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We prove a functional version of the Brunn-Minkowski
inequality for restricted sums obtained by Szarek and Voicu-
lescu.

We only consider Lebesgue-measurable subsets of R", and for A C R",
we denote its volume by |A|. If A, B C R", their Minkowski sum is defined
by

A+B={z+vy, (z,y) € Ax B}.

The classical Brunn-Minkowski inequality provides a lower bound for its
volume.

Theorem 1. Let A, B be compact, non void subsets of R™, one has
1 1 1
|A+ B|» > |A|» + |B]n.

In their study of the free analogue of the entropy power inequality [SV],
Szarek and Voiculescu define the notion of restricted Minkowski sum of A
and B with respect to © C A x B:

A—'_@B: {13+y, (J:ay) € 9}7
and show that an analogue of the Brunn-Minkowski inequality holds:

Theorem 1’. There exists a positive constant ¢ such that for all p €]0,1],
n €N, for all A,B CR" and © C A x B such that:

1
n _ O] .
p < <) <pt and ——— >1—cmin(py/n,1),
|A[.|B|

one has

|A+e B|» > |A|» + |B|~.

It is well known that the Brunn-Minkowski inequality can be derived from
the Prékopa-Leindler inequality [Pré], [Lei], which we recall here:
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Theorem 2. Let f,g be non-negative functions in L1(R™) and A €]0, 1], let
H be a measurable function on R™ such that

H(z) > sup{fMu)g' " (v), (u,v) € R* x R" and = = \u+ (1 — \)v},

then
s (1) ()

We show that a corresponding restricted version of this statement holds.

Theorem 2’. There exist positive scalars ¢ and ng such that for all 0 <
e < 1/2, for all X € [g,1 — €| and for all n > ng, if f,g are non-negative
functions in L1(R™) and if © is a measurable subset of R*" such that

/f m@z

J1)(J9)

[ K@ar> </f>A (/g)l_A,

as soon as the function K satisfies:

K(x) > sup{fA(w) g *(v), (w,v) € © and ==V u+V1— v}

c logn

TR

| =

then

Let us return to the example given in [SV] to show that the condition on

the ratio
/ f(x)g(y) dzdy

)(fg)

is asymptotically optimal. Let By be the Euclidean unit ball in R" and let
O ={(z,y) e R" x R", (z,y) <0},
then |©N(BY x BY)| = 1/2|B%|? and the O-restricted sum of a ball of radius

r1 and a ball of radius 79 is a ball of radius /7% + r3. In particular, for all
A€ [0,1],

VABY +0 V1 — AB} = BY.

The conclusion of Theorem 2’ applied when f and g are the characteristic
function of B3 would be

VABY +o V1 — ABY| > |BY,

and actually the equality holds. It is then clear that the conclusion of
Theorem 2’ becomes false for ratios 6 < 1/2.
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We shall first show that Theorem 2’ implies Theorem 1’, maybe with
different conditions on the parameters. Let A, B be two subsets of R", let

©® C A x B such that
1
!A|>"
= (2" <.
<|B!

© 1 1 21
Assume that the ratio § = \A||\|B| is larger than 3 +c :2/) . (:/g;. Let
us define the set
~ b
(i) e o0

Let B

A= — and B= T

Al | B[~

and let f and g be the characteristic functions of A and B. A simple change
of variables gives that

fe y)dedy  |©]

(f f) (fg) ~|ALIB]

so we can apply Theorem 2’ to f and g, with \ =

=4,

2
AP
A+ 1Bl 1

and get
VAAd+g VI=AB| 21,

where

VAAtgVITAB = {f

an |\l’( )66}

_ et peo

Jiag 1813
A+eB
|Al% + Bl
Hence, we obtain
|A+e Blw > |A|% + B~

Our method is based on an observation of Brascamp and Lieb [BL1]:
the Prékopa-Leindler inequality is a limit case of the reverse sharp form
of Young’s convolution inequality. We will first prove a restricted form of
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Young’s inequality and its converse, using a modification of the method we
developed in [Bar|, and then take the limits in certain parameters. Our
proof of Young’s inequality is based on measure-preserving mappings be-
tween measures. We use them in order to build a suitable change of vari-
ables which makes the problem simpler; then a simple arithmetico-geometric
inequality gives the result. Now, we have to work with functions on R", be-
cause the set © makes it difficult to use the classical tensorisation argument.
In general, given two probability on R”, there are several measure-preserving
mappings between them; for our purpose, the mapping built by Knothe in
[Kno] fits:

Lemma 1. Let f, F be positive continuous functions on R"™ such that [ f =
[ F. There exists a differentiable map u : R — R"™ such that for x € R™

(1) det(du(x)) - f(u(x)) = F(x),
and for all i <n and all(z;)?_, € R,
u((xz):‘:l) = (u1 (.Il), UQ(:Ul, xg), ‘e ,un(:cl, <o ,:En)),

where for all x1,... ,x;—1, the function w;(x1,...,T;—1,") 1S increasing on
R. In particular du(z) has always a lower triangular matriz with positive
diagonal (in the canonical basis).

We also need a version of the arithmetico-geometric inequality for matrices
of the previous form:

Lemma 2. Let M, N be lower triangular n X n-matrices with non-negative
diagonal and let t € [0,1], then

det(tM + (1 —t)N) > (det M)*(det N)' .

The first step of the proof is the following restricted version of Young’s
inequality. For ¢ > 1, we denote by t’ the real number such that 1/t+1/t' =
1.

Lemma 3. Let f, F, g,G be positive continuous functions on R™, of integral

1 and dominated by some Gaussian function. Letu and v denote the measure

preserving mappings obtained when applying Lemma 1 to (f, F') and (g,G)

and let T be the bijective map of R™ x R™ defined by T(x,y) = (u(z),v(y)).
Let p,q,m > 1 such that 1/p+1/qg=1+1/r. We set

c=/r"/q and s =~/r"/p,

and notice that 2 + s2 = 1. Then

() / F(@)9(y) Lro(x,y) da dy = / F(X)G(Y)1(X,Y) dX dY,
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and

(/ </ f%(cx - Sy)gé(sx + cy)lre(cx — sy, sx+ cy)d$>r dy)i

< / </F;(CX — sY)Gi(sX + cY)1e(cX — sY,sX +cY) dY) " dx.

Proof. Equality (2) is a consequence of the measure-preserving properties of
u and v. We give a detailed proof of the inequality. Let R be the rotation of

. c =5\ . : . .
matrix s ¢ in the canonical basis. We are going to use the change

of variable in R?" given by the function ® = (‘R ® I,,)T(R ® I,,), where I,
is the identity map on R™. More precisely (x,y) = ®(X,Y’) means

z=cu(cX —sY)+sv(sX +cY)
y=—su(cX —sY)+cvo(sX +cY).

It is clear that ® is a differentiable bijection of R?". Its jacobian at the point
(X,Y)is

JO(X,Y) = det(du(cX — sY)) det(dv(sX + cY)).

We want an upper estimate for the integral (finite by assumption)

I= </ (/f;(cx — sy)g%(sx—l—cy)lT@(cx — sy, st + cy) dx)r dy)r.

Using the (LT,LT/)-duality, there exists a positive function A on R” such
that ||h]|,» =1 and

I= // f%(ca: - sy)gé(sw + cy)lro(cx — sy, sz + cy)h(y) dz dy.
By the change of variable (x,y) = ®(X,Y), we obtain that I is equal to
// f%(u(cX — sY))g%(v(sX +cY))h(—su(eX —sY) + cv(sX 4+ ¢Y))
“1re(u(cX — sY),v(sX +¢cY))
-det(du(cX — sY)) det(dv(sX + ¢Y))dXdY.
In order to shorten the formulas, denote
U=u(cX —sY), V =v(sX +cY),
U’ = det(du(cX — sY)), V' =det(dv'(sX +cY)).

Noticing that the definition of 7" implies 17g(u(cX — sY),v(sX + ¢Y)) =
lo(cX — sY,sX + ¢Y), and using the differential formulas

det(du(x)). f(u(z)) = F(z),
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det(dv()).g(u()) = G(x),

we get

I'= // £ (u(eX — sY))gi (0(sX + ¥ ))1e(eX — sY,sX + ¢Y)
h(=sU + V)U'V'dXdY

- /</F11>(CX ~ $Y)G(sX + eY)1g(cX — sY, sX + cY)

1
7

(—sU + VYU (V)7 dY) dx.

Using Holder’s inequality for the integral in Y with parameters r and 7/, one
has:

1
T

I< / (/ Fr(cX — sY)Gi(sX 4 cY)1lg(cX — sY,sX + cY) dY)

1

T dx.

/

Ak

: </ W (—sU 4 V) (U') (V’ﬁ dY)

3

Let H(X) = /hr/(—sU + VYUY (V)7 dY, then

H(X) = / B (a(X, Y))(det du(eX — s¥))* (det do(sX + V) Y,
where
a(X,Y) = —su(cX —sY)+co(sX +cY).
It is clear that the partial differential of a with respect to Y is
dya(X,Y) = s2du(cX — sY) + ?dv(sX +cY).
By the arithmetico-geometric inequality stated in Lemma 2,
det(dya(X,Y)) > (det du(cX — sY))* (det dv(sX + ¢Y)),

hence
H(X) < /hrl(a(X, Y))detdya(X,Y)dY < /h’”' =1,

where we use the fact that a(X,Y’) is an injective function of ¥ (indeed, u
and v are by definition increasing for the lexicographic order on R™). This
proves that

1

I< / (/F;(CX — sY)Gg(sX +cY)le(cX — sY,sX +¢Y) dY) " dx.

O
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We are going to take a limit in r to obtain an inequality similar to the
Prékopa-Leindler inequality. To simplify the notations, we set Kk =1 — A.

Lemma 4 Let f g, F,G be as in Lemma 3. Let © C R?" and denote
0= JoF( Y)dX dY. Then

/ sup FAu)GE(v)1e(u,v) dX
X=vVAu+Vkv

>1nf sup/f Ax—fy) (\/Ea:—i-\ﬁ\y)

yGR"

14 (\FAx—\/Ey,\/Ex—Fﬁy) dx,

where the infimum is over the sets A C R* such that [, f(x)g(y) dzdy > 6.

Proof. This lemma is a limit case of Lemma 3. For r > 1, we set

. T
p?“_)\(r+1)7
. T
qr_/i(r—i—l)'

Then 1/p,+1/q, = 14+ 1/r and when r is large enough p,, g, > 1. We apply
Lemma 3 with f, g, F\,G for this triple and take the limit when r tends to

+00. Notice that
LI S

Dr qr

and

/ 1— -1
Cr = - ar — VA, sr — VK.

¢V 1-rt

Our strong domination hypothesis ensures that the r-norms tend to essential
suprema when r tends to infinity. We get:

sup /f’\ (ﬁx—ﬂy) g~ (\/Ea:—k\ﬁ\y)

yEeR™

‘170 (\f)\x—\/gy,\/gx—i-ﬁy) dx
S/R sup F> (ﬁX—JEY)G“ (JEX+\5Y)

n YeR"

1o (ﬁX—\/EY,JEXJrﬁY) dx.
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Noticing that = VAX = VrY is equivalent to X =Vhu+ i
8 v_fXJr\FY q Y = —Veu+vAv’
we can rewrite the second member of the previous inequality as

/ sup FAu)G®(v)1e(u,v) dX.
X=vVAu+Vkv
By equality (2) in Lemma 3, we have [ f(2)g(y) dzdy = 6, which leads to

the conclusion. O

To finish the proof of Theorem 2’, we have to estimate the infimum given
in the previous lemma for two specific functions f and g.

Lemma 5. Let F,G be as in Lemma 3, then

/ sup FAu)G (v)1e(u,v) dX
X=V2ut+vkv

>E (exp (NZ&) 1{ZXZ~§Mn,e}> )

i=1
where (X;)_, is a sequence of i.i.d. random wvariables, their common law

being the law of a difference of squares of two independent Gaussian variables
N(0,1//2) and the number M, ¢ satisfies P(>" X; < My 9) = 6.

Proof. We apply Lemma 4 with

(@) = gla) = "2,
We denote by 7, the probability measure on R™ with the previous density.
We want a lower estimate of

2 2

7= inf “A(VAz —Viy) =k (Vez+ VA )

7%1&):9;611115 / exp( ( x ny) m( K y)
1A<ﬁx—\/gy,\/gx+ﬁy)7fn/2dx.

Since the condition on A is rotation invariant, we can replace A by B such
that (z,y) € B if and only if (VAz — Vky, VEz +VAy) € A. Hence

2 2

T— it A(Vaw—viy) =k (Vez+ VA >

'Y%l(% ):05&5 / exp( ( x ny) Ii( KT y)
Az, y)r VM dx

2 2

= inf s e 22NV —Vk —k(VEz+VA >

’Yan(%)_eyeu]R%/ Xp (x ( x f@y) m( KT y)
“1p(z,y) dyn(x),

>72n1nf //exp( )\ \f)\x—\/gyy—m<\/;:c+\ay>2>
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“1g(z,y) dyn(2)dyn(y).

The matrix of the quadratic form on R*", Q(z,y) = 22 — AV Xz —Vky)? —
k(Vkz ++vXy)? in a suitable orthonormal basis is

I, 0
\/)\R( 0 I, ),

where I, is the identity n X n matrix. Hence, by rotation invariance of the
Gaussian measure

T2 LB / / exp (VAR(? = 4?) ) da(@)da ().

This is exactly

T = [ [[exp (VArla® =) L pcar, ) @)

where M,, g is such that yo, ({22 — y* < M, 9}) = 6. We get the conclusion

of the lemma by rewriting this with X; = x? - yiz, where z; and y; are the

ith coordinates of = and v. O

We are going to use the central-limit theorem in the rather precise form
of the Berry-Essen theorem. [Fel].

Theorem 3. Let (X;);en be a sequence of i.i.d. random variables, let
1
m =EX;, o= (EX?)* and B=E|X;
For allt e R, let

Fo(t) =P <W < t)

ovn

and

G(t) e=5*/2 ds
-/

There exists a universal constant ¢ > 0 such that for all t and for all n,

cp
F,(t) - G()| < :
‘ n( ) ( )‘ — 0'3\/ﬁ
Proof of Theorem 2'. By homogeneity, we may assume [F = [G = 1.
Comparing the assertions of Lemma 5 and Theorem 2/, we see that to prove
the latter, it is enough to show that the expectation from the former is > 1
provided the parameter 6 = [ F(x)G(y)dzdy exceeds

1 c logn

2PV
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To this end, we apply Theorem 3 to the variables X; defined in Lemma 5,
and notice that m = 0 and (3,0 and c are universal constants. We set

log n and o= %
oV AKN o3

We fix A and prove that, for n large enough and for
0 = G(gn) +

gn:

(67
v

the quantity

J=E (exp (\/EZXJ 1{ZX¢<MR,9}>

=1

is larger than 1.
As EX; = 0, we get from the Berry-Essen theorem

- 3
P (; X; < fna\/ﬁ> < G(&) + 030\/71 =0,

s0 My 9 > &n0v/n. We set Z,, = Lim Xi it is clear that
n,e - Sn . - O'\/ﬁ )
J>E (exp <O‘\/ )\/-mZn) l{angn}) .

Let n1(A) be the smallest integer n such that &, < 1, notice that it is a
non-increasing function of A €]0, 1/2]. We work with n > n;(\). When n is
large, Z, behaves like a normal Gaussian g. So we can almost estimate this
expectation by replacing Z,, by g.

More precisely, let d = 2a+/2me and let n2(\) be the smallest integer such
that &,/3 > d/+/n, it is a non-decreasing function of A €]0,1/2]. Then for
n > max(nq(A),n2(\)), one has

B2, ([t,]) > P, ([t,gn - jﬁb |

This comes from the Berry-Essen theorem and from the fact that &, stays
in [0, 1] where the density of the law of g is bounded from below:

Pz, ([t.6a]) = Py (t,6n)) —2-7

“n
_ d 1 & —12/2 a
- Pg({t’f“‘ﬁD*m/g PR N

nTVm

- (e 8]) )
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We are now able to compute a lower estimate of 7.

J > /jn exp (O‘Mﬁ) dPz, (t)
= /_fn oV Akn exp (0’\/%75) Py ([t,&]) dt
. d_

En——=
/ v oV AEN exp (a\/ )\Iint> P, ([t, &, — }]) dt
oo n
= ok exp (0’\/ /\ﬁnt) 67t2/2£
— NoT

Because of our assumptions on n, we can write:

2n/3 dt
> Vornt) e /220
J = /Sn/2 exp (a KN ) e o

1/2

v

%exp (a\/%fn/Q) 6\;%

logn . ( logn >
= X
60V 2me kn P 2
logn

60V 2melk .

We denote by n3(\) the smallest integer n such that the previous quantity
is larger than 1. It is a non-decreasing function of A €]0,1/2].

Eventually, if A € [¢,1/2], then for n > max(n;(¢),n2(1/2),n3(1/2)) the
conclusion of Theorem 2" holds for

o
=G —

(&n) + T

. 1 i e .
As by concavity, G(t) < = + —— for all ¢ positive, one easily deduces
2 2

the theorem from the previous result. Theorem 2’ gives some information
only if the quantity 1/2 + clogn/\/en is smaller than one. So the condition
n > nq(e) is implicitely contained in Theorem 2. O
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