and define Egiz =T "'Em—1(E§i))
(a € N). Then we have

(@) () . ab(B;]8s) (D) (a)
(*) B, Egy — v Eg B,
= Z plaj,aji1, ... ,ak)Eé‘f’Eé‘jﬁ“"‘Eé‘ff),
a]-,A..,akEN
aj<b
ap<a

where p(aj, aji1, ... ,a;) € A. Note that we have a;fBj+- - -+arfr = aBr+b0;
ifp(aj7aj+1a o ,(Lk) ;é 0.

Proof. We use induction on k£ — j to prove the theorem. We may assume
that j = 1. To see this, apply Tl;ll . Tgl to the wanted identity (x).

Let u be the shortest element of the coset s;, ---si, ,(Si,_,, i) (We use
(Siy_ys Siy,) for the subgroup of W generated by s;, _,, i, ). Then s;, ---s;,_, =
wu/, where u' € (s;,_,,s;,) and l(uv') = l(u) + I(v). Note that u(«;,) and
u(ay,_,) are contained in RT.

When u = e is the neutral element of W, the required identity (*) follows
from the formulas in [L2].

From now on, we suppose that I(u) > 1. Assume that (x) is true if j, k
are replaced by j', k' respectively with 1 < 7/ < k' <k and ¥ — j/ < k — 7,
and assume that the Cartan matrix includes no factors of type Gs.

Case A. u =54 -5, andu' =5, , ---s;_, for somem € [1,k—2].

m

When () is a simple root «;, then 5 = u(a;). Moreover, we have
Eéi) = Tu(El.(a)). Note that [(u) < k — 2. By induction hypothesis we see
(a) 2(b) _  ab(B1|B) 7 (b) go(a)
(a) Eﬁk Eﬁl v Eﬁl Eﬁk

= g plat, ... am, ak)Eﬁ(;:l) . Eg:nm)EéZk)’
ay,...,am,apEN
a1<b
ap<a
where p(aq,...,am,a;) € A. Thus the desired identity (*) is true in this
case.

Now assume that u/(c;,) is not a simple root. We have the following cases.

(1) v =s;,_, and (o, )

o) =1, then u=s; -~ s;_,.
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(2) o = sy, and (o, 0, )

is a long root and oy, is a short root. We have d
U= S5 """ Sjp,_3-

(3) v = si,_, and (i, 0, ) = =2, {(aj_,,0) = —1. Then d
1, d;j, =2, and u = s;, -~ 5;,_,.

= —1, {aj_,,a,) = =2, that is, a;,_,
=2, d;, =1, and

ig—1

Te—1 —

(4) v = si, s, , and <aik,ax€_1> = -2, <aik_1,ozz\-2> = —1. Then d

1, dj, =2,and u=s;, - 54 ..

Th—1

Define o = u(ay,_,) and v = u(ay, ), they are positive roots. Set E, =
T.(Ei,_,) and Ey = T,(E;,). We have E,, E, € Uj. In cases (1) and (3),
we have a = f§;,_1 and E, = Eg, ,. In cases (2) and (4), we have v = ;2
and E, = Eg,_ ,.

By induction hypothesis we get
(b) EaEg, — 00 Eg Ea = Y plag,... ap2)ES> - ES* 2,

ag,... ,a—2EN
where p'(ag,... ,ax_2) € A. We shall simply write X for the right hand
side of the above identity. Then E,Es, — v(%1l®)Es E, = X. Note that
agfBa+ -+ ag_ofk—2 = f1 + « if p'(ag, ... ,ax_2) # 0. Moreover, for cases
(2) and (4), ag—2 = 0if p'(az,... ;ap—2) # 0.
(C) E’YEﬂl o v(ﬁlh)E’YE/Bl = Z p”(CLQ, s 7ak—2)Eg;2) e Eéik_;2),
ag,... ,ax—2E€N
where p”(ag,... ,ax—2) € A. We shall simply write Y for the right hand
side of the above identity. Then E,Ez — v Eg B, = Y. Note that
agflo + 4+ ap_oBk—o = 1+ if p'(ag, ... ,ar_2) # 0. Moreover, for cases
(2) and (4), ax—2 = 0if p"(ag,... ,ax—2) # 0.

Now assume that we are in case (1), then

(d) Eg, = TUEk—l(Ei ) = Tu(EikEik—l - ,UidEik—l Zk)
—d
= EyEg, , —v "Eg,_ E,,

where d = d

Therefore we have
(e)
EﬁkEﬁl = E’YEﬁk—lEﬁl - U_dEﬁk—1E’YEﬁ1

1"

= B, (o1 By B, |+ X) — v Ep, (VW Eg B, +Y)
= U(ﬁl|ﬁk—1)(v(ﬁl|7)EﬁlE,y +Y)Es,_, + E, X

— oy~ (B1lY) (U(ﬁl‘ﬁkfl)Eﬁl Es,_,+X)E, - U_dE/Bk—IY
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Repeatedly using induction hypothesis we get

(f)y B, X = OBIHB-) X B+ gl(b% o ,bk_z)E(b2) . E(bkfz)
v Y

Bz T B2
ba,... b _2€N
where 5’(b2, ce ,bk_g) e A
() Bp Y= > &(boy... bp)ES - EPY
b, sbg_1 EN
bp_1<1
where &”(ba, ... ,bp_1) € A.

We have

(h) (Y61 + Be—1) = (Bily) + (Be-1l7) = (B1lv) + (i, lew,) = (Baly) — d.
Moreover By = Br_1 + 7.

Combining (e)-(h) we get

(i) Es Ep, — v(ﬁlw’v)EﬁlEﬁk = Z n(as,. .. ,ak_l)Eg;’Q) e Eg;’:l),

at,...,ax—1 €N
where n(ag, ... ,ax_1) € A.

Using induction on a, b, and using (i) and induction hypothesis repeatedly,
we see
. b b
0 BB DD = T gl gl B

ay, - ,ap €N
a1 <b
ap<a

where p(ai, ... ,ax) € A (here we need 2.1 (a)). Thus in case (1) the identity
(%) is true.

Now assume that we are in case (2). Then

(k) Eﬁk = Tunkﬂkfl(Eik) = TU(Eik—lEik - ’U_2E7f'kEik—l) = EaEﬁk—z -
v 2Eg, ,Eq.

As a similar argument for case (1) we see that the identity (x) is true in
this case.
Now assume that we are in case (3). Then

(1)
Eg, = .1, (Bi,) = TU(EikEz'(2) — v E;

k—1 k—1

E, E; ,+ U_QEi(leEik)
2 — _ 2
= E’YEék)_l -V 1Eﬁk71E'yEﬁk71 + v ZEék)_lE’Y

We have
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2
(m) EvEgk[l B,

1
— mE’yEﬁk—l(v(61|ﬁk71)EﬁlEﬁk_1 + X)

1 1
= mv(ﬁl'ﬂk—l)E,y(U(ﬁl|ﬁk-1)Eﬁ1Eﬂk_l + ){')Eﬁk_1 + EE'VEﬁk:—IX

1
— v2(51|ﬂk—1)(v(ﬁ1|7)Eﬁl E, + Y)E[(i)q + mv(&'ﬁk_l)E’YXEﬂk,l
1
+ EE'YEIkalX7
(n) EﬁquﬁEﬁquﬂl

_ Eﬁk_lE’y(U(ﬂlWk_l)EﬁlEﬂk—l + X)
— DBy (WPMEy E 4+ Y)Es | + B EyX
— B11Br—1+7) (v(ﬁlwk—l)Egl Es, ,+ X)E,Es,

+o -V Es  YEs |+ Es_ B\ X,

2
(O) Eék)—l

— Eéi)i1 (U(’Blh)EﬁlE,y +Y)

E’YEﬁl

L 2
N @“(M”Eﬂkfl (WP B B | + X)Ey+ Ey) Y

1
B mvwlw,ﬁ_ﬁﬁ)(U(ﬂllﬂk_l)Eﬁ1Eﬁk—1 + X)Eﬁk—1E'Y

1
+ —oPMEs  XE,+E} Y.

2]

Using induction hypothesis repeatedly we see

(p) E.X = v(wlﬁwﬁk,_l)XE7
b br_
+ Z gl(b% cee ,bk_g)Eé;) . Eékli;)’
ba,... ,bp_2€N

Eﬁk_1X — v(ﬂk71|51+ﬁk71)XEﬂk_1

br—
* Z gl/(bz’ te ’bk—Z)Eg;2) e Eékk_;%
b27"'7bk—26N
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where &' (ba, ... ,bg_2), £ (ba,... ,bg_2) € A. We shall simply write X', X"
for the second terms of the right hand sides of the above two identities respec-
tively. Then B, X = v01+0- )X E 4+ X' Ep, | X = oBetlBitbe-D) X By
—I—X//.

Using (p) and induction hypothesis repeatedly, we get

(a) E\Eg, X = E"/(v(ﬁk71|ﬁl+ﬁk71)XEﬁk71 + XH)
— U(ﬁk—l+7|ﬂ1+ﬂk—1)XE’yEﬂk_1 + U(7|ﬂ1+2ﬁk—1)X”E'y

+ Z 77/(62,... ,Ck_l)Eéc;) Eéik:ll),

c2,... ,c—1EN
Eg, By X = Eﬁkfl(v(’y'ﬁl—wkfl)XEv +X')
— U(7+Bk_1|’61+Bk_1)XE5k_1E»Y + U(W|/31—i—ﬁk—1)‘)(’/E’y

Y e a)ESY B,

€2, ,Ck—1EN

_ U*1+(51|5k71)Eﬁk71YEﬁk71 + E(Q) Y

Br—1
= Z 7’]”/(62,... ,Ck_l)Eg;Q) Eézk:ll)’
€2y ,Ck—1
where n/(ca, ... ,cx—1), 0" (c2y. .. ck—1), 0" (ca,... ,cx_1) € A.

Moreover we have

(r) Br =7 +20k—1 and (Br—1|Bk=1) = 2, (7|Br=1) = (i |vi,_,) = —2.

Combining (1)-(r) we see

(S) EﬁkEﬁ1 — ’U(ﬂlmk)EglEfgk = Z n(az, Ce ,ak,l)Eé?) e E[(;Z’i_ll),

az,...,ax—1 €N
where n(ag, - ,ax_1) € A.

Using induction on a, b, and using (s) and induction hypothesis repeatedly,
we see

(@) () _ ab(B1|8y) (0) (@) (a1) (ar)
(t) E5 E5 —v Ey By E plar,. .. ap)Eg Ey ",
ay,...,ap €N
a1 <b
ap<a

where p(ai, ... ,ar) € A (here we need 2.1 (a)). Thus in case (3) the identity
(%) is true.

Now assume that we are in case (4), then
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(u) Eg, = .13, Ty, (Ei,)
=T, (EY By, — v By By B, +v B, E]) )

= E(Q)Eﬁkfz - UﬁlEaEﬁkszOé + UﬁQEﬁkszg)

«

(E§3> —T, (Ef}l)) .

As a similar argument for case (3) we see that the identity (*) is true in
this case.
Thus we proved the theorem for Case A.

Case B. u = sj,5j, - Sj,., W = Sj,.1 - Sjp_y, and ji = 41, jp—1 = lp—_1.
Define 5, = 87, - -85, , (a,) (2<p <k—1) and E'gj) =Ty, T, (B

Jp
(a € N).
According to the arguments in Case A we get

(@) (0 ab(B1|Bk) () m(a)
(V) Eﬂk Eﬁl v Eﬁl Eﬂk
= X Ao aERUEY BV ERY,
R A
ak<a
where p'(aq,... ,a;) € A.

Noting that j; = i1, by 2.1 (b) we see that the A-submodule of U;{ gener-
ated by the elements E’g‘f) .. prles) (ag,...,ax_1 € N) is equal to the A-

V-1
submodule of Uj{ generated by the elements Eg;z) . E/éi’:l) (ag,...,ap_1 €

N). Therefore we have

b b
(w) By By — oGO ERED = 37 plar,. an) B B,
e
ak<a

where p(ay,...,a;) € A.
Hence the identity (x) is true for Case B.

_ ;L . S

Case C. u = 5j,8j, " Sj,,, W = Sj,.,1 " Sj,_,, and ji Z#01, Jrk_1=1f_1-
In this case uu’ has a reduced expression of the form s, sp, -+ Sp,_, such

that p1 =41, pr—1 = ix—_1, and one of the following three cases happens.

(5) <O‘P17a]\3/2> =0,
(6) p1 = p3 and <O‘p1’a;)/2><ap2’ 041\7/1> =1,

(7) P1 = p3, p2 = p4, and <O‘p1va;3/2><ap27a;3/1> =2.
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Define py = ix. We set, for case (5),
V1= 0prs Y3 = Sp(Qpg)s Yh = SpiSps - Spu_y(ap,) (A< h < K),
B < B, B =1, (5,
E/gtz) =T, T, - '.Tphfl(E]gZ)) A4<h<k), a€eN;
for case (6),
V1= Oy V4= 5py(Opy)s Vh = SpaSpy Spa () (B h < E),
B =By, BY) =T, (),
Elﬁy? =T, T, - “Tphfl(E]gZ)) b<h<k), a€eN;
for case (7),
V=0 V5 = 5py(Qps), Yh = SpiSps  Spy_y () (6 <R <K),
B — B9, B~ T,,(59),
EY =T, T - Ty (EY) (6<h<k), acN

By induction hypothesis we get:

x1) For case (5), (since Sp, sy, - - - sy, is a reduced expression),
P1°P3 Dk
(U«) (b) b /(b) /(a)
E/WC E/% _ ¥ g @ E (@
B Z p/(al’ as, ... aak)E/’(Y(]il)Elfyzs) T E/’(Vik))

a1,ag,... ,a €N
a1 <b
ap<a

where p'(a1,as, ... ,a;) € A.
x2) For case (6), (since sy, Sy, - - - Sp, is a reduced expression),
P15pa Pk
(a) 7 (b) b (b) g(a)
ECVER) ot (%|%)E/’71 B
= Z Pl(a17a4,... ,ak)El,(;Il)El,(Z4) : "E,’(yik)a

aj,aq,...,a €N
a1 <b
ap<a

where p'(a1,aq4, ... ,a;) € A.
(x3) For case (7), (since sp, sps - - - Sp, is a reduced expression),
(@) g (b) b (b) g (a)
E,'Yk E,% — v (whk)E/% E,'Yk

= Z p,(alaaf)a'-- aak)E,gﬂil)E/'(yZS) "'E,'(yik)’
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where p'(a1,as, ... ,a;) € A.

Note that we always have (y1|vx) = (51]8k) since (+]-) is W-invariant and
p1 = i1. Recall that T3,(E;) = Ej if w(a;) = a; (see [L5]). Applying 1),
(resp. Tp,Tpy; TpyTp,Ip,) to the identity in (x1) (resp. (x2); (x3)) and
using 2.1 (b) (see the argument for Case B) we get

(y) E/éZ)Egi) _ Uab(ﬁl‘ﬁk)Egi)Eg;) _ Z P(a1, o ,CLk)E(al) . E(ak),

B1 Bk
ay,... ,ap €N
a1 <b
ap<a
where p(ay, ... ,a;) € A.
Thus the identity (x) is true for Case C.
The theorem is proved. O

Theorem 2.4. Keep the notation in 2.1. Then:
(i) The elements
H Eéa’g) ((lﬁ eN)
BERT

form an A-basis of Uj. Where the factors in the product are written in a
given total order on R™.

(ii) The elements
H Fgaﬁ) (ag e N)
BERT
form an A-basis of U, . Where the factors in the product are written in a
given total order on R™.
Proof. We only need to prove (i) since Q(E[(gaﬁ )) =F [gaﬁ ) and QU =Uj.
Define the lexicographical order > on N IB¥] such that
(1,0,...,0) > (0,1,...,0) >--->(0,...,0,1).
Using Theorem 2.3 repeatedly we see
[T S =Bt + Y pEP, ppe 4

BERT Benl R
A>B

where p € Z and A = (ag,,ap,,... ,as,) (we define §; = s;; -~ s;,_, (a;)

and v = |RT]). Noting that pg = 0 if Zbiﬂi # Z agf (here B =
=1 BERT

(bi,...,b,)), we see Eff is an A-linear combination of the elements

H Eécﬁ) (cs € N). Since for any A in NR™T, the number

BERT

#{EiA | A= (a1,...,a,) € N’ such that 161 + -+ + a, 0, = A}
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is equal to

# HE}?”‘ > asB=Ag,

BERT BERT
by 2.1 (a), the elements
H Eéaﬁ) (ag € N)
BeRt

form an A-basis of U;{.
The theorem is proved.
From the above proof we see the following:

Corollary 2.5. Keep the notation in Theorem 2.4 and its proof. If A =
(ag,,- .. ,ap,) is minimal in the set

(br,... b)) € N

szﬂi = Z agfB ¢,

=1 BERT

then H E[gaﬁ) — wPE{. That is, for all 8,7 € RT we have Eéaﬁ)Eg%) =
BERT

qu’(YaW)Eéaﬁ) for some q € Z. (Of course, many ag are 0 in this case.)

2.6. We would like to state two conjectures, one describes the root vec-
tors intrinsically. The conjectures might be helpful for constructing an A-
basis of the A-form of the quantized enveloping algebra of a symmetriz-
able Kac-Moody algebra. For A\ € NRT, we denote by U;\“ the set {z €

UT | KipK ' = oMoz} and let Uf , = UxNUa. We also write U_, for
QUh.

Conjecture A. Let a € RT and set d,, = d; if w(a;) = « for some w € W.
Let E € U;[?a. If B = E“/[a]!da € U for all a € N, then there exists a
simple root a; and u € W, f € A, such that u(a;) = a and E = fT,(«;).
(We refer to [L2] for the definition of [a]!da.) For type Ag, the conjecture is
true.

Conjecture B. For any 3 € RT, choose wz € W and ig € [1,n] such that
wg(aiy) = (. Define Eéa) =T, (E(a)). Then the elements

wg \(Hig

E(aﬁ) N
H 3 (ag €N)
BERT

form an A-basis of U;{. Where the factors in the product are written ac-
cording to a given total order on R™.
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3. Some orthogonal bases of the bilinear form in [K].

In this section we show that certain PBW bases are orthogonal bases of
the bilinear from considered in [K], see Theorem 3.9. For the bilinear form
obtained from the Drinfeld dual, a similar result was established in [L5,
LS]. Although the difference between the two bilinear forms are small, it
is difficult to apply the methods in [L5, LS] for proving Theorem 3.9, since
the methods rely on a property ([L5, 38.2.1]) which does not hold for the
bilinear form in [K].

3.1. Following Kashiwara [K, Prop. 3.4.4] we define a bilinear form on U™.
(a) For each P € U" and Fj, there exist unique P, P” € U™ such that
K;P' - K;'P"

-1
v — v,

PF;— F;P =

(We set v; = v%.)
Define ¢;(P) = P” and ¢;(P) = P’. We have (cf. [K, Prop. 3.4.4]).

(b) There is a unique symmetric bilinear form ( , ) on UT such that
(1,1) =1,

(Eiz,y) = (x,0i(y)) forallie€[l,n] and z,y € UT,
(x, Eiy) = (pi(x),y) forallie [l,n] and z,y € UT.
We need some preparation for proving Theorem 3.9. Let X be the set

of all sequences i = (i1,...,4,) in [1,n] such that s;, ---s;, is a reduced
expression of the longest element wy € W. For i = (i1,...,i,) € X, A =
(a1,...,a,) € N”, we shall write

ElA = Ei(fl)Til (Ei(:Q)) o 'Til o 'Eufl (Ei(:ly))?

R =Ty T (B T (B E) = Q(ED),

EIA _ E.(al)T_l(E.(az)) . T;:l . T—l (E'(au))‘

11 11 12 iy_1\"iy

For A = a1aq + asag + - - - + anpay € ZR, we define Ky, = KK ... K%,

The following result plays a key role in the proof, which is essentially a
variation of Theorem 2.3.

Lemma 3.2. Leti= (i1,...,i,) € X and let s,k € [0,v — 1] such that
s>k Set E=1T; ---T; (Ei.,), F=T; T (F,,,). We have

Ts4+1 k+1

EF—FE =) o(ANBF'K\E’, o(A\B)cA,
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where A = (a1,...,a,) and B = (b1,--- ,b,) run through a finite subset of

NY, X runs through a finite subset of NR™, and apy1 = -+ =a, =0, by =
oo =bsy1 =0 1if o(A, N\, B) #0.

Proof. Set ji1 = is, jo = is—1, ..., js = i1. Choose jst1, ..., j» € [1,n]
such that (ji,...,7,) € X and sj, -+~ 55, (aj,) = @i, -

For m € [1,v], a € N, define

X =Ty, T, (B))),
X/Sg) _ \IJ(Xy(r?)) _ Tj:l ! (E(a)).

Jm—1 jwn
Then T;, - - ~Tik+2(Eik+1) =X, pand B, = X,.
Set B = si, - 54,0 (iy ), B = . Using Theorem 2.3 repeatedly we

see

(a’) Eis+1Xs—k - /U(ﬁlﬁ )XS—kEiS+1

- Z U(aV—la e 7asfk‘+1)X,ECiD1_1) e Xs(a_sk?ffl)v
where o(ay—1,... ,a5_+1) € A, and a,_1, ..., as_k+1 run through a finite
subset of N.

Applying ¥ to the identity (a) we get

(b) ngkEistl - U(ﬁ|ﬁl)E'Ls+1X;7k
=3 ol ) X X,
If v >m > s+ 1, then we may find ky11,...,k, € [1,n] such that
(kus. o s kmyt, Jis--- 5 Jm) € X. Noting that sg, -~ Sk, 155 - S5y ()

is a simple root a; for some j € [1,n], we see
(c) Tt T Tyt T, () = B
Since 8js+1 U Sjmfl(aj'm) = Sjs o Sjl Skm+1 T Sku (a]) 6 R+7 we ha've
—1 —1
(d) Ym = 7}s+1 o Z}m,1 (E]Yn) = 1}3 T j_jlek'm+1 T Tku (EJ)
=Ty T Ty - T () €U,
fors+1<m<v-—1.

By our choice on ji,... ,j, we may require that k,+1 = is+1. By (d) and
2.1 (b) we see

(e) Yoo =T 1 - T 0 (Bj,) =) o (AE!, o'(4) €A,

T s+ Jm—1
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where A = (a1, ... ,a,) runs through a finite subset of N” and a; = --- =
as+1 = 0if o/(A) # 0.

Define B = si, -+ 8i,,,(q;,) for 1 < m < k+ 1, and set zlo —
T T; (FZ(Z)) for1 <m < k+1, a€ N Form>s+1, a €N,
we set V%) = Tj_l . T7' (B (a)> c U+

s+1 1

JIm—
Applying T;, - - - T;, to the 1dent1ty (b) we get

(f) —Kg! FE+oPPEK! F

ﬁk 1 Br+1

v

= ZO‘ Ay—_1,... ,as_k_H)v K_AZ](casflﬁLl) o Z(ag)Y's(_T:si*l) .. Y(f3*1)7

where c is a suitable integer depending on 41, ..., ig, Gs—g+1, ..., s, and
A= a5 py1Bk + as py2Br1+ - +asP € NRY.
Since (/Bk+l|$i1 T S (ais+1)) = _(Sis © Sigyo (aik+1)’ais+1) = _(ﬁ|/8,)> we
see
-1 —(818") r—1
(&) EK/Bk+1 = v~ )KﬂkHE'

Obviously we have

(h) ﬁk+1 > A if O’(ay_l, N ,CLS,k+1) 7é 0.
Combining (e)-(h) and Theorem 2.3 we see the lemma is true.
3.3. Let B = Y a;a; € NRT. We define o(3) = H(UZ — vy ) dy =

%

Z aid; —dg if 3 € RT. Let a be an integer and b, d positive integers, set

{a}d— — _gd, {0}y = {b}afb - 1}a--- {1}a, {0}, =1,
a b _ p—2a—htl)d a
! 1Ybp! — -1
(b)Y = (~1{b3, {b}d. I {i} =
We have
a a+b :M for a
) U e e

We shall omit the subscript d if d = 1.

(b) o(B+7) =0o(B)o(y) for B,y € NR'.
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Recall for A = aj1 +- - -+anay,, we write K for K{* --- K. For 3 € R,
we shall write X5 (resp. ¥j;) for any element of U of the form

Z uK\x (resp. Z UKACL') ,

where u runs through a finite subset of U™, z runs through a finite subset
of UT, and A runs through the set {> b,a; € ZR | |b;] < a; for all i and
Y bia; # £0} (resp. {d_biay € ZR | |bj| < a; for all i}). The following
assertions (c) and (d) are obvious.

(c) Yp+¥3=2%s and X34+ X5=3%j for B eNRT

(d) Ty = Tpty, TpTy = g,
¥g¥l =Yg, for 3,7 € NRT.

Lemma 3.4. Let3 € NR' andletu € U:ﬁ be a monomial of Fy, ..., F,.
Then for any x € U™, there exist unique x1,x2 € UT such that
Kgzy 4+ (—1)MO K1,
TU — UT = 7 ( £ + Xg.

o ()

Proof. We use induction on ht(3). When ht(3) = 0, 1, the lemma is just 3.1
(a). Assume that ht(3) > 2 and v = F;u'. By induction hypothesis we get

ITU — Uux
= (xF; — Fx)u' + Fi(au' — u'z)
— Ml_—mu/ +F K071 + (*Dht(ﬁ_ai)Kg_laix/Q Ly
N a(e) ' o(f — ) B—a;
Kpg_gz1 + (—1)MB-ad g1
— # . / B—a;*1 B 22
- olad) {KZ (U nr (B — ) + 25
Kg_o. 2} + (—1)}“(5*%)](—1 i
— -1 / /B ;<1 ﬁ_ai 2
K, (u Y2 + (=) + 55, + 5,

where y1, yo, @), xh, 21, 22, 2], 25 are elements of U™.
We have KiK', = ¥g, K;'Kg o = %, and K;S5 o = g,
K 'S5 o, = 95 (cf. 3.3 (d)). By (b), (c) and (d) in 3.3 we get
Kgz + (—1)ht(’6)Kﬁ_1,zé

TU — UL = =(3) + Xg.

The uniqueness of 1 = z1, x2 = z} follows from PBW theorem (see [L2]).
The lemma is proved.
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Proposition 3.5. Let 8,7 € NR such that 3—~ € NR*t, and letx € U7,
Yy € U,j', z € Ug—v' Let &1,& € U™ be such that (see Lemma 3.4)
Ko+ ()M K
2V (y) — U (y)r = — SERLENTD YN
( ) ( ) 0'("}/) v
(See 1.2 for the definition of ¥'.) Then (x,yz) = (£2,2). In particular, if
B =+ and z =1, then (z,y) = .

Proof. We may assume that y is a monomial E;, - -- E;, . Repeatedly using
the properties in the definition of the bilinear form we get the proposition.

Corollary 3.6. Let 3 € R™ and F a root vector corresponding to —p3.
Then for any x € U™ there exist unique x1,1o € UT such that
Kﬁ.’L’l + (—1)ht(B)K§1$2 s

o(B) .

We shall write pp(x) = x2 and Yp(x) = x1.

F — Fz =

Proof. Since F' is a Q(v)-linear combination of monomials of Fy, ..., F,
with degree —3, the corollary follows from Lemma 3.4.

Proposition 3.7. Let 3 € RT and F a root vector corresponding to —[3.
Then for any x,y € Ut we have (see 3.3 for the definition of db)

1 —d
(z, By) = (~1)MO ™% (op(2), y),
where E = Q(F) e UT.
Proof. Let s;, --- s, be areduced expression of w € W such that
F=T, T, (F,).

We use induction on k = I(w) to prove the proposition. When k = 1, then
F = F,, the proposition is just a property of the bilinear form (, ) since
djy = 0 in this case. Assume the proposition is true when [(w) < k — 1.

Now assume that k£ = [(w) > 2. Let u be the shortest element of the coset
w(Si,_,,Sip), then w = wu' for some v’ € (s;, ., s, ) and [(w) = l(u) + ().
Moreover l(us;, ,) = l(us;,) = l(u) +1 < k — 1. If v/(oy,) is a simple
root a, then j =iy or iy and F' = T,,(F}). By induction hypothesis, the
proposition is true in this case.

Suppose that v = u/(«;, ) is not a simple root, then we have the following
cases.

(1) o =sj,_, and v =, _, + iy,

(2) v = sj,_, and v =20, _, + vy,
(3) v =sj,_, and v = 3, _, + iy,
(4)

I .. . — . .
4) w' = 84,8, , and v = a5, +
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(5) v = si,si,_, and v =20, _, + @y,
(6) v = si,si,_, and v = a;,_, + 20, (type G2)
(7) v = sisi,_, and v = 3y, _, + 204, ,
(8) v = si,_, SipSi,_, and v = a;,_, + 20, ,
(9) v = si,_, i, Si,_, and v = 3, _, + 20, ,
(10) v = si, Sy, Si Sip_, and v = ay,_, + @y,
(11) v = s, 84y, Sy, Sip,_, and v = 3oy, + @, -

Case (1). Let 81 = u(ay,), P2 = (a,k L), then 31, B € RT and 3 =
By + B2. We have T;, | (E;,) = E B —v%E;,  E; and

1k—1

E= Til T Tik_1(Eik) = Tu(Eik)Tu(Eik_l) - UﬁdTu(Eik_JTu(Eik)v

where d = _dik_laik_1,ik = dik_l'

Let E' = T,(E;,), E" = T (E;,_,), F' = Q") = T,(F;,), F" =
QE") = T,(F;,_,). Then E = E'E" — v *E"E' and F = F"F' — v F'F".
By induction hypothesis, we have

(a) (z, B'E"y) = (_1)ht(51)—1+ht(52)—1v_dlﬁl_diiz(SDF,,(QDF,(x))’y),

4 U

(b) (z, E"E'y) = (—1)hB2) =10t B0 1=, =55 (o (oo (), ).
Recall that we have

Kot (z) + (~ )MV K L op ()
= Y 21,

zF' — F'x

o (2)F" — Fipp ()
_ Kptr(pr (@) + ()" Kl op (o ()

)
K, pn(z) + (—1 )ht(ﬂé)K Yopn(z)

.’EF”—F//x: (/82) +252,
pp(z)F' — Flopn(x)

Koy (i () + (=)™ K5 o (ppo(a))
B o(51) 8
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Using 3.3 (b)-3.3 (d) and Corollary 3.6 repeatedly, we get
cF — Fzx
=aF"F — e F'F" — F'"F'z + v4F' "y
= (zF" — F"z)F' + F"(xF' — F'zx)
—v4(xF' — F'z)F" — v F' (zF" — F"x)

_ f(f (p (o (@) = v (e ()

ht(3) 7 —1
o @) — o (@) + 35

Therefore we have

(c) pr(z) = ppop (x) — vioppp ().

Since dg = d;,, = dg,, so, djy = djs +dj, +dg,. Note that dg, = d;,_, = d.
Hence
(x,Ey) = (z,E'E"y — v ?E"E'y)
= (=)Mo % o (pp (x)), y)
~(=)M O (o (o (), )

= ()1 ™% (pp (), y).
We may deal with other cases similarly. The proposition is proved.
Corollary 3.8. Leti= (i1, - ,%,) € X andlet F=T; ---T;, ,(E;,), E=

QF), A= (a1,...,a,) € N. Then

(a) pp(Ef) =0 ifay = =a; =0,
A 1)ht(B)~1 vt o) _
(b) er(E{) = (=1) Yie TRA fay = = ap_y =0,
i o aik) i
where A" = (0,--+,0,ar — L, apt1, - ay), B =i - Si,_, (®i,)-

Proof. (a) follows from Lemma 3.2 and the definition of ¢ (see Corollary
3.6). (b) follows from the definition of ¢ and the following identity

Kﬁvilk_a _ Kglva—l
-1

k_vik

EWF=FE® 4 E@D geN.

U;

Theorem 3.9. Leti = (iy,...,3,) € X and A = (a1,...,a,), B =
(b1,...,b,) be elements of N”. Then

(a) (B EBY=0if A+ B.
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T E(BR)™

1
k=1 {ak}dg 7

(b) (B Ef) =

[T v

where By, = siy -+ si,_, (qiy,), dy = diy, and £(Bk) = W
ik

ZCM@'- In particular, EiA € Lp (see 3.11 for definition).

)

if Bp =

Proof. Repeatedly use Prop. 3.7 and Corollary 3.8.

Corollary 3.10. Letx € U'. Then

(a) (x,x) # 0ifx # 0. In particular, (, ) is non-degenerate [K, Corollary
3.4.8].

. ( ) A) A
(b) For any i€ X we have x = — 1 F{.
e

3.11. Let B be the subring of Q(v) consisting of all rational functions which
are regular at v™! = 0 (i.e. v = 00). Define Lg = {z € Ut | (z,7) € B}.
The B-submodule Lz of U™ is crucial for discussing canonical bases.
Corollary 3.12. For anyi € X, the elements EiA (A € N¥) form a B-basis
of L.
Proof. Let ¢ € Q(v), then & € B if and only if €2 € B. The corollary then
follows from Theorem 3.9 and 2.1 (a).

Corollary 3.13. Leti,j€ X and let A € N¥. Write
= Z éBEij €B € A7

BeNv
then there exists a unique By € N” such that £, € £1 + v 1Zv™1], and
¢ € v Z[v™Y] if B # By (see [L3, Prop. 2.3]).
Proof. By Corollary 3.12 we see that £ € AN B = Z[v~!]. By Theorem
3.9 (a) we know
(BLEN = > & (BSLEP).
BeNv
By Theorem 3.9 (b), the values of (E&, E{), (EjB,EjB) at v = 0 are 1.
So there is a unique By € N” such that 5%0\1)71 =1, and &%],-1_¢ = 0 if
B+ By,
The corollary is proved.

Corollary 3.14. (a) Let L be the Z[v~1]-submodule of Lp spanned by the
elements E’iA, ic X, AcN. Then L is a free Z[v~']-module and for any
i€ X, the elements E{* (A € N¥) form a Z[v~']-basis of L.
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(b) Let x € UJ. Then z € L if and only if x € Lp, i.e. (z,z) € B. See
[L3].

3.15. The Z[v~1]-module £ can be defined through Kashiwara’s operators
€i, f; :UT — U™, which are defined as follows

Gy CaBl = Y GEMYN ¢4 eQ),

_ AeNv AeNv
fir D €aBt = > BN, 4 eQ),
AeNv AeNv

where i = (i1, - ,4,) € X such that ¢; =4 and A; = (1,0,---,0).
Obviously we have

(a) & and f; map L to £ for all i € [1,n],
(b) fi&; =id for all i € [1,n)],

(¢) Ut = kerf; ® imé; for each ¢ in [1, 7],

(d) ker f; = kerg;. In particular ﬂ ker f; = Q(v).1 (cf. [K, Lemma 3.4.7]).

=1

Proposition 3.16. Let L' be the Z[v~!]-submodule of U™ generated by the
elements €;, -+ €;, (1) (i1, ,ix € [1,n] and k € N). Then we have L C L.
(See [L4, Theorem 2.3 (a)].)

Proof. Using Corollary 3.13 and the definition of é; we see £’ C L.
It is not difficult to prove that £ = L, see [L4] or [X3].
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