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REMARK ON THE Lq − L∞ ESTIMATE OF
THE STOKES SEMIGROUP

IN A 2-DIMENSIONAL EXTERIOR DOMAIN

Wakako Dan and Yoshihiro Shibata

We proved Lq −L∞ type estimates of the Stokes semigroup
in a 2-dimensional exterior domain. Our proof is based on
the investigation of the asymptotic behavior of the resolvent
of the Stokes operator near the origin.

1. Introduction.

Let Ω be an unbounded domain in the 2-dimensional Euclidean space R2

having a compact and smooth boundary ∂Ω contained in the ball Bb0 = {x ∈
R2 | |x| ≤ b0}. In (0,∞) × Ω, we consider the nonstationary Stokes initial
boundary value problem concerning the velocity field u = u(t, x) = t(u1, u2)
and the scalar pressure p = p(t, x):

∂tu−∆u +∇p = 0 and ∇ · u = 0 in (0,∞)× Ω,(NS)

u = 0 on (0,∞)× ∂Ω, u → 0 as |x| → ∞,

u(0, x) = f(x) in Ω,

where ∂t = ∂/∂t, ∆ is the Laplacian in R2, ∇ = (∂1, ∂2) with ∂j = ∂/∂xj is
the gradient, and ∇ · u = divu = ∂1u1 + ∂2u2 is the divergence of u.

We consider this problem in the Lebesgue space Lr(Ω) for 1 < r ≤ ∞ with
norm ‖ · ‖r. Let Jq(Ω) denote the closure in Lq(Ω)× Lq(Ω) of all solenoidal
vector fields with compact support. If we introduce the Stokes operator A,
we can reduce (NS) to the following problem (NS′):

∂tu + Au = 0 in (0,∞)× Ω,(NS′)

u(0, x) = f(x) in Ω.

According to the result of [4], we know that −A generates an analytic semi-
group e−tA in a 2-dimensional exterior domain.

It is important to investigate the decay property of the analytic semigroup
e−tA in terms of various Lp norms. In fact, Kato [12] proved a global in
time existence theorem of solutions to Navier-Stokes equation in Rn by using
so called Lq - Lr estimates of e−tA. This work was extended by Iwashita
[11] to the exterior domain in Rn (n ≥ 3) case. The restriction that n ≥ 3
in [11] essentially came from the continuity of the Stokes resolvent at the
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origin. And therefore, his proof does not seem to be applied directly to
the 2-dimensional case, because the 2-dimensional Stokes resolvent has the
logarithmic singularity at the origin. Borchers and Varnhorn [4] overcame
this difficulty first by using the Stokes potentials to show the Lp boundedness
of Stokes semigroup in 2-dimensional exterior domain.

On the other hand, in our previous study [7], we extended Iwashita’s
result to 2-dimensional exterior domain case in the same spirit as in Iwashita,
which goes back to Shibata [22].

In [7] we obtained the following Lq−Lr estimates of the Stokes semigroup
in a 2-dimensional exterior domain.

Theorem 1.1 (Lq − Lr estimates, cf. [6, 7]).
(1) Let 1 < q ≤ r < ∞. Then the following estimate holds for any

f ∈ Jq(Ω):

(1.1) ‖e−tAf‖r ≤ Cq,rt
−

“
1
q
− 1

r

”
‖f‖q, t > 0.

(2) Let 1 < q ≤ r ≤ 2. Then, for f ∈ Jq(Ω)

(1.2) ‖∇e−tAf‖r ≤ Cq,rt
−

“
1
q
− 1

r

”
− 1

2 ‖f‖q, t > 0.

And let 1 < q ≤ r and 2 < r <∞, then, for f ∈ Jq(Ω)

(1.3) ‖∇e−tAf‖r ≤

Cq,rt
−

“
1
q
− 1

r

”
− 1

2 ‖f‖q, 0 < t < 1,

Cq,rt
− 1

q ‖f‖q, t ≥ 1.

Theorem 1.1 does not include the case that r = ∞. Our purpose in this
study is to obtain the Lq − L∞ estimate for the Stokes semigroup in a 2-
dimensional exterior domain. Our main result of this paper is the following
theorem.

Theorem 1.2 (Lq − L∞ estimate). Let 1 < q <∞. Then for f ∈ Jq(Ω) we
have

(1.4) ‖e−tAf‖∞ ≤ Ct
− 1

q ‖f‖q ∀t > 0.

If we try to obtain the Lq - L∞ estimate by combining the Lq - Lr esti-
mates in Rn and a local energy decay theorem (such combination was used
in [7]), we could only obtain

‖e−tA‖∞ ≤ Ct
− 1

q log t ‖f‖q.

In this paper, to avoid log t we will go back to the representation formula of
solutions to the resolvent equation. And then, by combining several known
results concerning the estimates of Stokes resolvent in Rn and the asymptotic
behavior of Stokes resolvent in the exterior domain near the boundary which
was obtained in [7], we will be able to show Theorem 1.2. We would like to
note that if we apply the known estimations of the Stokes resolvent to the
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representation formula due to Borchers and Varnhorn [4] we can also prove
Theorem 1.2. Therefore, the proof itself is not so surprizing if we know
how to prove the theorem, but we believe that it is worth while giving the
proof of Theorem 1.2, because the result itself is very important. Especially,
applying Theorem 1.2 we can show L∞ estimate of solutions to the Navier-
Stokes equations in the 2-dimensional exterior domain.

Namely, let us consider the Navier-Stokes equation in a 2-dimensional
exterior domain:

∂tu + u · ∇u−∆u +∇p = 0 and ∇ · u = 0 in (0,∞)× Ω,(NL)

u = 0 on (0,∞)× ∂Ω, u(0, x) = f(x) in Ω.

In 1993, for (NL) Kozono and Ogawa [16] proved a unique existence theorem
of global strong solution u(t) with initial data in L2(Ω), which satisfies the
following decay rate:

‖u(t)‖q = o

(
t
−

“
1
2
− 1

q

”)
2 ≤ q <∞, ‖u(t)‖∞ = o

(
t−

1
2

√
log t

)
,(D)

‖∇u(t)‖2 = o
(
t−

1
2

)
as t→∞. They did not use Lq−Lr type estimate of the Stokes semigroup in
the 2-dimensional exterior domain. Their proof was based on the argument
due to Masuda and some sharp interpolation inequalities like Gagriardo-
Nirenberg type. Compared with the Kato’s result [12] in R2 case, the L∞
estimate of solution is worse. In fact, according to Kato [12], applying
Theorems 1.1 and 1.2, we can easily obtain the L∞ estimate as follows:

Theorem 1.3. Let u(t) be the solution obtained in [16] with initial data
f ∈ J2(Ω). Then, we have (D) and the following L∞ estimates:

‖u(t)‖∞ = o
(
t−

1
2

)
.(D∞)

Finally we collect the symbols used throughout this paper. To denote the
special sets, we use the following symbols:

Db = {x ∈ R2 | b− 1 ≤ |x| ≤ b}, Sb = {x ∈ R2 | |x| = b}, Ωb = Ω ∩Bb.

Let Wm
q (D) denote the Sobolev space of order m on a domain D in the Lq

sense and ‖ · ‖m,q,D its usual norm. For simplicity, we use the following
abbreviation:

‖ · ‖q,D = ‖ · ‖0,q,D, ‖ · ‖m,q = ‖ · ‖m,q,Ω, ‖ · ‖q = ‖ · ‖0,q,Ω.

Moreover, we put

Lq,b(D) = {u ∈ Lq(D) | u(x) = 0 ∀x 6∈ Bb},
Wm

q,b(D) = {u ∈Wm
q (D) | u(x) = 0 ∀x 6∈ Bb},

Wm
q,loc(R2) = {u ∈ S ′ | ∂α

xu ∈ Lq(Bb) ∀α, |α| ≤ m and ∀b > 0},
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Wm
q,loc(D) = {u | ∃U ∈Wm

q,loc(R2) such that u = U on D},
Lq,loc(D) = W 0

q,loc(D),

Ẇm
q (D) = the completion of C∞

0 (D) with respect to ‖ · ‖m,q,D,

Ẇm
q,a(D) =

{
u ∈ Ẇm

q (D) |
∫

D
u(x)dx = 0

}
,

Ŵm
q (D) = {u ∈Wm

q,loc(D) | ‖∂m
x u‖q,D <∞},

(u,v)D =
∫

D
u(x) · v(x)dx, (·, ·) = (·, ·)Ω.

To denote function spaces of 2-dimensional column vector–valued functions,
we use the blackboard bold letters. For example, Lq(D) = {u = t(u1, u2) |
uj ∈ Lq(D), j = 1, 2}. Likewise for C∞

0 (D), Lq,b(D), Wm
q,loc(D), Lq,loc(D),

Wm
q (D), Wm

q,b(D), Ẇm
q (D) and Ŵm

q (D). Moreover, we put

Jq(D) = the completion in Lq(D)

of the set {u ∈ C∞
0 (D)|∇ · u = 0 in D},

Gq(D) = {∇p | p ∈ Ŵ 1
q (D)}.

We know that the Banach space Lq(D) admits the Helmholtz decomposition:
Lq(D) = Jq(D) ⊕ Gq(D), where ⊕ denotes the direct sum. Let PD be a
continuous projection from Lq(D) onto Jq(D). The Stokes operator AD is
defined by AD = −PD∆ with dense domain Dq(AD) = Jq(D) ∩ Ẇ1

q(D) ∩
W2

q(D). For simplicity, we write: P = PΩ, A = AΩ. It is known that −A
generates an analytic semigroup e−tA in Jq(Ω) [9, 4, 25]. To denote various
constants we use the same letter C, and by CA,B,··· we denotes the constant
depending on the quantities A, B, · · · . The constants C and CA,B,,··· may
change from line to line. For two Banach spaces X and Y , L(X,Y ) denotes
the set of all bounded linear operators from X into Y and ‖ · ‖L(X,Y ) means
its operator norm. In particular, we put L(X) = L(X,X). A(I,X) denotes
the set of all X-valued analytic functions in I.

2. Preliminaries.

Let us first consider the stationary Stokes equation in R2:

(2.1) (λ−∆)u +∇p = f and ∇ · u = 0 in R2.

When λ ∈ Σ = C \ {λ ≤ 0}, put

Aλf = F−1

[
(1− P (ξ))f̂(ξ)

|ξ|2 + λ

]
(x) = Eλ ∗ f ,
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Πf = F−1

[
ξ · f̂(ξ)
i|ξ|2

]
(x) = p ∗ f

for f ∈ Lq(R2), where i =
√
−1, P (ξ) = (ξjξk/|ξ|2)j,k=1,2,

f̂(ξ) =
∫

R2

e−ix·ξf(x)dx, F−1f(x) =
1

(2π)2

∫
R2

eiξ·xf(ξ)dξ

and

Eλ = Eλ(x) = (Eλ
jk(x))j,k=1,2,

Eλ
jk(x) = (2π)−1

{
δjkK0(

√
λ|x|)− λ−1∂j∂k

(
log |x|+K0(

√
λ|x|)

)}
= (2π)−1

{
δjke1(

√
λ|x|) +

xjxk

|x|2
e2(
√
λ|x|)

}
,(2.2)

p(x) = (p1(x), p2(x)) =
1
2π

(
x1

|x|2
,
x2

|x|2

)
.

Here, Kn (n ∈ N∪{0}) denotes the modified Bessel function of order n and

e1(κ) = K0(κ) + κ−1K1(κ)− κ−2

= −1
2

(
γ +

1
2
− log 2 + log κ

)
+O(κ2) log κ as κ→ 0,

where γ is Euler’s constant,

e2(κ) = −K0(κ)− 2κ−1K1(κ) + 2κ−2

=
1
2

+O(κ2) log κ as κ→ 0.

These are calculated in [4, 25]. Then, for 1 < q <∞ and any integer m ≥ 0,
by the Lq boundedness of Fourier multiplier (cf. [10, Theorem 7.9.5]), we
have
(2.3)
Aλ ∈ A(Σ,L(W2m

q (R2),W2m+2
q (R2))), Π ∈ L(W2m

q (R2), Ŵ 2m+1
q (R2)),

and the pair of u = Aλf and p = Πf solves (2.1) for λ ∈ Σ. When f ∈
Lq,b(R2), we have

(2.4) Aλf = O(|x|−2), Πf = O(|x|−1) as |x| → ∞.

For λ = 0, put

(2.5) A0f = E0 ∗ f for f ∈ W2m
q (R2),

where

E0 = E0(x) = (E0
jk(x))j,k=1,2;
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E0
jk(x) =

1
4π

{
−δjk log |x|+ xjxk

|x|2

}
(cf. [8, IV.2]). Then the pair of u = A0f and p = Πf solves (2.1) for λ = 0.
We have the following facts for 1 < q <∞:

A0 ∈ L(W2m
q (R2), Ŵ2m+2

q (R2));(2.6)

A0f = O(log |x|) as |x| → ∞ for f ∈ Lq,b(R2).

From (2.2) and (2.5), it follows that

(2.7) Eλ(x) = E0(x)−
1
4π

(c+ log
√
λ)I2 +Hλ(x),

where I2 is the 2 × 2 identity matrix, Hλ(x) = O(λ|x|2) log(
√
λ|x|) and

c = γ + 1
2 − log 2.

From the above facts, we have the following lemmas.

Lemma 2.1. Let 1 < q <∞.
(1) For f ∈ Lq(R2), we have

(2.8) ‖Aλf‖∞,R2 ≤ C|λ|
1
q
−1‖f‖q,R2 .

(2) For f ∈ Lq(R2) and supp f ⊂ {y ∈ R2 | |y| ≥ R},

(2.9) ‖∇Aλf‖∞,{|x|≤R−1} ≤ Cd(λ)‖f‖q as |λ| → 0,

where

d(λ) =


|λ|

1
q
− 1

2 q > 2,
| log λ| q = 2,
1 q < 2.

Remark.

(2.10) d(λ)| log λ| ≤ C|λ|
1
q
−1
.

Proof. (2.8) is obtained by Young’s convolution theorem (cf. Proposition
4.1 of [4]). When we estimate ∇Aλf(x) for |x| ≤ R − 1, because of the
support of f we have |x− y| ≥ 1.

∇Aλf(x) =
∫

R2

∇Eλ(x− y)f(y)dy

=
∫
|x−y|≥ 1√

|λ|

+
∫

1≤|x−y|≤ 1√
|λ|

∇Eλ(x− y)f(y)dy ≡ I + II;

|I| ≤
∫
|x−y|≥ 1√

|λ|

C
√
|λ|

(
√
|λ||x− y|)3

|f(y)|dy
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≤ C

|λ|

∫
|x−y|≥ 1√

|λ|

1
|x− y|3q′

dy

 1
q′

‖f‖q

≤ C|λ|
1
q
− 1

2 ‖f‖q;

|II| ≤
∫

1≤|x−y|≤ 1√
|λ|

C

|x− y|
|f(y)|dy

≤

∫
1≤|x−y|≤ 1√

|λ|

1
|x− y|q′

dy

 1
q′

‖f‖q

≤


C|λ|

1
q
− 1

2 ‖f‖q q > 2,
C| log λ|‖f‖q q = 2,
C‖f‖q q < 2,

where 1/q + 1/q′ = 1, which implies (2.9). �

Lemma 2.2.

sup
|x−y|≥1

|Eλ(x− y)| ≤ C| log λ|;(2.11)

sup
|x−y|≥1

|∇Eλ(x− y)| ≤ C;(2.12)

sup
|x−y|≥1

|p(x− y)| ≤ C.(2.13)

Proof. In view of the form of the fundamental solution, we estimate it di-
viding the region into two parts: One is |x − t| ≥ 1/

√
|λ| and the other is

1 ≤ |x−y| ≤ 1/
√
|λ|. In the former case we know that Eλ(x−y) is bounded

from the definition (2.2). In the latter case |Eλ(x− y)| behaves like | log λ|
in view of (2.7), thus we have (2.11). We obtain (2.12) in the same way.
(2.13) is trivial. �

We prepare the following formula.

Lemma 2.3 (Green’s first and second identity). Let u and v be divergence
free vector functions. Then, we have the following two formula:∫

Ω
〈(λ−∆)u +∇p,v〉dx(2.14)

=
∫

∂Ω
〈(−∇u + pI2)n,v〉dS +

∫
Ω
〈λu,v〉dx+

∫
Ω
〈∇u,∇v〉dx,

provided that |∇u||v| = o(|x|−1) and |p||v| = o(|x|−1);∫
Ω
〈(λ−∆)u +∇p,v〉dx−

∫
Ω
〈u, (λ−∆)v −∇q〉dx(2.15)
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=
∫

∂Ω
〈(−∇u + pI2)n,v〉dS −

∫
∂Ω
〈u, (−∇v − qI2)n〉dS,

provided that |∇u||v| = o(|x|−1), |p||v| = o(|x|−1), |u||∇v| = o(|x|−1) and
|u||q| = o(|x|−1).

Here we have put 〈a,b〉 =
∑2

j=1 ajbj for a, b ∈ C2 and 〈A,B〉 =∑2
j,k=1AjkBjk for 2 × 2 matrices A, B. The vector n = n(x) denotes

the exterior normal on ∂Ω and dS is the surface element of ∂Ω.

Let D be a bounded domain in R2 with smooth boundary ∂D and Σ0 =
Σ ∪ {0}.

Lemma 2.4 (Bogovskĭı, cf. [1, 2]). Let 1 < q < ∞ and let m be an in-
teger ≥ 0. Then, there exists a linear bounded operator B : Ẇm

q,a(D) −→
Ẇm+1

q (D) such that

(2.16) ∇ ·B[f ] = f in D, ‖B[f ]‖m+1,q,D ≤ Cq,m,D‖f‖m,q,D.

Let us consider the stationary problem for the Stokes equation with pa-
rameter λ ∈ Σ in Ω:

(λ−∆)u +∇p = f and ∇ · u = 0 in Ω,(S)
u = 0 on ∂Ω.

In terms of the Stokes operator A, (S) is written in the form:

(S′) (λ+ A)u = f .

Giga [9] proved that Σ belongs to the resolvent set ρ(A) of A and for any
γ > 0 and 0 < τ < π

(2.17) ‖(λ+ A)−1‖L(Jq(Ω)) ≤ Cq,δ|λ|−1,

when |λ| ≥ γ, |argλ| ≤ τ for any 0 < τ < π. Borchers and Varnhorn [4]
proved that (2.17) is also valid in a punctured sectorial neighborhood of the
origin by classical potential theory.

Moreover, contracting the domain of (λ+ A)−1 from Jq(Ω) to Jq,b(Ω), we
investigated the asymptotic behavior of (λ + A)−1 as |λ| → 0 (cf. [6, 7]).
Put Στ,ε = {λ ∈ Σ | |argλ| ≤ τ, |λ| ≤ ε}.

Proposition 2.5 (cf. [7, Proposition 3.6] and [6, Corollary 3.8]). Let 1 <
q <∞ and m be any integer ≥ 0. There exist operator valued functions Rλ

and Pλ possessing the following properties:

Rλ ∈ A(Σ,L(W2m
q,b (Ω),W2m+2

q (Ωb)));(1)

Pλ ∈ A(Σ,L(W2m
q,b (Ω),W 2m+1

q (Ωb))),

(2) the pair of u = Rλf and p = Pλf is a solution to (S) and we have

(2.18) Rλ = (λ+ A)−1 on Jq,b(Ω) for λ ∈ Σ.



ESTIMATE OF THE STOKES SEMIGROUP 231

Moreover, for any 0 < τ < π, there exists an ε = ε(τ) such that

(2.19)
(
Rλ

Pλ

)
f =

(
V0

Q0

)
f + (log λ)−1

(
Vλ

Qλ

)
f as λ ∈ Στ,ε,

where V0, Q0 are independent of λ and there exist a constant C which does
not depend on λ such that

‖V0f‖q,2,Ωb
+ ‖Q0f‖q,1,Ωb

≤ C‖f‖q;

‖Vλf‖q,2,Ωb
+ ‖Qλf‖q,1,Ωb

≤ C‖f‖q.

If we put u0 = V0f and q0 = Q0f , then (u0, q0) is a unique solution to the
problem:

−∆u0 +∇q0 = f and ∇ · u0 = 0 in Ω, u0 = 0 on ∂Ω,(2.20)

u0(x) = O(1), q0(x) = O(|x|−1) as |x| → ∞.

Moreover, u0 and q0 satisfy the following behavior:
(2.21)
u0(x) = O(1), ∇u0(x) = O(|x|−2) and q0(x) = O(|x|−2) as |x| → ∞.

Remark. (2.21) follows from the proof of this Proposition 3.6 in [6] or [7].

3. Proof of Theorem 1.2.

In this section, we shall prove Theorem 1.2. A main part of our proof is an
analysis of the resolvent of stationary problem (S) (i.e. (S′)) near λ = 0.

Proof of Theorem 1.2. Since the semigroup e−tA admits the representation:

(3.1) e−tA =
1

2πi

∫
Γ
eλt(λ+ A)−1dλ, t > 0.

Here the curve Γ ⊂ C consists of three curves Γ±1 and Γ0, where

Γ±1 = {λ ∈ C | argλ = ±3π/4, |λ| ≥ ε},
Γ0 = Γ+

2 ∪ Γ3 ∪ Γ−2 ,

Γ±2 = {λ ∈ C | argλ = ±3π/4, 2/t ≤ |λ| ≤ ε},
Γ3 = {λ ∈ C | |λ| = 2/t, −3π/4 ≤ argλ ≤ 3π/4}.

We shall estimate

J±1 (t)f =
1

2πi

∫
Γ±1

eλt(λ+ A)−1fdλ, J0(t)f =
1

2πi

∫
Γ0

eλtRλfdλ.

To obtain

(3.2) ‖J±1 (t)f‖∞ ≤ Cq,εe
− ε

2
√

2
t‖f‖q,

we use the estimate

‖(λ+ A)−1f‖∞ ≤ Cq‖(λ+ A)−1f‖2,q ≤ Cq,ε‖f‖q as λ ∈ Γ±1 .
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To estimate J0(t)f , it is enough to show:

Proposition 3.1. Let 1 < q <∞. Then we have

(3.3) ‖(λ+ A)−1f‖∞ ≤ C|λ|
1
q
−1‖f‖q as |λ| → 0

for any f ∈ Jq(Ω).

In fact, we know the following lemma (see [24, p. 370, Lemma 8]).

Lemma 3.2. Suppose that ω(λ) is analytic function in Σγ,ε and has the
estimate |ω(λ)| ≤ C|λ|r| log λ|s as |λ| → 0. Then as t→∞

(3.4)
∣∣∣∣∫

Γ0

eλtω(λ)dλ
∣∣∣∣ ≤ Ct−r−1(log t)s,

where Γ0 is the same contour as in (3.1).

Combining (3.3) and Lemma 3.2, we easily see that

(3.5) ‖J0(t)f‖∞ ≤ Ct
− 1

q ‖f‖q as t→∞.

Therefore from (3.2) and (3.5) Theorem 1.2 follows. �

Proof of Proposition 3.1. Our proof of (3.3) is based on the result of Propo-
sition 2.5. As stated in the introduction, if we estimate directly the repre-
sentation formula of the Stokes resolvent by potentials which was proved by
Borchers & Varnhorn [4], we can also obtain the estimate (3.3). But now
we shall show (3.3) without using potentials.

Put u = (λ + A)−1f for f ∈ Jq(Ω). In view of the result of Proposition
2.5, we divide Ω into two parts:

Ω = Ωb ∪ {|x| ≥ b}.
At first, we shall prove

(3.6) ‖u‖∞,Ωb
≤ C|λ|

1
q
−1‖f‖q as |λ| → 0 for f ∈ Jq(Ω).

Since the support f is not compact, we shall employ the cut-off technique.
Put

(3.7) v = u− ψAλιf + B[(∇ψ) ·Aλιf ],

where ψ(x) = 0 for |x| ≤ b−4 and = 1 for |x| ≥ b−3, and ιf is the extension
of f to whole R2 by the relation: ιf(x) = f(x) for x ∈ Ω and ιf(x) = 0 for
x ∈ R2 \ Ω. Then v satisfies the following equations with some q:

(λ−∆)v +∇q = Fλ and ∇ · v = 0 in Ω,(3.8)
v = 0 on ∂Ω,

where

Fλ = (∆ψ)Aλιf −∆B[(∇ψ) ·Aλιf ](1− ψ)f + 2(∇ψ · ∇)Aλιf
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− (∇ψ)Πιf + λB[(∇ψ) ·Aλιf ].

By Lemmas 2.1 and 2.4 we have

(3.9) ‖Fλ‖q ≤ C|λ|
1
q
−1‖f‖q.

From Proposition 2.5 and (3.9) it follows that

(3.10) ‖v‖q,2,Ωb
≤ C‖Fλ‖q ≤ C|λ|

1
q
−1‖f‖q.

Therefore by Lemmas 2.1 and 2.4, and (3.10), then

‖u‖∞,Ωb
≤ ‖v‖∞,Ωb

+ ‖ψAλιf‖∞,Ωb
+ ‖B[∇ψ ·Aλιf ]‖∞,Ωb

≤ C(‖v‖q,2,Ωb
+ ‖Aλιf‖∞ + ‖B[∇ψ ·Aλιf ]‖q,2,Ωb

)

≤ C|λ|
1
q
−1‖f‖q.

Thus we have (3.6).
It remains to estimate u(x) for |x| ≥ b:

(3.11) ‖u‖∞,{|x|≥b} ≤ C|λ|
1
q
−1‖f‖q as |λ| → 0 for f ∈ Jq(Ω).

We divide f ∈ Jq(Ω) into two parts:

f = (1− ϕ)f + ϕf ≡ f1 + f2,

where ϕ(x) = 1 for |x| ≤ b− 2 and = 0 for |x| ≥ b− 1. We divide u into two
parts: u = u1 + u2, where for j = 1, 2 with some pressure pj

(λ−∆)uj +∇pj = f j and ∇ · uj = 0 in Ω,(Sj)

uj = 0 on ∂Ω.

At first we shall prove

(3.12) ‖u1‖∞,{|x|≥b} ≤ C|λ|
1
q
−1‖f1‖q as |λ| → 0.

Put

(3.13) v1 = u1 − ψAλιf1 + B[(∇ψ) ·Aλιf1],

where ψ(x) is the same function as (3.7). When |x| ≥ b, u1(x) =
ψ(x)Aλιf1(x)+v1(x) and the estimate of the first term is obtained by (2.8).
Thus we shall estimate v1, which satisfies the following equations with some
pressure q1:

(λ−∆)v1 +∇q1 = F 1
λ +G1

λ and ∇ · v1 = 0 in Ω,

v1 = 0 on ∂Ω,

where

F 1
λ = (∆ψ)Aλιf1 −∆B[(∇ψ) ·Aλιf1];

G1
λ = (1− ψ)f1 + 2(∇ψ · ∇)Aλιf1 − (∇ψ)Πιf1 + λB[(∇ψ) ·Aλιf1].
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By Lemmas 2.1 and 2.4 we have

‖F 1
λ‖q ≤ C|λ|

1
q
−1‖f1‖q;(3.14a)

‖G1
λ‖q ≤ Cd(λ)‖f1‖q.(3.14b)

Put v1 = w + z, where w and z are solutions to the following equations
with some pressures r and s respectively:

(λ−∆)w +∇r = F 1
λ and ∇ ·w = 0 in Ω,(3.15a)

w = 0 on ∂Ω;

(λ−∆)z +∇s = G1
λ and ∇ · z = 0 in Ω,(3.15b)

w = 0 on ∂Ω.

Since F 1
λ and G1

λ have compact support, from Proposition 2.5, (3.14a) and
(3.14b) it follows that

‖w‖q,2,Ωb
+ ‖r‖q,1,Ωb

≤ C‖F 1
λ‖q ≤ C|λ|

1
q
−1‖f1‖q;(3.16a)

‖z‖q,2,Ωb
+ ‖s‖q,1,Ωb

≤ C‖G1
λ‖q ≤ Cd(λ)‖f1‖q.(3.16b)

To investigate w(x) and z(x) for |x| ≥ b, we shall represent w(x) and z(x)
by Green’s second identity. Applying (2.15) with u = w (resp. z), p = r

(resp. s), v = (Eλ
jk(x− ·))j=1,2 and q = pk(x− ·) (k = 1, 2), then we have

w(x) =
∫

Ω
〈F 1

λ (y), Eλ(x− y)〉dy(3.17a)

−
∫

∂Ω
〈(−∇w(y) + r(y)I2)n(y), Eλ(x− y)〉dS

−
∫

∂Ω
〈w(y), (−∇yEλ(x− y) + p(x− y)I2)n(y)〉dS;

z(x) =
∫

Ω
〈G1

λ(y), Eλ(x− y)〉dy(3.17b)

−
∫

∂Ω
〈(−∇z(y) + s(y)I2)n(y), Eλ(x− y)〉dS

−
∫

∂Ω
〈z(y), (−∇yEλ(x− y) + p(x− y)I2)n(y)〉dS.

Since the supports of Fλ and Gλ are included in Db−3 and since |x| ≥ b, we
know that |x − y| ≥ 1. Then we can use Lemma 2.2. In view of (3.14b),
(3.16b), Lemma 2.2 and (2.10), we have

(3.18) ‖z‖∞,{|x|≥b} ≤ C|λ|
1
q
−1‖f1‖q as |λ| → 0.

On the other hand, if we estimated w in the same way as above, we would
obtain the order | log λ||λ|

1
q
−1 which is worse than the expected order |λ|

1
q
−1.

The main idea to overcome this difficulty is integration by parts.
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If we apply integration by parts to the first term of (3.17a), the terms on
the boundary do not appear, because the support of F 1

λ is apart from the
boundary. Thus by Lemmas 2.1, 2.2 and 2.4 we have

sup
|x|≥b

∣∣∣∣∫
Ω
〈F 1

λ (y), Eλ(x− y)〉dy
∣∣∣∣

(3.19)

≤ C sup
|x−y|≥1

|Eλ(x− y)|‖∇Aλιf1‖∞,{|y|≤b−3}

+ C sup
|x−y|≥1

|∇Eλ(x− y)|
(
‖Aλιf1‖∞,{|y|≤b−3} + ‖∇B[(∇ψ) ·Aλιf1]‖q,Ωb−3

)
≤ C|λ|

1
q
−1‖f1‖q.

Next we shall estimate the second term of (3.17a). At first, recall Propo-
sition 2.5 and (3.14a). Then we have

(3.20)
(
w
r

)
=

(
V0

Q0

)
F 1

λ + (log λ)−1

(
Vλ

Qλ

)
F 1

λ as |λ| → 0,

where

‖V0F
1
λ‖q,2,Ωb

+ ‖Q0F
1
λ‖q,1,Ωb

≤ C‖F 1
λ‖q ≤ C|λ|

1
q
−1‖f1‖q;(3.21)

‖VλF
1
λ‖q,2,Ωb

+ ‖QλF
1
λ‖q,1,Ωb

≤ C‖F 1
λ‖q ≤ C|λ|

1
q
−1‖f1‖q.

Put (w0, r0) ≡ (V0F
1
λ , Q0F

1
λ ) and (w1, r1) ≡ (log λ)−1(V1F

1
λ , Q1F

1
λ ). For

(w1, r1), by Lemma 2.1 and (3.21)

sup
|x|≥b

∣∣∣∣∫
∂Ω
〈(−∇w1(y) + r1(y)I2)n(y), Eλ(x− y)〉dS

∣∣∣∣(3.22)

≤ C sup
|x−y|≥1

|Eλ(x− y)|(‖w1‖q,2,Ωb
+ ‖r1‖q,1,Ωb

)

≤ C|λ|
1
q
−1‖f1‖q.

Since the first term of (3.20) is (w0, r0) which dose not have (log λ)−1, we
have to treat it more carefully. We know that {x ∈ Ω | |x| ≥ b} ⊂ {x ∈ Ω |
dist(x, ∂Ω) ≥ 1}. Put

{x ∈ Ω | dist(x, ∂Ω) ≥ 1}

=
{
x ∈ Ω | dist(x, ∂Ω) ≥ 1/

√
|λ|

}
∪

{
x ∈ Ω | 1 ≤ dist(x, ∂Ω) ≤ 1/

√
|λ|

}
≡ A ∪B.

In A, Eλ(x− y) is bounded. Thus from (3.21)

sup
x∈A

∣∣∣∣∫
∂Ω
〈(−∇w0(y) + r0(y)I2)n(y), Eλ(x− y)〉dS

∣∣∣∣(3.23)
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≤ C|λ|
1
q
−1‖f1‖q.

But in B, |Eλ(x−y)| behaves like | log λ|, so that we shall expand Eλ(x−y)
by (2.7) as follows:

Eλ(x− y) = E0(x)−
1
4π

(c+ log
√
λ)I2 +Rλ(x, y),

where Rλ(x, y) = E0(x − y) − E0(x) +Hλ(x − y). Since the term Rλ(x, y)
is bounded in B, by (3.21) we have

sup
x∈B

∣∣∣∣∫
∂Ω
〈(−∇w0(y) + r0(y)I2)n(y), Rλ(x, y)〉dS

∣∣∣∣(3.24)

≤ C|λ|
1
q
−1‖f1‖q.

Thus we should show

sup
x∈B

∣∣∣∣∫
∂Ω
〈(−∇w0(y) + r0(y)I2)n(y), I2〉dS

(
E0(x)−

1
4π

(c+ log
√
λ)I2

)∣∣∣∣
(3.25)

≤ C|λ|
1
q
−1‖f‖q.

At first, we know

(3.26) sup
x∈B

∣∣∣∣E0(x)−
1
4π

(c+ log
√
λ)I2

∣∣∣∣ ≤ C| log λ|.

Next we should note that

(3.27)
∫

∂Ω
〈(−∇w0(y) + r0(y)I2)n(y), I2〉dS =

∫
Ω
〈F 1

λ , I2〉dy.

In fact, from Proposition 2.5 and (2.21) it follows that (w0, r0) satisfies the
following formulas:

−∆w0 +∇r0 = F 1
λ and ∇ ·w0 = 0 in Ω.

w0 = 0 on ∂Ω,(3.28)

w0(x) = O(1), ∇w0(x) = O(|x|−2) and r0(x) = O(|x|−2) as |x| → ∞.

Thus we have (3.27) by integration by parts. If we employ the same argu-
ment as (3.19), we have

(3.29)
∣∣∣∣∫

Ω
〈F 1

λ , I2〉dy
∣∣∣∣ ≤ C‖∇Aλιf1‖∞,{|x|≤b−3} ≤ Cd(λ)‖f1‖q.

From (3.26), (3.27) and (3.29) we have (3.25).
On the last term of (3.17a) by (2.12), (2.13) and (3.21) we have∣∣∣∣∫

∂Ω
〈w(y), (−∇yEλ(x− y) + p(x− y)I2)n(y)〉dS

∣∣∣∣(3.30)

≤ C‖w‖q,2,Ωb
≤ C|λ|

1
q
−1‖f‖q.
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Thus from (3.19), (3.22), (3.23), (3.24), (3.25) and (3.30) it follows that

(3.31) ‖w(x)‖∞,{|x|≥b} ≤ C|λ|
1
q
−1‖f‖q as |λ| → 0.

Thus by (3.13), Lemma 2.1, (3.18) and (3.31) we have

‖u1‖∞,{|x|≥b} ≤ C(‖w‖∞,{|x|≥b} + ‖z‖∞,{|x|≥b} + ‖Aλιf1‖∞)

≤ C|λ|
1
q
−1‖f‖q as |λ| → 0,

which implies (3.12).
For u2 we obtain

(3.32) ‖u2‖∞,{|x|≥b} ≤ C| log λ|‖f2‖ as |λ| → 0.

In fact, if we represent u2 in the same way as in (3.17) we have

u2(x) =
∫

Ω
〈f2(y), Eλ(x− y)〉dy(3.33)

−
∫

∂Ω
〈(−∇u2(y) + p2(y)I2)n(y), Eλ(x− y)〉dS

−
∫

∂Ω
〈u2(y), (−∇yEλ(x− y) + p(x− y)I2)n(y)〉dS.

Since supp f2 ⊂ Ωb−1, by Proposition 2.5 we have

(3.34) ‖u2‖q,2,Ωb
+ ‖p2‖q,1,Ωb

≤ C‖f2‖q.

Therefore by Lemma 2.2 and (3.34) we have (3.32).
Combining (3.6), (3.12) and (3.32), we get (3.3), which completes the

proof of Proposition 3.1. �
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