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We prove a functional version of the Brunn-Minkowski
inequality for restricted sums obtained by Szarek and Voicu-
lescu.

We only consider Lebesgue-measurable subsets of Rn, and for A ⊂ Rn,
we denote its volume by |A|. If A,B ⊂ Rn, their Minkowski sum is defined
by

A + B = {x + y, (x, y) ∈ A×B}.

The classical Brunn-Minkowski inequality provides a lower bound for its
volume.

Theorem 1. Let A,B be compact, non void subsets of Rn, one has

|A + B|
1
n ≥ |A|

1
n + |B|

1
n .

In their study of the free analogue of the entropy power inequality [SV],
Szarek and Voiculescu define the notion of restricted Minkowski sum of A
and B with respect to Θ ⊂ A×B:

A +Θ B = {x + y, (x, y) ∈ Θ},

and show that an analogue of the Brunn-Minkowski inequality holds:

Theorem 1′. There exists a positive constant c such that for all ρ ∈]0, 1[,
n ∈ N, for all A,B ⊂ Rn and Θ ⊂ A×B such that:

ρ ≤
(
|A|
|B|

) 1
n

≤ ρ−1 and
|Θ|

|A|.|B|
≥ 1− cmin(ρ

√
n, 1),

one has

|A +Θ B|
2
n ≥ |A|

2
n + |B|

2
n .

It is well known that the Brunn-Minkowski inequality can be derived from
the Prékopa-Leindler inequality [Pré], [Lei], which we recall here:
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Theorem 2. Let f, g be non-negative functions in L1(Rn) and λ ∈]0, 1[, let
H be a measurable function on Rn such that

H(x) ≥ sup{fλ(u)g1−λ(v), (u, v) ∈ Rn × Rn and x = λu + (1− λ)v},
then ∫

Rn

H(x) dx ≥
(∫

f

)λ(∫
g

)1−λ

.

We show that a corresponding restricted version of this statement holds.

Theorem 2′. There exist positive scalars c and n0 such that for all 0 <
ε ≤ 1/2, for all λ ∈ [ε, 1 − ε] and for all n ≥ n0, if f, g are non-negative
functions in L1(Rn) and if Θ is a measurable subset of R2n such that∫

Θ
f(x)g(y) dx dy(∫

f
) (∫

g
) ≥ 1

2
+

c√
ε
· log n√

n
,

then ∫
Rn

K(x) dx ≥
(∫

f

)λ(∫
g

)1−λ

,

as soon as the function K satisfies:

K(x) ≥ sup{fλ(u)g1−λ(v), (u, v) ∈ Θ and x =
√

λ u +
√

1− λ v}.

Let us return to the example given in [SV] to show that the condition on
the ratio

θ =

∫
Θ

f(x)g(y) dx dy(∫
f
) (∫

g
)

is asymptotically optimal. Let Bn
2 be the Euclidean unit ball in Rn and let

Θ = {(x, y) ∈ Rn × Rn, 〈x, y〉 ≤ 0},
then |Θ∩(Bn

2 ×Bn
2 )| = 1/2 |Bn

2 |2 and the Θ-restricted sum of a ball of radius
r1 and a ball of radius r2 is a ball of radius

√
r2
1 + r2

2. In particular, for all
λ ∈ [0, 1],

√
λBn

2 +Θ

√
1− λBn

2 = Bn
2 .

The conclusion of Theorem 2′ applied when f and g are the characteristic
function of Bn

2 would be∣∣∣√λBn
2 +Θ

√
1− λBn

2

∣∣∣ ≥ |Bn
2 |,

and actually the equality holds. It is then clear that the conclusion of
Theorem 2′ becomes false for ratios θ < 1/2.
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We shall first show that Theorem 2′ implies Theorem 1′, maybe with
different conditions on the parameters. Let A,B be two subsets of Rn, let
Θ ⊂ A×B such that

ρ :=
(
|A|
|B|

) 1
n

≤ 1.

Assume that the ratio θ =
|Θ|

|A|.|B|
is larger than

1
2

+ c

√
1 + ρ2

ρ2
· log n√

n
. Let

us define the set

Θ̃ =

{(
a

|A|
1
n

,
b

|B|
1
n

)
∈ R2n, (a, b) ∈ Θ

}
·

Let
Ã =

A

|A|
1
n

and B̃ =
B

|B|
1
n

and let f and g be the characteristic functions of Ã and B̃. A simple change
of variables gives that∫

Θ̃ f(x)g(y) dx dy(∫
f
) (∫

g
) =

|Θ|
|A|.|B|

= θ,

so we can apply Theorem 2′ to f and g, with λ =
|A|

2
n

|A|
2
n + |B|

2
n

=
ρ2

1 + ρ2

and get ∣∣∣√λ Ã +Θ̃

√
1− λ B̃

∣∣∣ ≥ 1,

where
√

λ Ã +Θ̃

√
1− λ B̃ =

{
√

λ
a

|A|
1
n

+
√

1− λ
b

|B|
1
n

, (a, b) ∈ Θ

}

=

 a + b√
|A|

2
n + |B|

2
n

, (a, b) ∈ Θ


=

A +Θ B√
|A|

2
n + |B|

2
n

·

Hence, we obtain

|A +Θ B|
2
n ≥ |A|

2
n + |B|

2
n .

Our method is based on an observation of Brascamp and Lieb [BL1]:
the Prékopa-Leindler inequality is a limit case of the reverse sharp form
of Young’s convolution inequality. We will first prove a restricted form of
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Young’s inequality and its converse, using a modification of the method we
developed in [Bar], and then take the limits in certain parameters. Our
proof of Young’s inequality is based on measure-preserving mappings be-
tween measures. We use them in order to build a suitable change of vari-
ables which makes the problem simpler; then a simple arithmetico-geometric
inequality gives the result. Now, we have to work with functions on Rn, be-
cause the set Θ makes it difficult to use the classical tensorisation argument.
In general, given two probability on Rn, there are several measure-preserving
mappings between them; for our purpose, the mapping built by Knothe in
[Kno] fits:

Lemma 1. Let f, F be positive continuous functions on Rn such that
∫

f =∫
F . There exists a differentiable map u : Rn → Rn such that for x ∈ Rn

det(du(x)) · f(u(x)) = F (x),(1)

and for all i ≤ n and all(xi)n
i=1 ∈ Rn,

u((xi)n
i=1) = (u1(x1), u2(x1, x2), . . . , un(x1, . . . , xn)),

where for all x1, . . . , xi−1, the function ui(x1, . . . , xi−1, ·) is increasing on
R. In particular du(x) has always a lower triangular matrix with positive
diagonal (in the canonical basis).

We also need a version of the arithmetico-geometric inequality for matrices
of the previous form:

Lemma 2. Let M,N be lower triangular n× n-matrices with non-negative
diagonal and let t ∈ [0, 1], then

det(tM + (1− t)N) ≥ (detM)t(detN)1−t.

The first step of the proof is the following restricted version of Young’s
inequality. For t > 1, we denote by t′ the real number such that 1/t+1/t′ =
1.

Lemma 3. Let f, F, g, G be positive continuous functions on Rn, of integral
1 and dominated by some Gaussian function. Let u and v denote the measure
preserving mappings obtained when applying Lemma 1 to (f, F ) and (g,G)
and let T be the bijective map of Rn × Rn defined by T (x, y) = (u(x), v(y)).

Let p, q, r ≥ 1 such that 1/p + 1/q = 1 + 1/r. We set

c =
√

r′/q′ and s =
√

r′/p′,

and notice that c2 + s2 = 1. Then∫
f(x)g(y)1TΘ(x, y) dx dy =

∫
F (X)G(Y )1Θ(X, Y ) dX dY,(2)
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and(∫ (∫
f

1
p (cx− sy)g

1
q (sx + cy)1TΘ(cx− sy, sx + cy)dx

)r

dy

) 1
r

≤
∫ (∫

F
r
p (cX − sY )G

r
q (sX + cY )1Θ(cX − sY, sX + cY ) dY

) 1
r

dX.

Proof. Equality (2) is a consequence of the measure-preserving properties of
u and v. We give a detailed proof of the inequality. Let R be the rotation of

matrix
(

c −s
s c

)
in the canonical basis. We are going to use the change

of variable in R2n given by the function Φ = (tR ⊗ In)T (R ⊗ In), where In

is the identity map on Rn. More precisely (x, y) = Φ(X, Y ) means

x = c u(cX − sY ) + s v(sX + cY )

y = −s u(cX − sY ) + c v(sX + cY ).

It is clear that Φ is a differentiable bijection of R2n. Its jacobian at the point
(X, Y ) is

JΘ(X, Y ) = det(du(cX − sY )) det(dv(sX + cY )).

We want an upper estimate for the integral (finite by assumption)

I =
(∫ (∫

f
1
p (cx− sy)g

1
q (sx + cy)1TΘ(cx− sy, sx + cy) dx

)r

dy

) 1
r

.

Using the (Lr, Lr′)-duality, there exists a positive function h on Rn such
that ‖h‖r′ = 1 and

I =
∫∫

f
1
p (cx− sy)g

1
q (sx + cy)1TΘ(cx− sy, sx + cy)h(y) dx dy.

By the change of variable (x, y) = Φ(X, Y ), we obtain that I is equal to∫∫
f

1
p (u(cX − sY ))g

1
q (v(sX + cY ))h(−s u(cX − sY ) + c v(sX + cY ))

· 1TΘ(u(cX − sY ), v(sX + cY ))

· det(du(cX − sY )) det(dv(sX + cY )) dXdY.

In order to shorten the formulas, denote

U = u(cX − sY ), V = v(sX + cY ),

U ′ = det(du(cX − sY )), V ′ = det(dv′(sX + cY )).

Noticing that the definition of T implies 1TΘ(u(cX − sY ), v(sX + cY )) =
1Θ(cX − sY, sX + cY ), and using the differential formulas

det(du(x)).f(u(x)) = F (x),
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det(dv(x)).g(u(x)) = G(x),

we get

I =
∫∫

f
1
p (u(cX − sY ))g

1
q (v(sX + cY ))1Θ(cX − sY, sX + cY )

· h(−sU + cV )U ′V ′ dXdY

=
∫ (∫

F
1
p (cX − sY )G

1
q (sX + cY )1Θ(cX − sY, sX + cY )

· h(−sU + cV )(U ′)
1
p′ (V ′)

1
q′ dY

)
dX.

Using Hölder’s inequality for the integral in Y with parameters r and r′, one
has:

I ≤
∫ (∫

F
r
p (cX − sY )G

r
q (sX + cY )1Θ(cX − sY, sX + cY ) dY

) 1
r

·
(∫

hr′(−sU + cV )(U ′)
r′
p′ (V ′)

r′
q′ dY

) 1
r′

dX.

Let H(X) =
∫

hr′(−sU + cV )(U ′)
r′
p′ (V ′)

r′
q′ dY , then

H(X) =
∫

hr′(a(X, Y ))(det du(cX − sY ))s2
(det dv(sX + cY ))c2 dY,

where
a(X, Y ) = −s u(cX − sY ) + c v(sX + cY ).

It is clear that the partial differential of a with respect to Y is

dY a(X, Y ) = s2du(cX − sY ) + c2dv(sX + cY ).

By the arithmetico-geometric inequality stated in Lemma 2,

det(dY a(X, Y )) ≥ (det du(cX − sY ))s2
(det dv(sX + cY ))c2 ,

hence

H(X) ≤
∫

hr′(a(X, Y )) det dY a(X, Y ) dY ≤
∫

hr′ = 1,

where we use the fact that a(X, Y ) is an injective function of Y (indeed, u
and v are by definition increasing for the lexicographic order on Rn). This
proves that

I ≤
∫ (∫

F
r
p (cX − sY )G

r
q (sX + cY )1Θ(cX − sY, sX + cY ) dY

) 1
r

dX.

�
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We are going to take a limit in r to obtain an inequality similar to the
Prékopa-Leindler inequality. To simplify the notations, we set κ = 1− λ.

Lemma 4. Let f, g, F, G be as in Lemma 3. Let Θ ⊂ R2n and denote
θ =

∫
Θ F (X)G(Y ) dX dY . Then∫

sup
X=

√
λ u+

√
κ v

F λ(u)Gκ(v)1Θ(u, v) dX

≥ inf
A

sup
y∈Rn

∫
fλ
(√

λ x−
√

κ y
)

gκ
(√

κ x +
√

λ y
)

· 1A

(√
λ x−

√
κ y,

√
κ x +

√
λ y
)

dx,

where the infimum is over the sets A ⊂ R2n such that
∫
A f(x)g(y) dxdy ≥ θ.

Proof. This lemma is a limit case of Lemma 3. For r > 1, we set

pr =
r

λ(r + 1)
,

qr =
r

κ(r + 1)
.

Then 1/pr +1/qr = 1+1/r and when r is large enough pr, qr > 1. We apply
Lemma 3 with f, g, F, G for this triple and take the limit when r tends to
+∞. Notice that

1
pr

→ λ,
1
qr
→ κ,

and

cr =

√
r′

q′r
=

√
1− q−1

r

1− r−1
→
√

λ, sr →
√

κ .

Our strong domination hypothesis ensures that the r-norms tend to essential
suprema when r tends to infinity. We get:

sup
y∈Rn

∫
fλ
(√

λ x−
√

κ y
)

gκ
(√

κ x +
√

λ y
)

· 1TΘ

(√
λ x−

√
κ y,

√
κ x +

√
λ y
)

dx

≤
∫

Rn

sup
Y ∈Rn

F λ
(√

λ X −
√

κ Y
)

Gκ
(√

κ X +
√

λ Y
)

· 1Θ

(√
λ X −

√
κ Y,

√
κ X +

√
λ Y
)

dX.
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Noticing that
{

u =
√

λ X −
√

κ Y

v =
√

κ X +
√

λ Y
is equivalent to

{
X =

√
λ u +

√
κ v

Y = −
√

κ u +
√

λ v
,

we can rewrite the second member of the previous inequality as∫
sup

X=
√

λ u+
√

κ v

F λ(u)Gκ(v)1Θ(u, v) dX.

By equality (2) in Lemma 3, we have
∫
TΘ f(x)g(y) dxdy = θ, which leads to

the conclusion. �

To finish the proof of Theorem 2′, we have to estimate the infimum given
in the previous lemma for two specific functions f and g.

Lemma 5. Let F,G be as in Lemma 3, then∫
sup

X=
√

λu+
√

κ v

F λ(u)Gκ(v)1Θ(u, v) dX

≥ E

(
exp

(
√

λκ
n∑

i=1

Xi

)
1{P

Xi≤Mn,θ}

)
,

where (Xi)n
i=1 is a sequence of i.i.d. random variables, their common law

being the law of a difference of squares of two independent Gaussian variables
N(0, 1/

√
2) and the number Mn,θ satisfies P(

∑
Xi ≤ Mn,θ) = θ.

Proof. We apply Lemma 4 with

f(x) = g(x) = π−n/2e−x2
.

We denote by γn the probability measure on Rn with the previous density.
We want a lower estimate of

I = inf
γ2n(A)=θ

sup
y∈Rn

∫
exp

(
−λ
(√

λ x−
√

κ y
)2
− κ

(√
κ x +

√
λ y
)2
)

· 1A

(√
λ x−

√
κ y,

√
κ x +

√
λ y
)

π−n/2 dx.

Since the condition on A is rotation invariant, we can replace A by B such
that (x, y) ∈ B if and only if (

√
λ x−

√
κ y,

√
κ x +

√
λ y) ∈ A. Hence

I = inf
γ2n(B)=θ

sup
y∈Rn

∫
exp

(
−λ
(√

λ x−
√

κ y
)2
− κ

(√
κ x +

√
λ y
)2
)

· 1B(x, y)π−n/2 dx

= inf
γ2n(B)=θ

sup
y∈Rn

∫
exp

(
x2 − λ

(√
λ x−

√
κ y
)2
− κ

(√
κ x +

√
λ y
)2
)

· 1B(x, y) dγn(x),

≥ inf
γ2n(B)=θ

∫ ∫
exp

(
x2 − λ

(√
λ x−

√
κ y
)2
− κ

(√
κ x +

√
λ y
)2
)



RESTRICTED PRÉKOPA–LEINDLER INEQUALITY 219

· 1B(x, y) dγn(x)dγn(y).

The matrix of the quadratic form on R2n, Q(x, y) = x2−λ(
√

λ x−
√

κ y)2−
κ(
√

κ x +
√

λ y)2 in a suitable orthonormal basis is
√

λκ

(
In 0
0 −In

)
,

where In is the identity n× n matrix. Hence, by rotation invariance of the
Gaussian measure

I ≥ inf
γ2n(B)=θ

∫ ∫
B

exp
(√

λκ(x2 − y2)
)

dγn(x)dγn(y).

This is exactly

J =
∫ ∫

exp
(√

λκ(x2 − y2)
)
1{x2−y2≤Mn,θ} dγn(x)dγn(y),

where Mn,θ is such that γ2n({x2 − y2 ≤ Mn,θ}) = θ. We get the conclusion
of the lemma by rewriting this with Xi = x2

i − y2
i , where xi and yi are the

ith coordinates of x and y. �

We are going to use the central-limit theorem in the rather precise form
of the Berry-Essen theorem. [Fel].

Theorem 3. Let (Xi)i∈N be a sequence of i.i.d. random variables, let

m = EXi, σ =
(
EX2

i

) 1
2 and β = E|Xi|3.

For all t ∈ R, let

Fn(t) = P
(∑n

i=1 Xi − nm

σ
√

n
< t

)
and

G(t) =
1√
2π

∫ t

−∞
e−s2/2 ds.

There exists a universal constant c > 0 such that for all t and for all n,

|Fn(t)−G(t)| ≤ cβ

σ3
√

n
·

Proof of Theorem 2′. By homogeneity, we may assume
∫

F =
∫

G = 1.
Comparing the assertions of Lemma 5 and Theorem 2′, we see that to prove
the latter, it is enough to show that the expectation from the former is ≥ 1
provided the parameter θ =

∫
Θ F (x)G(y)dxdy exceeds

1
2

+
c√
ε

log n√
n

.
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To this end, we apply Theorem 3 to the variables Xi defined in Lemma 5,
and notice that m = 0 and β, σ and c are universal constants. We set

ξn =
log n

σ
√

λκn
and α =

cβ

σ3
·

We fix λ and prove that, for n large enough and for

θ = G(ξn) +
α√
n

,

the quantity

J = E

(
exp

(
√

λκ
n∑

i=1

Xi

)
1{P

Xi≤Mn,θ}

)
is larger than 1.

As EXi = 0, we get from the Berry-Essen theorem

P

(
n∑

i=1

Xi < ξnσ
√

n

)
≤ G(ξn) +

cβ

σ3
√

n
= θ,

so Mn,θ ≥ ξnσ
√

n. We set Zn =
∑n

i=1 Xi

σ
√

n
, it is clear that

J ≥ E
(
exp

(
σ
√

λκnZn

)
1{Zn≤ξn}

)
.

Let n1(λ) be the smallest integer n such that ξn ≤ 1, notice that it is a
non-increasing function of λ ∈]0, 1/2]. We work with n ≥ n1(λ). When n is
large, Zn behaves like a normal Gaussian g. So we can almost estimate this
expectation by replacing Zn by g.

More precisely, let d = 2α
√

2πe and let n2(λ) be the smallest integer such
that ξn/3 ≥ d/

√
n, it is a non-decreasing function of λ ∈]0, 1/2]. Then for

n > max(n1(λ), n2(λ)), one has

PZn ([t, ξn]) ≥ Pg

([
t, ξn −

d√
n

])
.

This comes from the Berry-Essen theorem and from the fact that ξn stays
in [0, 1] where the density of the law of g is bounded from below:

PZn ([t, ξn]) ≥ Pg ([t, ξn])− 2
α√
n

= Pg

([
t, ξn −

d√
n

])
+

1√
2π

∫ ξn

ξn− d√
n

e−t2/2dt− 2
α√
n

≥ Pg

([
t, ξn −

d√
n

])
+

1√
n

(
d√
2π

e−1/2 − 2α

)
.
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We are now able to compute a lower estimate of J .

J ≥
∫ ξn

−∞
exp

(
σ
√

λκnt
)

dPZn(t)

=
∫ ξn

−∞
σ
√

λκn exp
(
σ
√

λκnt
)

PZn([t, ξn]) dt

≥
∫ ξn− d√

n

−∞
σ
√

λκn exp
(
σ
√

λκnt
)

Pg

([
t, ξn −

d√
n

])
dt

=
∫ ξn− d√

n

−∞
exp

(
σ
√

λκnt
)

e−t2/2 dt√
2π

.

Because of our assumptions on n, we can write:

J ≥
∫ 2ξn/3

ξn/2
exp

(
σ
√

λκnt
)

e−t2/2 dt√
2π

≥ ξn

6
exp

(
σ
√

λκnξn/2
) e−1/2

√
2π

=
log n

6σ
√

2πeλκn
exp

(
log n

2

)
=

log n

6σ
√

2πeλκ
·

We denote by n3(λ) the smallest integer n such that the previous quantity
is larger than 1. It is a non-decreasing function of λ ∈]0, 1/2].

Eventually, if λ ∈ [ε, 1/2], then for n ≥ max(n1(ε), n2(1/2), n3(1/2)) the
conclusion of Theorem 2′ holds for

θ = G(ξn) +
α√
n
·

As by concavity, G(t) ≤ 1
2

+
t√
2π

for all t positive, one easily deduces

the theorem from the previous result. Theorem 2′ gives some information
only if the quantity 1/2 + c log n/

√
εn is smaller than one. So the condition

n ≥ n1(ε) is implicitely contained in Theorem 2′. �
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