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We introduce a notion of finite representability of dual Ba-
nach spaces in their subspaces preserving duality (f.d.-r in
short) which arises in a natural way in situations such as the
principle of local reflexivity. We give a characterization for the
f.d.-r. which yields a version of the principle of local reflexiv-
ity, and can be applied to the study of the duality theory for
ultrapowers of operators. For example, we show that the ker-
nel ker(T ∗∗

U) of an ultrapower of the second conjugate of an
operator T is finitely representable in ker(TU), and ker(TU

∗) is
f.d.-r. in ker(T ∗

U). Moreover, we study the duality properties
of three semigroups of operators related with the superreflex-
ivity and the finite representability of c0 and `1 in a Banach
space.

1. Introduction.

We introduce the concept of finite representability preserving duality (f.d.-r.
in short) of a Banach space in its subspaces, and the polar property and the
A-polar property for subspaces of a dual Banach space, where A stands for
a class of operators. Given a subspace Z of a dual space X∗, we show in
Theorem 4 that X∗ is f.d.-.r. in Z if and only if Z has the polar property.
As a consequence, if a subspace Z of a dual space X∗ has the polar property,
then Z is norming on X, but the converse implication is not true.

We give some consequences of the A-polar property in Theorem 7, from
which it follows a version of the principle of local reflexivity: X∗∗ is f.d.-r. in
X [8], in such a way that given an operator T ∈ B(X, Y ) we obtain estimates
for the norm of the restrictions of T ∗∗ to finite dimensional subspaces in
terms of the norm of the corresponding restrictions of T .

In Section 3 we apply these results to the study of the duality theory for
ultrapowers of operators. From Theorem 4 it easily follows that the dual
space XU

∗ of the ultrapower XU of X is f.d.-r. in X∗
U, a result first proved

by Heinrich [5]. Moreover, the general character of our result allows us to
obtain some consequences which do not follow from the principle of local
reflexivity or the results of [5]. Namely, in Theorem 11 we show that for
every T ∈ B(X, Y ) the kernel of the conjugate operator TU

∗ is f.d.-r. in the
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kernel of T ∗U, where TU is an ultrapower of T , and the kernel ker(T ∗∗U) is
finitely representable in ker(TU).

We study the semigroups Wup
+, Uup

+ and Rup
+, introduced in [13, 4].

Denoting any of them by A+, we show that an operator T belongs to A+ if
and only if the second conjugate T ∗∗ belongs to A+. Moreover, TU

∗ ∈ A+

if and only if T ∗U ∈ A+. Observe that TU
∗ is an extension of T ∗U. Finally,

we give a proof of the fact, first proved in [13], that T ∗ ∈ Wup
+ if and only

if ker(TU
∗) = ker(T ∗U).

We use standard notations: X and Y are Banach spaces, BX the closed
unit ball of X, and SX the unit sphere of X. The class of (bounded linear)
operators from X to Y is B(X, Y ), the dual of X is X∗, and given an
operator T ∈ B(X, Y ), we denote by T ∗ : Y ∗ −→ X∗ its conjugate operator,
and by R(T ), ker(T ) and coker(T ) := Y/R(T ) the range, the kernel and the
cokernel of T . Observe that coker(T )∗ can be identified with ker(T ∗).

Given a class of operators A and a pair of Banach spaces X and Y , we
denote by A(X, Y ) the component A∩B(X, Y ) of all operators of A between
X and Y . Also, F⊥ is the annihilator of a subspace F , and N is the set of
all positive integers. We identify X with a subspace of X∗∗. Given a subset
A of X, we denote by 〈A〉 the closure of the span of A in X.

The letters U, V,... will be reserved to denote ultrafilters. An ultrafilter U
on a set I is said to be countably incomplete if there is a countable partition
{In : n ∈ N} of I such that for every positive integer n, we have that In /∈ U.
Every infinite set admits a countably incomplete ultrafilter. Throughout the
paper, we assume that the ultrafilters are countably incomplete.

Given a number 0 < ε < 1, an operator T ∈ B(X, Y ) is said to be an
ε-isometry if (1 + ε)−1 < ‖Tx‖ < 1 + ε for all x ∈ SX , and if the ε-isometry
T is onto, then X is said to be ε-isometric to Y . A Banach space X is
said to be finitely representable in Y if given ε > 0 and a finite dimensional
subspace M of X there exists an ε–isometry T : M −→ Y . We will write X
f.r. in Y to mean that the space X is finitely representable in Y . Given a
number C > 1, two sequences (xn) and (yn) are said to be C-equivalent if
for every sequence (ak) of scalars and every n we have

C−1

∥∥∥∥∥
n∑

k=1

akxk

∥∥∥∥∥ ≤
∥∥∥∥∥

n∑
k=1

akyk

∥∥∥∥∥ ≤ C

∥∥∥∥∥
n∑

k=1

akxk

∥∥∥∥∥ .

2. Finite representability preserving the duality.

Since we need to use ultrapowers, we recall here some definitions and results,
and refer to [5] for more information. Let I be an infinite set. We denote
by `∞(I, X) the Banach space of bounded families (xi)i∈I in X with norm
‖(xi)‖ := sup{‖xi‖ : i ∈ I}.
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Let U be an ultrafilter on I and let NU(X) be the closed subspace of all
families (xi) ∈ `∞(I, X) which converge to 0 following U. The ultrapower of
X following U is defined as follows:

XU :=
`∞(I,X)
NU(X)

.

The element of XU admitting the family (xi) ∈ `∞(I, X) as a representative
is denoted by [xi]i, or simply [xi] if it does not lead to confusion. The norm
of [xi] in XU is given by

‖[xi]‖ = lim
U
‖xi‖.

The ultrapower XU canonically contains an isometric copy of X generated by
the constant families of `∞(I, X). We identify this copy with X. An operator
T ∈ B(X, Y ) admits an extension TU ∈ B(XU, YU) given by TU[xi] := [Txi].

The ultrapower (X∗)U is canonically contained in (XU)∗, but in general
these spaces do not coincide. Actually, given (fi) ∈ `∞(I, X∗), the class
[fi] ∈ X∗

U is identified with the element f ∈ (XU)∗ given by f([xi]) :=
limU fi(xi). Heinrich [5] proved that (X∗)U coincides with (XU)∗ if and
only if X is superreflexive.

In the following definition we introduce a concept of finite representability
which is stronger than the usual one: The finite representability preserving
the duality.

Definition 1. Let Z be a subspace of the dual X∗ of a Banach space X.
We say that X∗ is finitely representable in Z preserving the duality (f.d.-r.
in short) if for every couple of finite dimensional subspaces F of X∗ and G
of X, and for every 0 < ε < 1, there is an ε-isometry L : F −→ Z such that
(Lf)(x) = f(x) for all x ∈ G and all f ∈ F .

The celebrated principle of local reflexivity states that the second dual X∗∗

is f.d.-r. in X. We refer to [10] for an elementary proof of this principle.

A subspace Z of a dual space X∗ is said to be norming if for every x ∈
X we have that ‖x‖ = sup{f(x) : f ∈ BZ}. It easily follows from the
Hahn-Banach theorem that a subspace Z of X∗ is norming if and only if
BZ

σ(X∗,X) = BX∗ (see [1]).
Let X be a Banach space and k, l two positive integers. A linear function

f : Rk −→ Rl, represented by a matrix (aij)l
i=1

k
j=1, induces an operator

fX : X× k· · · ×X −→ X× l· · · ×X

in a natural way fX(xi) := (
∑k

j=1 aijxj). Note that (fX)∗ = f∗X∗ . We
denote by L the class of all these operators.

L := {fX : k, l ∈ N, f : Rk −→ Rl linear, X Banach space}.
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Henceforth we will denote by `k
1(X) and `k

∞(X) the space X× k· · · ×X en-
dowed with the norms ‖(xj)k

j=1‖ :=
∑k

j=1 ‖xj‖ and ‖(xj)k
j=1‖ :=

sup1≤j≤k ‖xj‖, respectively. Given two subsets A ⊂ X and B ⊂ X∗, their
polar sets are defined as follows:

A◦ := {f ∈ X∗ : |f(a)| ≤ 1 for all a ∈ A};
B◦ := {z ∈ X : |f(z)| ≤ 1 for all f ∈ B}.

Note that the sets A◦ and B◦ are closed in the norm topology. If, in addition,
A and B are convex and symmetric then we have (B◦)◦ = B

σ(X∗,X) and
(A◦)◦ = A.

Definition 2. A subspace Z of a dual space X∗ is said to have the polar
property if for every k, l in N and every linear function f : Rk −→ Rl we
have

fX

(
B`k

1(X)

)
=
(
f∗X∗ |−1

`l
∞(Z)

B`k
∞(Z)

)
◦
.

Observe that the inclusion fX

(
B`k

1(X)

)
⊂
(
f∗X∗ |−1

`l
∞(Z)

B`k
∞(Z)

)
◦

is al-

ways true. So, taking into account that the identities T (BX) = (T ∗−1BX∗)◦,
T ∗−1BX∗ = (TBX)◦ hold for every operator T ∈ B(X, Y ), we obtain the
following elementary (but useful) characterization of the polar property.

Proposition 3. A subspace Z of a dual space X∗ has the polar property if
and only if for every linear function f : Rk −→ Rl, we have

f∗X∗
−1
(
B`k

∞(X∗)

)
= f∗X∗ |−1

`l
∞(Z)

(
B`k

∞(Z)

)σ(`l
∞(X∗),`l

1(X))

.

The following result shows that the polar property is a useful tool to study
finite representability.

Theorem 4. A subspace Z of a dual space X∗ has the polar property if and
only if X∗ is finitely representable in Z preserving the duality.

Proof. Assume that X∗ is f.d.-r. in Z and Z does not have the polar prop-
erty. In virtue of Proposition 3, there are L ∈ L(`k

1(X), `l
1(X)), a 0 < θ < 1

and a l-tuple

(fi)l
i=1 ∈ L∗−1B`k

∞(X∗)

∖(
L∗ |−1

`l
∞(Z)

B`k
∞(Z)

)σ(`l
∞(X∗),`l

1(X))

such that L∗((fi)l
i=1) = (gi)k

i=1 ∈ (1− θ)B`k
∞(X∗).

By the Hahn-Banach Theorem, there exists a number 0 < ε < 1 and
a l-tuple (xi)l

i=1 ∈ `l
1(X) such that the σ(`l

∞(X∗), `l
1(X))-neighborhood of

(fi)l
i=1, given by

V :=

{
(hi)l

i=1 :

∣∣∣∣∣
l∑

i=1

(fi − hi)(xi)

∣∣∣∣∣ < ε

}
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verifies

V ∩ L∗ |−1
`l
∞(Z)

B`k
∞(Z)

σ(`l
∞(X∗),`l

1(X))
= ∅.(1)

Since X∗ is f.d.-r. in Z, given δ > 0 such that (1 − θ)(1 + δ) ≤ 1, there
are f̃1, . . . , f̃l in Z such that the operator

G :
〈
f̃i : i = 1, . . . , l

〉
−→ 〈fi : i = 1, . . . , l〉

given by G(f̃i) := fi is a δ-isometry and f̃i(xj) = fi(xj) for all i and all j.
Associated to L∗, there is a matrix of numbers (λij)l

i=1
k
j=1 such that

L∗
(
(hi)l

i=1

)
=

(
l∑

i=1

λijhi

)k

j=1

.

So, every gj is equal to
∑l

i=1 λijfi ∈ (1 − θ)BX∗ . Since G is a δ-isometry,
for every j = 1, . . . , k, we have that g̃j :=

∑l
i=1 λij f̃i ∈ BZ , hence (f̃i)l

i=1 ∈
L∗ |−1

`l
∞(Z)

(
B`k

∞(Z)

)
. On the other hand, the equalities f̃i(xj) = fi(xj) for

all i = 1, . . . , l and all j = 1, . . . , l imply that (f̃i)l
i=1 ∈ V, in contradiction

with (1).

For the converse implication, let E and F be finite dimensional subspaces
of X∗ and X, let us denote n := dim E and k := dim F , and let 0 < ε < 1.

The Auerbach Lemma allows us to take (hj , yj)n
j=1 in E∗ × E such that

‖hj‖ = ‖yj‖ = 1 for all j = 1, . . . , n and hi(yj) = δij . The identity id :
E −→ X∗ is given by id(e) =

∑n
j=1 hj(e)yj . We shall find z1, . . . , zn in Z

for the wished ε-isometry L : E −→ Z to be defined as L(e) :=
∑n

j=1 hj(e)zj .

Let us take 0 < α < min{2/5 , (1− ε)−1 − 1 , ε(1 + n/2)−1} and choose

a basis {xj}k
j=1 in F ,

an α/4-net {ej}N
j=1 in BE , and

vectors {uj}N
j=1 in BX

such that ‖e‖ ≤ (1+α) sup1≤j≤N |e(uj)| for all e ∈ E. The condition α < 2/5
guarantees the existence of the vectors uj . We write

ej =
n∑

s=1

λj
sys, j = 1, . . . , N.
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In order to simplify the notation, we denote

U := `n
1 (X),

M := U ⊕1 `N
1 (X),

W := `n
∞(Z),

V := W ⊕∞ `N
∞(Z).

Let Λ∗ : U∗ −→ M∗ = U∗ ⊕∞ `N
∞(X∗) and S∗ : U∗ −→ Rnk×nN be the

conjugate operators given respectively by

Λ∗((gs)n
s=1) :=

(gs)n
s=1 ,

(
n∑

s=1

λj
sgs

)N

j=1


and

S∗((gs)n
s=1) := (gr(xi), gt(uj)) .

Since Z has the polar property, Proposition 3 gives that

Λ∗−1(BM∗) = Λ∗ |−1
W (BV )

σ(U∗,U)
.

So, the σ(U∗, U)-continuity of S∗ yields

S∗(Λ∗−1(BM∗)) ⊂ S∗
(
Λ∗ |−1

W (BV )
)
.(2)

Observe that R(S∗) = R(S∗ |W ) because W
σ(U∗,U) = U∗. Thus, by

Formula 2, since (yj)n
j=1 ∈ Λ∗−1(BM∗), given any number ε′ such that 0 <

ε′ < α‖Λ∗‖−1, we can find (cj)n
j=1 ∈ Λ∗ |−1

W (BV ) and (bj)n
j=1 ∈ ε′BW so

that
S∗((yj)n

j=1) = S∗((cj)n
j=1) + S∗((bj)n

j=1).
Taking zj := cj + bj for each j = 1, . . . , n in the definition of the operator
L, we obtain (zj)n

j=1 ∈ (1 + α)Λ∗−1(BV ) and S∗((yj)n
j=1) = S∗((zj)n

j=1).
Evidently, the condition (Le)(x) = e(x) holds for all e ∈ E and all x ∈ F .

In order to check that L is an ε-isometry, let e ∈ BE . On the one hand,
we have

‖Le‖ ≥ sup
1≤j≤N

|(Le)(uj)| = sup
1≤j≤N

|e(uj)| ≥ (1 + α)−1‖e‖ ≥ 1− ε.

On the other hand, first note that ‖L‖ ≤ 2n because

‖Le‖ =

∥∥∥∥∥∥
n∑

j=1

hj(e)zj

∥∥∥∥∥∥ ≤
n∑

j=1

(1 + α)‖hj‖ ≤ 2n.

Choose now vectors ek so that ‖e−ek‖ ≤ α/4. Since Λ∗((zj)n
j=1) ∈ (1+α)BV

we have that ‖Lek‖ = ‖
∑n

s=1 λk
szs‖ ≤ 1 + α. Therefore,

‖Le‖ ≤ ‖Lek‖+ ‖L(e− ek)‖ ≤ 1 + ε;

hence L is an ε-isometry. �
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Remark. If we take f = id : R −→ R in Proposition 3, then we obtain
that BX∗ = BZ

σ(X∗,X). Thus, if a subspace Z of a dual space X has the
polar property, then Z is norming on X [1].

The converse implication is not true. There are norming subspaces of
dual Banach spaces which fail the polar property.

For example, let us consider the Rademacher-like sequence (xn) in `∞,
where x1 = (1,−1, 1,−1, 1,−1, . . . ) and for n ∈ N the sequence xn+1 consists
of successive repetitions of the block

1, (2n). . . , 1,−1, (2n). . . ,−1.

Then (xn) is 1-equivalent to the unit vector basis of `1. Now, if we take an
enumeration {An : n ∈ N} of all the finite sequences of numbers in {1,−1},
with card(Am) ≤ card(An) for m < n, and modify each xn in a finite number
of coordinates so that the initial segment of xn coincides with An, then (xn)
continues to be 1-equivalent to the unit vector basis of `1, and it generates
a norming subspace [xn] of `∞ = `∗1.

However, since `∞ is not f.r. in `1, the subspace 〈xn〉 of `∞ does not have
the polar property, by Theorem 4.

The following concept is a generalization of the polar property.

Definition 5. Let A be a class of operators. A subspace Z of X∗ is said to
have the A-polar property if given a Banach Y , an operator T ∈ A(Y, X),
integers p, q ∈ N and r ∈ N ∪ {0}, and a couple of matrices of real numbers
(aij)

q
i=1

p
j=1, (bij)r

i=1
p
j=1, we have that the operator L : `q

1(X) ⊕1 `r
1(Y ) −→

`p
1(X), given by

L((xi)
q
i=1, (yj)r

j=1) :=

(
q∑

i=1

aijxi +
r∑

i=1

bijTyi

)p

j=1

,

satisfies L
(
B`q

1(X)⊕1`r
1(Y )

)
=
(
L∗ |−1

`p
∞(Z)

B`q
∞(Z)⊕∞`r

∞(Y ∗)

)
◦
; equivalently,

L∗−1B`q
∞(X∗)⊕∞`r

∞(Y ∗) = L∗ |−1
`p
∞(Z)

B`q
∞(Z)⊕∞`r

∞(Y ∗)

σ(`p
∞(X∗),`p

1(X))
.

Remark. In the case r = 0, we assume that the matrix (bij)r
i=1

p
j=1 appear-

ing in Definition 5 has no entries. Therefore, the A-polar property implies
the polar property.

The polar property is equivalent to the I-polar property, where I stands
for the class of all identities of Banach spaces.

The difficulty to check the A-polar property depends on the structure of
A. Sometimes it is possible to do it easily, as in the next example which will
play an important role in Proposition 13.
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Example 6. Let Bd := {T ∗ : T ∈ B} denote the class of all conjugate
operators. Then every Banach space X has the Bd-polar property as a
subspace of X∗∗.

In fact, take an operator T ∗ : Y ∗ −→ X∗, and matrices (aij)
q
i=1

p
j=1

,
(bij)

r
i=1

p
j=1

of real numbers. As in Definition 5, we define L : `q
1(X

∗) ⊕1

`r
1(Y

∗) −→ `p
1(X

∗) by

L((fi)
q
i=1, (gj)r

j=1) :=

(
q∑

i=1

aijfi +
r∑

i=1

bijT
∗gi

)p

j=1

.

Let us write U := `q
∞(X) ⊕∞ `r

∞(Y ) and V := `p
∞(X). Clearly, L can be

identified with a conjugate operator S∗ : U∗ −→ V ∗, and consequently, we
have that S∗(BU∗) = (S−1BU )◦; therefore,

S∗(BU∗) =
(
S∗∗ |−1

V B`q
∞(X)⊕∞`r

∞(Y ∗∗)

)
◦
.

We saw in Theorem 4 that a subspace Z of X∗ has the polar property if
and only if X∗ is f.d.-r. in Z. Now we prove a strengthening of the direct
implication.

Theorem 7. Let Z be a subspace of X∗, let E and F be finite dimensional
subspaces of X∗ and X respectively, and let A be a class of operators.

If Z has the A-polar property and T ∈ A(Y, X), then for every 0 < ε < 1
and δ′ > 0 there is an ε-isometry L : E −→ Z such that (Le)(x) = e(x)
for all e ∈ E and all x ∈ F , and satisfies the following additional condition
‖T ∗ |L(E) ‖ ≤ ‖T ∗ |E ‖+ δ′.

Proof. It is similar to the second part of the proof of Theorem 4. We shall
use here the same notations.

Let δ := ‖T‖. Without loss of generality, we suppose that 0 < ε <
2−3δ−1δ′. We choose 0 < α < min{2/5, (1 − ε)−1 − 1, ε(1 + n/2)−1} and
define the operator Λ∗ as in the proof of Theorem 4. Moreover, we write
M̃∗ := M∗ ⊕∞ `N

∞(Y ∗), and define the conjugate operator Λ̃∗ : U∗ −→ M̃∗

by

Λ̃∗ ((gs)n
s=1) :=

Λ∗((gs)n
s=1) ,

(
δ−1T ∗

(
n∑

s=1

λj
sgs

))N

j=1

 .

Write Ṽ := V ⊕∞ `N
∞(Y ∗). Since Z has the A-polar property, we have

Λ̃∗ |−1
W

(
BeV )σ(U∗,U)

= Λ̃∗−1
(
BfM∗

)
.

Thus, (yj)n
j=1 ∈ Λ̃∗−1(BfM∗), and proceeding as in the proof of Theorem 4,

we find
(zj)n

j=1 ∈ (1 + α)Λ̃∗
∣∣−1

W

(
BeV )
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such that S∗((yj)n
j=1) = S∗((zj)n

j=1). Again as in the proof of Theorem 4, the
condition α < min{2/5, (1−ε)−1−1, ε(1+n/2)−1} implies that the operator
L : E −→ Z is an ε-isometry and (Le)(x) = e(x) for e ∈ E and x ∈ F . Let
us check that ‖T ∗ |L(E) ‖ ≤ δ + δ′. Note that (zs)n

s=1 ∈ (1 + α)Λ̃∗−1(BeV )
implies that

‖T ∗(Lej)‖ =

∥∥∥∥∥T ∗
(

n∑
s=1

λj
szs

)∥∥∥∥∥ ≤ δ(1 + α) for j = 1, . . . , N.

Since L is an ε-isometry, if β := 4−1α(1 + ε) + 2ε, then {Lej}N
j=1 is a β-net

in (1 + ε)BL(E), and taking wj := (1 + ε)−1Lej we obtain a (1 + ε)−1β-
net {wj}N

j=1 in BL(E). Let w ∈ BL(E) and pick wj such that ‖w − wj‖ ≤
(1 + ε)−1β. We have

‖T ∗w‖ ≤ ‖T ∗(w − wj)‖+ ‖T ∗wj‖ ≤
β

1 + ε
‖T ∗‖+

δ(1 + α)
1 + ε

.

Since α < {2/5, 2−2δ−1δ′} and ε < 2−3δ−1δ′, we conclude ‖T ∗w‖ ≤ δ +
δ′. �

As a consequence of Theorem 7, we derive a version of the principle of
local reflexivity [8].

Corollary 8. Given an operator T ∈ B(X, Y ), a pair of finite dimensional
subspaces E ⊂ X∗∗ and F ⊂ X∗, and numbers 0 < ε < 1 and δ > 0, there
exists an ε-isometry L : E −→ X such that we have f(Le) = e(f) for f ∈ F
and e ∈ E, and ‖T |L(E) ‖ < ‖T ∗∗ |E ‖+ δ.

Proof. We have seen in Example 6 that X has the Bd-polar property as
a subspace of X∗∗. Thus, X plays here the role of Z in Theorem 7 as a
subspace of the dual space (X∗)∗, and the result holds. �

3. Applications.

Here we apply the previous results to study the duality theory for ultrapow-
ers of operators and some semigroups of operators related with the super-
reflexivity and the finite representability of c0 and `1 in a Banach space.

First, we show in Theorem 10 that for every operator T , the kernel
ker(T ∗∗U) is f.r. in ker(TU). In order to do that, we need the following
technical Lemma.

Lemma 9. Given an ultrafilter U on I and a sequence (Bn) ⊂ U such that
Bn+1 ⊂ Bn for every n, there is a sequence (Cn) ⊂ U verifying Cn+1 ⊂
Cn ⊂ Bn, Cn \ Cn+1 6= ∅ for every n ∈ N, and

⋂∞
n=1 Cn = ∅.
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Proof. Let {In : n ∈ N} be a partition of I such that ∅ 6= In /∈ U for every
n ∈ N. We build the sets Cn inductively. We take C1 := B1. Assume we
already have the sets (Cn)k

n=1 ⊂ U verifying Cn+1 ⊂ Cn ⊂ Bn and Cn+1 6=
Cn for n = 1, . . . , k− 1. Let us denote nk := min {n ≥ k : In ∩ Ck 6= ∅} and

Ck+1 :=
∞⋃

n=nk+1

(In ∩Bk+1).

It is easy to check that the sequence (Cn)n satisfies the desired conditions.
�

Theorem 10. Let T ∈ B(X, Y ) be an operator and let U be an ultrafilter
on I. Then the kernel ker(T ∗∗U) is finitely representable in ker(TU).

Proof. Let E be a finite dimensional subspace of ker(T ∗∗U) and let {Fk =
[F i

k]i : k = 1, . . . , n} be a basis of E. Let us denote Ei := 〈F i
k : k = 1, . . . , n〉

and let Ti : E −→ Ei be the operator given by Ti(Fk) := F i
k.

Taking into account that limU(i) T ∗∗F i
k = 0, a result of Heinrich [5, Propo-

sition 6.1] allows us to find, for each positive integer m, a set Jm ∈ U such
that for every i ∈ Jm, the operators Ti are 1/m-isometries and ‖T ∗∗F i

k‖ <
1/m for k = 1, . . . , n. By Lemma 9, we can take a decreasing sequence
(Cn)n in U such that ∩∞n=1Cn = ∅, Cn 6= Cn+1 and Cn ⊂ Jn for all n ∈ N;
add the set C0 := I to this sequence. For every i ∈ I, we denote by mi the
unique element of N ∪ {0} so that i ∈ Cmi \ Cmi+1.

For every i ∈ C1, since i ∈ Cmi \ Cmi+1, by Corollary 8 we can choose
xi

1, . . . , xi
n in X such that the operator Li : Ei −→ Fi := 〈xi

1, . . . , xi
n〉 given

by Li(F i
k) := xi

k is a 1/mi-isometry and ‖Txi
k‖ ≤ 2/mi for k = 1, . . . , n.

Define xk := [xi
k] and write F := 〈xk : k = 1, . . . , n〉. Thus we have that

every xk belongs to ker(TU) and F is isometric to E. In fact, on the one
hand Cm = {i : mi ≥ m} ∈ U for each m ∈ N. So ‖Txi

k‖ ≤ 2/m for all
i ∈ Cm. Therefore limU(i) Txi

k = 0 and xk ∈ ker(TU) for k = 1, . . . , n.
On the other hand, let

∑n
k=1 λkFk be a norm-one element in E. Let M

be an upper bound for {
∑n

k=1 λkF
i
k : i ∈ I}. Take any m ∈ N. For every

i ∈ {i : mi ≥ m}, we have that Li is a 1/m-isometry; thus

Cm ⊂

{
i :

∣∣∣∣∣
∥∥∥∥∥

n∑
k=1

λkF
i
k

∥∥∥∥∥−
∥∥∥∥∥

n∑
k=1

λkx
i
k

∥∥∥∥∥
∣∣∣∣∣ ≤ M/m

}
∈ U.

In this way we obtain that limU(i)

∥∥∑n
k=1 λkF

i
k

∥∥− ∥∥∑n
k=1 λkx

i
k

∥∥ = 0. Since∥∥∥∥∥
n∑

k=1

λkxk

∥∥∥∥∥ = lim
U(i)

∥∥∥∥∥
n∑

k=1

λkx
i
k

∥∥∥∥∥ and lim
U(i)

∥∥∥∥∥
n∑

k=1

λkF
i
k

∥∥∥∥∥ =

∥∥∥∥∥
n∑

k=1

Fk

∥∥∥∥∥ ,

we get ‖
∑n

k=1 λkxk‖ = ‖
∑n

k=1 Fk‖. Hence, E is isometric to F and therefore
ker(T ∗∗U) is f.r. in ker(TU). �
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A second application of Theorem 4: Heinrich [5] showed that XU
∗ is f.d.-r.

in X∗
U. This is a consequence of our Theorem 11 below, applied to the zero

operator. But our Theorem 4 is stronger than the result in [5]. Indeed, it
will allow us to prove in Theorem 11 that ker(TU

∗) is f.d.-r. in ker(T ∗U) for
any operator T ∈ B(X, Y ). Note that ker(TU

∗) can be identified with the
dual space coker(TU)∗, but is not necessarily the second dual of any space.
Moreover, in general coker(TU) is not an ultrapower [3]. Thus neither the
principle of local reflexivity nor the result of Heinrich are applicable.

Theorem 11. Let T : X −→ Y be an operator and U and ultrafilter on I.
Then the kernel ker(TU

∗) is finitely representable in ker(T ∗U) preserving the
duality.

Proof. By Theorem 4, it is enough to prove that ker(T ∗U) has the polar
property as a subspace of ker(TU

∗). We identify isometrically the kernel
ker(TU

∗) with the dual of the cokernel coker(TU). Along this proof, when
we say that an operator A : U1 −→ U2 is identified with B : V1 −→ V2 we
mean that there are isometries onto J1 : U1 −→ V1 and J2 : U2 −→ V2 so
that A = J−1

2 BJ1.
Pick a linear function f : Rk −→ Rl and write

fcoker(TU) : `k
1(coker(TU) ) −→ `l

1(coker(TU) ).

We only have to check the inclusion(
(fcoker(TU))

∗ |−1
`l
∞(ker(T ∗U))

B`k
∞(ker(T ∗U))

)
◦
⊂ fcoker(TU)B`k

1(coker(TU)).(3)

The proof is divided into three cases. The main one is the case k = l.
The cases k < l and k > l will be obtained as a consequence of the main
case.

Case a) k = l. We consider the operator T k : `k
1(X) −→ `k

1(Y ), defined by
T k((xj)k

j=1) := (Txj)k
j=1, and write U := T k, V := `k

1(X) and W := `k
1(Y ).

We can identify UU : VU −→ WU with

(TU)k : `k
1(XU) −→ `k

1(YU).

The operator ϕ : WU −→ `k
1(coker(TU)) which sends [(yj

i )
k
j=1]i to ([yj

i ]i +
R(TU))k

j=1 is surjective, ker(ϕ) = R(UU) and it is easy to check that the
induced operator

ϕ̃ : coker(UU) −→ `k
1(coker(TU))

is an isometry. Now, since (fY )U : WU −→ WU satisfies (fY )U(R(UU)) ⊂
R(UU), it induces an operator L : coker(UU) → coker(UU) given by

L
(
[yi] + R(UU)

)
:= (fY )U([yi]) + R(UU).

The operator L is identified with

fcoker(TU) : `k
1(coker(TU)) −→ `k

1(coker(TU))
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because L = ϕ̃−1fcoker(TU)ϕ̃. Since `k
1(coker(TU))∗ = `k

∞(ker(TU
∗)), we can

identify (
fcoker(TU)

)∗ : `k
∞(ker(TU

∗)) → `k
∞(ker(TU

∗))

with L∗ : ker(UU
∗) −→ ker(UU

∗). Under the previous identification we have
that ker(U∗

U) = `k
∞(ker(T ∗U)). So the result that we want to prove (For-

mula 3) is equivalent to the inclusion(
L∗ |−1

ker(U∗U) Bker(U∗U)

)
◦
⊂ LBcoker(UU).

Suppose that this inclusion is false. Then there exists h = [hi] ∈ WU such
that

h + R(UU) ∈ (L∗−1Bker(U∗U))◦ \ LBcoker(UU).

We can assume that ‖hi‖ = K > 0 for all i. Write S := fY , A := S(BW )
and A := SU(BWU

) = {[ai] : ai ∈ A, i ∈ I}. Take ε > 0 such that

dist (h−A, R(UU)) > ε > 0.

Thus, for every m ∈ N, we have dist (h−A, mUUBVU
) > ε, hence

Dm := {i ∈ I : dist (hi −A,mUBV ) > ε} ∈ U.

By Lemma 9 we can take a sequence (Cn)n in U such that Cn+1 ⊂ Cn ⊂ Dn

and Cn 6= Cn+1 for every n ∈ N, and ∩∞n=1Cn = ∅.
For every i ∈ I, let mi be the unique positive integer for which i ∈

Cmi \ Cmi+1, and denote Ki := hi − A − miUBV . Since Ki is convex and
Ki ∩ εBW = ∅, by the Hahn-Banach Theorem there is a vector fi ∈ SW ∗

such that inf fi(Ki) ≥ ε. Hence

|fi(Ux)| ≤ K + ‖S‖+ ε

mi
for all x ∈ BV ;

equivalently, ‖U∗fi‖ ≤ mi
−1(K +‖S‖+ε). Since the chain (Cn)n has empty

intersection we have limU mi
−1 = 0, and therefore f := [fi] ∈ ker(U∗

U).
On the other hand, inf fi(Ki) ≥ ε implies inf fi(hi −A) ≥ ε. Thus we get

0 < ε ≤ εi := fi(hi) ≤ K for all i and |fi(a)| ≤ εi − ε for all a ∈ A. Hence,
letting gi := ε−1

i fi, we obtain that

α := sup[gi](LBcoker(UU)) ≤ 1− εK−1 < 1 = [gi]([hi]).

Take yi := α−1gi. We have that y := [yi] = α−1(limU ε−1
i )[fi] ∈ ker(U∗

U)
and

supy(LBcoker(UU)) ≤ 1 < y(h);

thus y ∈ L∗−1Bker(U∗U) and h + R(UU) /∈ (L∗−1Bker(U∗U))◦ \ LBcoker(UU), a
contradiction.

For the cases b) and c), we adopt the notations Z := coker(TU) and
H := ker(T ∗U), so that Z∗ = ker(TU

∗).
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Case b) k < l. We consider the operator L̃ : `k
1(Z) ⊕1 `l−k

1 (Z) −→ `l
1(Z),

defined by L̃(a, b) := La. By case a) we have

L̃B`k
1(Z)⊕1`l−k

1 (Z) =
(

L̃∗
∣∣∣−1

`l
∞(H)

B`k
∞(H)⊕∞`l−k

∞ (H)

)
◦
.

Since LB`k
1(Z) = L̃B`k

1(Z)⊕1`l−k
1 (Z) and

L∗
∣∣−1

`l
∞(H)

(
B`k

∞(H)

)
= L̃∗

∣∣∣−1

`l
∞(H)

(
B`k

∞(H)⊕∞`l−k
∞ (H)

)
,

we have that LB`k
1(Z) =

(
L∗ |−1

`l
∞(H)

B`k
∞(H)

)
◦
.

Case c) k > l. We consider the operator L̃ : `k
1(Z) −→ `l

1(Z) ⊕1 `k−l
1 (Z),

defined by L̃(a) := (La, 0). By case a) we have

L̃B`k
1(Z) =

(
L̃∗
∣∣∣−1

`l
∞(H)⊕∞`k−l

∞ (H)
B`k

∞(H)

)
◦
.

The definition of L̃ yields L
(
B`k

1(Z)

)
× 0`k−l

1 (Z) = L̃
(
B`k

1(Z)

)
and

L∗
∣∣−1

`l
∞(H)

(
B`k

∞(H)

)
× `k−l

∞ (Z∗) = L̃∗
∣∣∣−1

`l
∞(H)⊕∞`k−l

∞ (H)

(
B`k

∞(H)

)
.

So we obtain(
L∗
∣∣−1

`l
∞(H)

(
B`k

∞(H)

))
◦
× 0`k−l

1 (Z) =
(

L̃∗
∣∣∣−1

`l
∞(H)⊕∞`k−l

∞ (H)

(
B`k

∞(H)

))
◦
.

Consequently, we get LB`k
1(Z) =

(
L∗ |−1

`l
∞(H)

(
B`k

∞(H)

))
◦
. �

Corollary 12 ([9]). Let T : X −→ Y be an operator and let U be an ultrafil-
ter on I. Then ker(T ∗U) is a norming subspace of ker(TU

∗) = (coker(TU))∗.

A class of operators A is said to be a semigroup if the composition of two
operators of A belongs to A and if for every Banach space X, the identity
operator IX on X belongs to A. As well-known examples of semigroups,
we mention the classical semi-Fredholm operators, and the tauberian oper-
ators, introduced by Kalton and Wilansky [7]. An operator T ∈ B(X, Y ) is
tauberian if T ∗∗(X∗∗ \X) ⊂ Y ∗∗ \ Y .

Now we apply the previous results to study the dual properties of the
semigroups Wup

+, introduced in [12], and Uup
+ and Rup

+, introduced in
[4]. Recall that SX = {x ∈ X : ‖x‖ = 1}.

An operator T ∈ B(X, Y ) belongs to Wup
+ if for every 0 < r < 1 there

exists n ∈ N for which there are no finite sets {x1, . . . , xn} ⊂ SX and
{f1, . . . , fn} ⊂ SX∗ for which fi(xj) > r for i ≤ j, fi(xj) = 0 for j < i and
‖Txk‖ < 1/k, for k = 1, . . . , n.
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An operator T ∈ B(X, Y ) belongs to Uup
+ if for every C ≥ 1 there are

δ > 0 and n ∈ N for which there is no finite set {x1, . . . , xn} ⊂ SX which is
C-equivalent to the unit basis of `n

∞ and satisfies ‖Txk‖ < δ for k = 1, . . . , n.

An operator T ∈ B(X, Y ) belongs to Rup
+ if for every C ≥ 1 there are

δ > 0 and n ∈ N for which there is no finite set {x1, . . . , xn} ⊂ SX which is
C-equivalent to the unit basis of `n

1 and satisfies ‖Txk‖ < δ for k = 1, . . . , n.

Note that T ∈ Wup
+ if and only if all the ultrapowers TU are tauberian

operators [2]. Tacon [13] proved that T ∈ Wup
+ implies T ∗∗ ∈ Wup

+.
Nevertheless, his proof does not seem to be applicable to the semigroups
Uup

+ and Rup
+. Next we show that Theorem 10 allows us to give a unified

proof of the result for the three semigroups Wup
+, Rup

+ and Uup
+.

Proposition 13. Let A+ be any of the semigroups Wup
+, Rup

+ or Uup
+

and let T ∈ B(X, Y ). Then T ∈ A+ if and only if T ∗∗ ∈ A+.

Proof. Let U be an ultrafilter. It was proved in [2] (for Wup
+) and [4] (for

Rup
+ and Uup

+) that T belongs to A+ if and only if the zero operator
0ker(TU) on ker(TU) belongs to A+. In any of the three cases, the condition
0X ∈ A+ defines a superproperty; i.e., Y f.r. in X and 0X ∈ A+ implies
0Y ∈ A+.

By Theorem 10, ker(T ∗∗U) is f.r. in ker(TU). Since ker(T ∗∗U) contains
ker(TU), we conclude that T ∈ A+ if and only if T ∗∗ ∈ A+. �

Proposition 14. Let A+ be any of the semigroups Wup
+, Rup

+ or Uup
+

and let T ∈ B(X, Y ). Then TU
∗ ∈ A+ if and only if T ∗U ∈ A+.

Proof. The direct implication is clear since TU
∗ is an extension of T ∗U. For

the converse implication, observe that Theorem 11 says that ker(TU
∗) is

finitely representable in ker(T ∗U). Now, it is enough to observe that T ∗ ∈
Wup

+ if and only if ker(T ∗U) is superreflexive [2], and T ∗ belongs to Rup
+

(resp. Uup
+) if and only if `1 (resp. c0) is not finitely representable in

ker(T ∗U) [4]. �

The following result was proved by Tacon using nonstandard analysis.
Here we give a more transparent proof.

Proposition 15 ([13, Theorem 3]). Given an operator T ∈ B(X, Y ), we
have T ∗ ∈ Wup

+ if and only if ker(T ∗U) = ker(TU
∗).

Proof. By Corollary 12 we have that ker(T ∗U) is w∗-dense in ker(TU
∗). More-

over, it is shown in [2, Theorem 9] that T ∗ belongs to Wup
+ if and only if

ker(T ∗U) is reflexive. Hence the direct implication is clear.
Conversely, assume that T ∗ /∈ Wup

+; equivalently, ker(T ∗U) is not reflex-
ive. If ker(TU

∗) = ker(T ∗U), since ker(TU
∗) = coker(TU)∗, the triangular
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arrays in non-reflexive spaces, discovered in [6] and [11], give normalized
sequences (yn + R(TU))n in coker(TU) and (fn) in ker(T ∗U), and 0 < ε < 1
so that

fk(yl) =

{
> ε, if 1 ≤ k ≤ l < ∞
= 0, if 1 ≤ l < k < ∞.

(4)

Write yn = [yi
n]i and fn = [f i

n]i. Let g = [gi] be a w∗-cluster point of
{fn : n ∈ N} in ker(T ∗U). Formula 4 yields g(yn) = 0 for all n ∈ N, and
allows us to build the sequence (An)n of elements of U given inductively by

A1 := {i ∈ I : gi(yi
1) < ε/2, f i

1(y
i
1) > ε} ∈ U

An := An−1 ∩ {i ∈ I : gi(yi
n) < ε/2, f i

k(y
i
n) > ε, 1 ≤ k ≤ n} ∈ U.

Since (An)n is decreasing, by Lemma 9 we find another decreasing sequence
(Cn)n ⊂ U such that Cn ⊂ An and Cn \ Cn+1 6= ∅ for all n ∈ N, and⋂∞

n=1 Cn = ∅. Thus, for every k ∈ N, we take si := yi
k for every i ∈ Ck\Ck+1,

and define s := [si].
On the one hand, we have that g(s) ≥ ε. Indeed, let k be a positive

integer. For every l > k and every i ∈ Cl \Cl+1 we have f i
k(si) = f i

k(y
i
l) ≥ ε.

Since
⋃∞

l=k (Cl \ Cl+1) ∈ U, we have [f i
k]([si]) ≥ ε; therefore, fk(s) ≥ ε for

each k ∈ N. Besides that, as g is a w∗-cluster point of {fn : n ∈ N}, we have
g(s) ≥ ε.

On the other hand, for every n ∈ N and i ∈ Cn \Cn+1 ⊂ An we have that
gi(si) = gi(yi

n) < ε/2. Thus
⋃∞

n=1(Cn\Cn+1) ∈ U leads to g(s) = [gi]([si]) ≤
ε/2, and we get a contradiction. �
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