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A basic sequence in a Banach space is called wide-(s) if it
is bounded and dominates the summing basis. (Wide-(s) se-
quences were originally introduced by I. Singer, who termed
them P ∗-sequences.) These sequences and their quantified
versions, termed λ-wide-(s) sequences, are used to character-
ize various classes of operators between Banach spaces, such
as the weakly compact, Tauberian, and super-Tauberian oper-
ators, as well as a new intermediate class introduced here, the
strongly Tauberian operators. This is a nonlocalizable class
which nevertheless forms an open semigroup and is closed un-
der natural operations such as taking double adjoints. It is
proved for example that an operator is non-weakly compact
iff for every ε > 0, it maps some (1+ε)-wide-(s)-sequence to a
wide-(s) sequence. This yields the quantitative triangular ar-
rays result characterizing reflexivity, due to R.C. James. It is
shown that an operator is non-Tauberian (resp. non-strongly
Tauberian) iff for every ε > 0, it maps some (1 + ε)-wide-(s)
sequence into a norm-convergent sequence (resp. a sequence
whose image has diameter less than ε). This is applied to
obtain a direct “finite” characterization of super-Tauberian
operators, as well as the following characterization, which
strengthens a recent result of M. González and A. Mart́ınez-
Abejón: An operator is non-super-Tauberian iff there are for
every ε > 0, finite (1 + ε)-wide-(s) sequences of arbitrary
length whose images have norm at most ε.

1. Introduction.

A semi-normalized basic sequence (bj) in a Banach space is called wide-(s)
if it dominates the summing basis; i.e.,

∑
cj converges whenever

∑
cjbj

converges. Our main objective here is to show that wide-(s) sequences and
particularly their quantified versions, λ-wide-(s) sequences, provide a uni-
fied approach for dealing with certain important classes of operators between
Banach spaces. We first show by way of motivation that several qualitative
concepts may be captured by wide-(s) sequences. For example, we show in

311

http://pjm.math.berkeley.edu/pjm
http://dx.doi.org/10.2140/pjm.1999.189-2


312 H. ROSENTHAL

Proposition 2 that an operator between Banach spaces is non-weakly com-
pact iff it maps some wide-(s) sequence into a wide-(s) sequence. Similarly,
we show in Theorem 5 that an operator is non-Tauberian iff it maps some
wide-(s) sequence into a norm convergent sequence. In Corollary 6 we ob-
tain that an operator is Tauberian iff it maps some subsequence of a given
wide-(s) sequence, into a wide-(s) sequence. (Recall that T : X → Y is
Tauberian if T ∗∗(X∗∗ ∼ X) ⊂ Y ∗∗ ∼ Y .) Theorem 5 may also be deduced
from the results due to R. Neidinger and the author in [NR], and standard
facts. However we give here a self-contained treatment. (See also [KW],
[NR] for background on Tauberian operators.)

After circulating the first version of this paper, we learned that wide-(s)
sequences were originally introduced by I. Singer, who termed them “P ∗-
sequences” [S1]. Some of the pleasant permanence properties discovered
by Singer, are as follows: A semi-normalized sequence (xj) is wide-(s) iff
its difference sequence (xj+1 − xj) is a basic sequence. Moreover if (xj) is
a semi-normalized basis for a Banach space X and (x∗j ) is its sequence of
biorthogonal functionals, then (xj) is wide-(s) iff (

∑n
j=1 x∗j )∞n=1 is a wide-(s)

sequence in X∗ (cf. Theorem 9.2, page 311 of [S2]; as noted in our ear-
lier version, these equivalences also follow from certain arguments in [R3]).
Of course convex block bases of wide-(s) sequences are also wide-(s) (see
Proposition 3 below).

The main point of our work here is to quantify the concept of a wide-(s)
sequence, which then yields “localizations” of the above qualitative results.
These local results apply to finite-dimensional spaces in particular, whereas
the qualitative results are only infinite-dimensional in content. The concept
of a λ-wide-(s) sequence is crystallized in Definition 3, and our quantitative
development begins after this.

One motivation for this quantitative concept is given in Corollary 17,
where we prove that suitable perturbations of wide-(s) sequences have wide-
s subsequences. In fact our argument yields that given (xj) a wide-(s)
sequence in a Banach space X, there exists an ε > 0 so that if (yj) is any
bounded perturbation of (xj) so that all w∗-cluster points of (xj − yj) in
X∗∗ have norm at most ε, then (yj) has a wide-(s) subsequence. We also
obtain that ε may be chosen depending only on the wide-(s) constant, λ, of
(xj). It follows immediately from this definition that if (bj) is a λ-wide-(s)
sequence in X, then ‖bj‖ ≤ λ for all j and there exists a sequence (fj) in
X∗ with ‖fj‖ ≤ λ for all j so that

fi(bj) = 1 all 1 ≤ i ≤ j < ∞
fi(bj) = 0 all 1 ≤ j < i < ∞ .

(We call sequences (bj) satisfying this condition triangular , because the ma-
trix (fi(bj)) is obviously upper triangular consisting of 1’s above and on
the natural diagonal, zeros below.) In Theorem 11 we prove that every
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non-reflexive Banach space has a (1 + ε)-wide-(s) sequence for every ε > 0;
this immediately yields the remarkable quantitative information on triangu-
lar arrays in non-reflexive spaces discovered by R.C. James [J1], [J2] and
D.P. Milman–V.D. Milman [MM] (cf. the remark following the statement
of Theorem 11).

Our proof of this result involves the rather technical result Theorem 12,
and some standard facts on basic-sequence selections, formulated in [R3]
and repeated here for completeness as Lemmas 13 and 14. These facts are
used to deduce the rather surprising result that given ε > 0 and any bounded
non-relatively compact sequence (xj) in a Banach space X, there is a subse-
quence (x′j) of (xj) and an x in X with (bj) a (2 + ε)-basic sequence, where
bj = x′j−x for all j. Moreover, if (xj) is non-relatively weakly compact, there
is a c > 0 and a convex block basis (uj) of (bj) so that (cuj) is (1 + ε)-wide-
(s) (Corollary 15). (For an interesting recent result on uniformity in the
biorthogonal constant of subsequence of uniformly separated sequences, see
[HKPTZ].) Corollary 15 yields also a quantitative refinement of both The-
orem 11 and Proposition 2a: Given ε > 0, a non-weakly compact operator
maps some (1+ε)-wide-(s) sequence into a wide-(s) sequence (Theorem 11′,
given in the second remark following the proof of Corollary 15).

Our definition of λ-wide-(s) sequences applies to finite sequences as well.
As mentioned above, this leads to localizations of our results. For exam-
ple, Proposition 19 yields that an operator is non-super weakly compact
iff there is a λ ≥ 1 so that for all n, it maps some λ-wide-(s) sequence of
length n into a λ-wide-(s) sequence. Applying a quantitative refinement of
Theorem 5 (called Theorem 5′ and formulated in the first remark following
the proof of Corollary 15), we obtain that a Banach space X is non-super
reflexive iff it contains (1 + ε)-wide-(s) sequences of arbitrarily large length,
for every ε > 0. In Proposition 20, we localize Theorem 5 to the setting of
super Tauberian operators. Our results here are motivated by recent work
of M. González and A. Mart́ınez-Abejón [GM]. In fact, Proposition 20
may be deduced from results in [GM] and our localization result, Propo-
sition 18, whose proof does not require ultraproduct techniques. However
using ultraproducts, we obtain certain of the results in [GM] by localizing
our Theorem 5′ and Proposition 3. Thus we obtain an alternative route to
the result obtained in [GM]: If T is a given operator, then if T is non-super
Tauberian, and TU is an ultrapower of T , then ker TU is non-reflexive. We
then obtain the following strengthening of Proposition 12 of [GM]: An op-
erator T between Banach spaces is non-super-Tauberian iff for all ε > 0,
all n, T maps some (1 + ε)-wide-(s) sequence of length n into a sequence
whose elements have norm at most ε. (See the remark following the proof
of Proposition 20.) Our Proposition 20 also yields the immediate Corollary
that the super-Tauberian operators in L(X, Y ) are an open set. (This result
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is due to D.G. Tacon [T]; the deduction of this result in [GM] motivates
our formulation of Proposition 20.)

Next we introduce a class of operators intermediate between Tauberian
and super Tauberian; the strongly Tauberian operators. These are opera-
tors T ∈ L(X, Y ) whose natural induced map T̃ : X∗∗/X → Y ∗∗/Y is an
isomorphism. It is immediate that the strongly Tauberian operators are an
open subset of L(X, Y ) and of course have the semigroup property. We give
several equivalences in Theorem 21, obtaining for example, that T is strongly
Tauberian iff T ∗∗ is strongly Tauberian iff T maps some subsequence of a
given λ-wide-(s) sequence into a β-wide-(s) sequence, where β depends only
on λ. The proof also yields that T is non-strongly Tauberian iff given ε > 0,
T maps some (1+ε)-wide-(s) sequence into a sequence of diameter less than
ε (Proposition 22). Of course this yields immediately, via Proposition 20,
that every super Tauberian operator is strongly Tauberian. We then use
these discoveries about strongly Tauberian operators in an essential way, to
localize Corollary 6. Thus we obtain in Corollary 25 that T is super Taube-
rian iff for all k, every λ-wide-(s) sequence of length n has a subsequence of
length k mapped to a β-wide-(s) sequence by T , where β depends only on
λ, n only on λ and k.

We conclude with a rather delicate localization of the infinite perturba-
tion result given in Corollary 17. This result, Proposition 26, apparently
requires ultraproduct techniques for its proof. For standard facts about ul-
traproducts in Banach spaces, which we use without explicit reference, see
[H].

§2.

We first summarize some of the basic concepts used here.

Definition 1. A semi-normalized sequence (bj) in a Banach space is called:
(i) A wide-(s) sequence if (bj) is a basic sequence which dominates the

summing basis; i.e.,
∑

cj converges whenever
∑

cjbj converges.
(ii) An (s)-sequence if (bj) is weak-Cauchy and a wide-(s) sequence.
(iii) An `1-sequence if (bj) is equivalent to the usual `1-basis.
(iv) Non-trivial weak-Cauchy if (bj) is weak-Cauchy but not weakly con-

vergent.

As proved in Proposition 2.2 of [R3], every non-trivial weak-Cauchy se-
quence has an (s)-subsequence. It then follows immediately from the `1-
theorem that:

Proposition 1. Every wide-(s) sequence has a subsequence which is either
an (s)-sequence or an `1-sequence.

(The `1-theorem refers to the author’s result that every bounded sequence
with no weak-Cauchy subsequence has an `1-subsequence.)
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Of course every sequence which is either an (s)-sequence, or an `1-sequen-
ce, is wide-(s). If we don’t wish to distinguish between the two mutually
exclusive possibilities of Definition 1 (ii), (iii), then wide-(s) sequences are
more appropriate.

Throughout, let X, Y be Banach spaces.

Proposition 2. (a) A bounded subset W of X is non-relatively weakly
compact iff W contains a wide-(s) sequence.

(b) T ∈ L(X, Y ) is non-weakly compact iff there is a sequence (xn) in X
with (xn) and (Txn) both wide-(s) sequences.

Proof. (a) First suppose W is non-relatively weakly compact. Choose
(xn) in W with no weakly convergent subsequence. If (xn) has a weak-
Cauchy subsequence (x′n), then (x′n) is of course non-trivial, hence (x′n) has
an (s)-sequence by Proposition 2.2 of [R3]. If (xn) has no weak-Cauchy
subsequence, (xn) has an `1-subsequence by the `1-theorem.

Conversely, no wide-(s) sequence can have a weakly convergent subse-
quence, by Proposition 1, thus proving (a). Alternatively, rather than using
Proposition 1, we may give the following elementary argument:

It is trivial that any subsequence of a wide-(s) sequence is also wide-(s).
Thus suppose to the contrary, that (xn) is a wide-(s) sequence with (xn)

converging weakly to some x. We may assume without loss of generality
that (xn) is a basis for X, since x is in the closed linear span of the xn’s.
Define s, the summing functional in X∗, by

s
(∑

cjxj

)
=
∑

cj .

Then since s(xj) = 1 for all j, s(x) = 1, so x 6= 0. However no basic
sequence can converge weakly to a non-zero element. Indeed, if (x∗j ) denotes
the sequence of functionals biorthogonal to (xj), then

x∗i (x) = lim
j→∞

x∗i (xj) = 0 for all i; since

x =
∞∑
i=1

x∗i (x)xi because (xj) is a basis for x, x = 0.(∗)

(b) First suppose T is non-weakly compact. Then W
df= T (BaX) is non-

relatively weakly compact. Choose then (xj) in BaX with (Txj) a wide-(s)
sequence. But then (xj) cannot have a weakly convergent subsequence (x′j),
for else (Tx′j) would be wide-(s) and weakly convergent which is impossible.
Hence (xj) has a wide-(s) subsequence (x′j) by part (a); then also (Tx′j) is
wide-(s).

Of course conversely if (xj) and (Txj) are wide-(s), then (xj) is a bounded
sequence and (Txj) has no weakly convergent subsequence, so T is not
weakly compact. �
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Corollary. A Banach space is non-reflexive iff it contains a wide-(s) se-
quence.

Remark. In Theorem 12 below, we prove a general result for selecting
wide-(s) sequences, which immediately yields Proposition 2(a), and hence
this corollary, without using the `1-Theorem. We also note that character-
izations of reflexivity in terms of basic sequences were obtained in the 60’s
by A. Pe lczyński [P].

We next review some permanence properties of wide-(s) sequences. First,
a companion definition.

Definition 2. A semi-normalized sequence (ej) in a Banach space X is
called:

(i) A wide-(c) sequence if (ej) is a basic sequence with bounded partial
sums; i.e., supn ‖

∑n
j=1 ej‖ < ∞.

(ii) A (c)-sequence if (ej) is a basic sequence with (
∑n

j=1 ej)∞n=1 a weak-
Cauchy sequence.

(iii) The difference sequence of a sequence (bj) if ej = bj − bj−1 for all
j > 1, e1 = b1.

Remark. In the definition of “wide-(s)”, the term “(s)” stands for “sum-
ming.” In the above, “(c)” stands for “convergent”; of course here, the
series

∑
ej is only weak Cauchy convergent; i.e.,

∑
j x∗(ej) converges for all

x∗ ∈ X∗.

As noted in the introduction, wide-(s) and wide-(c) sequences were origi-
nally introduced by I. Singer [S1]. He used the terminology “(xj) is of type
P (resp. type P ∗)” if (xj) is a wide-(c) (resp. wide-(s)) basis for a Banach
space X. The following result summarizes various permanence properties.
(For the proof of Proposition 3(i)–(iii), see [S1] or Theorem 9.2 of [S2];
Proposition 3(iv) is given as Proposition 2.1 of [R3].)

Proposition 3. Let (bj) be a given sequence in X with difference sequence
(ej).

(i) (bj) is wide-(s) iff (ej) is wide-(c).
(ii) (bj) is wide-(s) iff (bj) is bounded, (‖ej‖) is bounded below by a positive

constant, and (ej) is a basic sequence.
(iii) Assuming (bj) is a basic sequence with biorthogonal functionals (b∗j )

in [bj ]∗, then (bj) is wide-(s) iff (b∗j ) is wide-(c) iff (
∑n

j=1 b∗j )∞n=1 is
wide-(s).

(iv) (bj) is (s) iff (ej) is (c).
(v) If (bj) is a convex block-basis of a wide-(s) sequence, then (bj) is wide-

(s).
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Remarks. 1. Proposition 3 (ii) yields that wide-(s) sequences are charac-
terized as semi-normalized basic sequences whose difference sequence is also
a basic sequence.

2. The statements (ii)-(iv) of Proposition 3 may also be deduced from
some arguments in [R3] (specifically, see the proofs of Propositions 2.1 and
2.4).

For the sake of completeness, we give the proof of Proposition 3(v). Sup-
pose then (ui) is a wide-(s) sequence and there exist 0 ≤ n1 < n2 < · · · and
numbers λ1, λ2, . . . with

bj =
nj+1∑

i=nj+1

λiui, λi ≥ 0,

nj+1∑
i=nj+1

λi = 1 for all j.

Of course then (bj) is a basic sequence, since it is a block basis of one. Since
(ui) is wide-(s), there is a number β so that∣∣∣∣∣

k∑
i=1

ci

∣∣∣∣∣ ≤ β
∥∥∥∑ ciui

∥∥∥ whenever
∑

ciui converges.

Now suppose scalars c1, c2, . . . given with only finitely many non-zero and
let k ≥ 1. But then ∣∣∣∣∣∣

k∑
j=1

cj

∣∣∣∣∣∣ =

∣∣∣∣∣∣
k∑

j=1

cj

nj+1∑
i=nj+1

λi

∣∣∣∣∣∣
=

∣∣∣∣∣∣
k∑

j=1

nj+1∑
i=nj+1

cjλi

∣∣∣∣∣∣
≤ β

∥∥∥∥∥∥
∑

j

cj

nj+1∑
i=nj+1

λiui

∥∥∥∥∥∥
= β

∥∥∥∑ cjbj

∥∥∥ .

Propositions 2 and 3 have the following immediate consequence:

Corollary 4. T ∈ L(X, Y ) is non-weakly compact iff there is a sequence
(ej) in X so that (ej) and (Tej) are both wide-(c) sequences.

For the next result, recall that T ∈ L(X, Y ) is Tauberian if T ∗∗(X∗∗ ∼
X) ⊂ Y ∗∗ ∼ Y .

Theorem 5. Let T ∈ L(X, Y ). The following are equivalent.
(i) T is non-Tauberian.
(ii) There exists a wide-(s) sequence (xj) in X with (Txj) norm-conver-

gent.
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(iii) There exists a wide-(c) sequence (ej) in X with
∑
‖Tej‖ < ∞.

Corollary 6. Again let T ∈ L(X, Y ). The following are equivalent.
(i) T is Tauberian.
(ii) For every wide-(s) sequence (xj) in X, there is a subsequence (x′j) with

(Tx′j) wide-(s).
(iii) For every wide-(c) sequence (ej), there exist n1 < n2 < · · · with

(
∑ni+1

j=ni+1 Tej)∞i=1 a wide-(c) sequence.

Proof of Theorem 5. Assume first T is non-Tauberian. It follows that
there exists an x∗∗ ∈ X∗∗ ∼ X with ‖x∗∗‖ = 1 and T ∗∗x∗∗

df= y in Y . We
shall prove there exists a normalized wide-(s) sequence (xj) in X with (Txj)
converging in norm to y. It is convenient to isolate the following step of the
proof.

Lemma 7. Given ε > 0 and F a finite dimensional subspace of X∗, there
exists an x ∈ X with ‖x‖ ≤ 1 + ε, ‖Tx− y‖ < ε, and

(1) f(x) = x∗∗(f) for all f ∈ F.

Proof. It is a standard result that given G a finite-dimensional subspace of
X∗, there exists an xG in X with ‖xG‖ < 1 + ε and

(2) g(xG) = x∗∗(g) for all g ∈ G.

But then letting D be the directed set of all finite-dimensional subspaces of
X∗ containing F , we obtain a net (xG)G∈D with limG∈D xG = x∗∗ weak*,
with xG satisfying (1) for all such G. (Here, we regard X ⊂ X∗∗.) Hence
limG∈D TxG = y weakly. But then there exists x a convex combination of
the xG’s with ‖Tx−y‖ < ε. But then x satisfies (1) since every xG does. �

Now continuing with the proof of Theorem 5, since x∗∗ /∈ X, x∗∗⊥
df={x∗ ∈

X∗ : x∗∗(x∗) = 0} δ-norms X for some δ ≥ 0; i.e.,

(3) for all x ∈ X, δ‖x‖ ≤ sup{|z(x)| : z ∈ x∗∗⊥, ‖z‖ ≤ 1}.

Next, choose x∗ ∈ X∗ with x∗∗(x∗) = 1.
Now applying Lemma 7, we may inductively choose a sequence (xn) in X

and a sequence (Fn) of finite-dimensional subspaces of x∗∗⊥ satisfying the
following properties for all n (where F0 = {0}).

1− 1
2n

≤ ‖xn‖ ≤ 1 +
1
2n

.(4)

‖Txn − y‖ <
1
2n

.(5)

Fn 2δ-norms[x1, . . . , xn].(6)

Fn−1 ⊥ xn.(7)
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x∗(xn) = 1.(8)

Fn−1 ⊂ Fn.(9)

Indeed, suppose n ≥ 1 and Fn−1 chosen. Applying Lemma 7 (and its obvious
consequence that for an appropriate F , any x satisfying its conclusion must
satisfy ‖x‖ ≥ 1− ε), we let F = Fn−1 + [x∗]; then choose x = xn satisfying
(1) with ‖x‖ ≥ 1− 1

2n . Since (1) holds, x∗∗(f) = f(x) = 0 for all f ∈ Fn−1;
i.e., (7) holds.

Of course also (8) holds. Now since x∗∗⊥ δ-norms X, we may choose Fn ⊃
Fn−1 a finite dimensional subspace of x∗∗⊥ which 2δ-norms [x1, . . . , xn].

This completes the inductive construction. Now if we let Z =
⋃∞

i=1 Fn,
then (6) yields that

(10) Z 2δ-norms [xj ]∞j=1.

Evidently (5) yields then Txn → y. Now we claim

(11) (xj) has no weakly convergent subsequence.

Indeed, if not, let (x′j) be a subsequence weakly convergent to x, say.
Then by (8), x∗(x) = 1. But by (7), f(x) = limn→∞ f(xn) = 0 for all f ∈ Z.
Since Z 2δ-norms [xj ]∞j=1, x = 0, a contradiction.

Since (11) is proved, (xj) has a wide-(s) subsequence (x′j) by Propo-
sition 2(a). Of course then (x′j/‖x′j‖) is the desired normalized wide-(s)
sequence whose image tends to y. Thus (i) ⇒ (ii) is proved.

(ii) ⇒ (iii). By passing to a subsequence, assume ‖Txj − Txj−1‖ < 1
2j .

Then the difference sequence (ej) of (xj) satisfies (iii).
(iii) ⇒ (ii). Let bn =

∑n
j=1 ej for all n. Then limj→∞ Tbj =

∑∞
j=1 Tej in

norm and (bj) is wide-(s).
(ii) ⇒ (i). Since (xj) is wide-(s), it follows (e.g., by applying Proposi-

tion 2(a)), that there is a weak*-cluster point x∗∗ of (xj) in X∗∗ ∼ X. But
then if Txj → y in X say, T ∗∗x∗∗ = y, so T is non-Tauberian. �

Remarks. 1. Note the following immediate consequence of Theorem 5:
T is Tauberian iff T |Z is Tauberian for every separable Z ⊂ X iff T |Z is
Tauberian for every Z ⊂ X with a basis.

2. We prove a stronger quantitative version (called Theorem 5′) later on,
in the last remark following the proof of Corollary 15.

3. As proved in [NR], if T is non-Tauberian, there exists Z a closed linear
subspace of X with T (BaZ) non-closed. If we then choose y ∈ T (BaZ) ∼
T (BaZ), we may choose (xn) in Ba(Z) with Txn → y. It now follows
that any weak*-cluster point G of (xn) in Z∗∗ does not belong to Z. Of
course then (xn) has no weakly convergent subsequence; it follows by known
results that (xn) has either an (s)-subsequence or an `1-subsequence. We
preferred here, however, to give a direct self-contained proof of the non-
trivial implication in Theorem 5.
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Proof of Corollary 6. (i) ⇒ (ii). Let (xj) be a wide-(s) sequence in X.
Then it follows that (Txj) has no weakly convergent subsequence. Indeed,
otherwise, there would exist (bj) a convex block basis of (xj) with (Tbj)
norm-convergent. But then (bj) is wide-(s) by Proposition 3(v), hence T is
non-Tauberian by Theorem 5, a contradiction. Thus by Proposition 2(a),
there exists (x′j) a subsequence of (xj) with (Tx′j) wide-(s); of course (x′j)
is still wide-(s), so this implication is proved.

(ii) ⇔ (iii) is immediate from the permanence property Proposition 3(i)
and the evident fact that if (bj) is a given sequence and 0 ≤ n0 < n1 <
· · · , then if (ej) is the difference sequence of (bj), (

∑ni+1

j=ni+1 ej)∞i=1 is the
difference sequence of (bni)

∞
i=1. Of course no wide-(s) sequence can be norm-

convergent, so (ii) ⇒ (i) follows immediately from Theorem 5. �
Theorem 5 easily yields the following result:

Corollary 8. Let T ∈ L(X, Y ). The following are equivalent:
(a) T is Tauberian.
(b) ker(T + K) is reflexive for all compact K ∈ L(X, Y ).
(c) ker(T + K) is reflexive for all nuclear K ∈ L(X, Y ).

(These equivalences are due to González and Onieva [GO].) Indeed, (a)
⇒ (b) is immediate since then T + K is also Tauberian, and (b) ⇒ (c)
is trivial. Now suppose (c) holds yet (a) is false. Then by Theorem 5(ii),
after passing to a subsequence, we can choose (xj) a wide-(s) sequence in
X with ‖Txj+1 − Txj‖ < 1

2j for all j. It then follows immediately that
T |[xj ] is nuclear. Indeed, letting (bj) be the difference sequence for (xj),
then (bj) is also a semi-normalized basis for [xj ] and

∑
‖Tbj‖ < ∞. But

then there exists a nuclear operator K : X → Y with K|[xj ] = T |[xj ]. Hence
ker(T −K) ⊃ [xj ] is non-reflexive, because (xj) is a wide-(s)-sequence lying
inside this kernel.

We next show that wide-(s) sequences immediately yield the triangular
arrays in non-reflexive Banach spaces, discovered by R.C. James [J1], [J2].

Proposition 9. Let (bj) be a wide-(s) sequence in a Banach space X. There
exist bounded sequences (fj) and (gj) in X∗ satisfying

(i) fi(bj) = 1 for all j ≥ i,

fi(bj) = 0 for all j < i.

(ii) gj(bi) = 1 for all j ≥ i,

gj(bi) = 0 for all j < i.

Proof. We may assume without loss of generality, by the Hahn-Banach The-
orem, that X = [bj ]. Let s be the summing functional for (bj) and (b∗j )
be the sequence biorthogonal to (bj). Then simply let gj =

∑
i≤j b∗i and

fj = s−
∑

i<j b∗i for all j. Since (bj) dominates the summing basis, (gj) and
hence (fj) are uniformly bounded. �
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Remark. It follows immediately from the duality theory given in the
Proposition, page 722 of [R3], that if X = [bj ] as above, both sequences
(fj) and (gj) are again basic; in fact both are wide-(s) sequences in X∗.

We now give some quantitative definitions, in order to obtain further per-
manence properties and obtain certain localizations of the preceding results.

(Recall: If (bj) is a basic-sequence or a finite sequence with all terms non-
zero, then (bj) is called a λ-basic sequence if ‖

∑k
j=1 cjbj‖ ≤ λ‖

∑
cjbj‖ for

all k and scalars c1, c2, . . . with
∑

cjbj convergent.)

Definition 3. A (finite or infinite) sequence (bj) in a Banach space is called
λ-wide-(s) if

(a) (bj) is a 2λ-basic sequence.
(b) ‖bj || ≤ λ for all j.
(c) |

∑n
j=k cj | ≤ λ‖

∑n
j=1 cjbj‖ for all 1 ≤ k ≤ n < ∞ (resp. with n the

length of (bj) if finite), and scalars c1, c2, . . . , cn.

Definition 4. A (finite or infinite) sequence (ej) in a Banach space is called
λ-wide-(c) if

(a) (ej) is a λ-basic sequence.
(b) ‖ej‖ ≥ 1

λ for all j.
(c) ‖

∑k
j=1 ej‖ ≤ λ for all k.

Remarks. 1. Of course an infinite sequence (bj) (resp. (ej)) is wide-(s)
(resp. wide-(c)) iff it is λ-wide-(s) (resp. λ-wide-(c)) for some λ ≥ 1. Also,
note that if (bj) is λ-wide-(s), then trivially ‖bj‖ ≥ 1

λ and ‖b∗j‖ ≤ 2λ for all j,
where (b∗j ) is biorthogonal to (bj) in [bj ]∗. Also immediately (ej) λ-wide-(c)
implies ‖ej‖ ≤ 2λ for all j.

2. An easy refinement of the (easy) proof of Proposition 3(v) shows that
any convex block-basis of a (finite or infinite) λ-wide-(s) sequence is again
λ-wide-(s).

3. It is easily seen that if (bi) is a wide-(s) sequence in c0, then the basis-
constant for (bi) is at least 2. This is why we give the requirement that
λ-wide-(s) sequences be 2λ-basic.

The following quantitative version of Proposition 3(i) follows immediately
from the arguments in [R3].

Proposition 10. Let (bj) be a finite or infinite sequence with difference
sequence (ej). For all λ ≥ 1, there exists a β ≥ 1 so that:

(a) If (bj) is λ-wide-(s), then (ej) is β-wide-(c).
(b) If (ej) is λ-wide-(c), then (bj) is β-wide-(s).

The next result immediately yields the quantitative triangular arrays re-
sult of R.C. James [J1], in virtue of Proposition 9.
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Theorem 11. Every non-reflexive Banach space contains for every ε > 0,
a normalized (1 + ε)-wide-(s) sequence.

To deduce the quantitative result in [J1], suppose (bi) is normalized and
(1 + ε)-wide-(s). Let fj =

∑∞
i=j b∗i = s−

∑
i<j b∗i as in Proposition 9. Thus

‖fj‖ ≤ 1 + ε for all j. Now set hj = fj/‖fj‖ for all j. Thus (bj) and (hj)
are norm-one sequences satisfying

hi(bj) ≥
1

1 + ε
for all j ≥ i,

hi(bj) = 0 for all j < i.(12)

Remark. The work in [J2] (specifically Theorem 8) essentially yields
Theorem 11. (I had overlooked the fundamental reference [J2] in the earlier
version of this paper.) The treatment given here provides a general criterion
for selecting (1+ε)-wide-(s) sequences out of a given sequence, which yields
the apparently stronger result Theorem 11′ below.

Theorem 11 is proved by a refinement of the argument given for Propo-
sition 2.2 in [R3]. We will in fact show the following result, which easily
yields Theorem 11. (As usual, we regard X ⊂ X∗∗; for G in X∗∗, dist(G, X)
denotes the distance of G to X; i.e., dist(G, X) = inf{‖G− x‖ : x ∈ X}.)

Theorem 12. Let (xj) be a bounded sequence in a Banach space X, having
a weak*-cluster point G in X∗∗ ∼ X. Let d = dist(G, X), ε > 0, and
λ = 1

d + ε, β = ‖G‖+d
d + ε. Then (xj) has a subsequence (bj) satisfying the

following:

1) (bj) is β-basic.
2) |

∑n
j=k cj | ≤ λ‖

∑n
j=1 cjbj‖ for all 1 ≤ k ≤ n < ∞ and scalars

c1, . . . , cn.

Corollary. If

γ = max

{
1
d
,
‖G‖+ d

2d
, sup

j
‖bj‖

}
then for any ε > 0, (xj) has a (γ + ε)-wide-(s)-subsequence.

Of course Theorem 11 follows immediately from this result. Indeed, we
may assume without loss of generality that X is separable non-reflexive.

Let ε > 0, and let δ > 0 be decided. Choose (using Riesz’s famous
lemma) a G in X∗∗ with ‖G‖ = 1 and dist(G, X) > 1 − δ. Next choose
(xj) a normalized sequence in X having G as a ω∗-cluster point. Now if δ
is such that 1

1−δ < 1 + ε, then (xj) has a 1 + ε-wide-(s) subsequence by the
Corollary.
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For the proof of Theorem 12 we first recall some standard ideas and results
(cf. [R3]). Given 0 < η ≤ 1 and Y a linear subspace of X∗, Y is said to
η-norm X if

η‖x‖ ≤ sup
y∈Ba Y

|y(x)| for all x ∈ X.

The next two lemmas summarize well known material.

Lemma 13. Let (xj) be a semi-normalized sequence in X and Y an η-
norming subspace of X∗. Assume that y(xj) → 0 as j → ∞ for all y ∈ Y .
Then given 0 < ε < η, (xj) has a 1

η−ε -basic subsequence.

Lemma 14. Let G ∈ X∗∗ ∼ X, δ = dist(G/‖G‖, X), G⊥ = {x∗ ∈ X∗ :
G(x∗) = 0}. Then G⊥

1+δ
δ -norms X.

Remark. Lemma 13 is given (without the quantitative statements) in [P];
the quantitative version follows immediately from the argument given there.
Lemmas 13 and 14 immediately imply the classical result of M.I. Kadec and
A. Pe lczyński [KP] that a semi-normalized sequence in a Banach space has a
basic subsequence provided every weakly convergent subsequence converges
weakly to zero. Lemma 14 is in fact also a crystallization of work in [KP].

Proof of Theorem 12. We have that dist
(

G
‖G‖ , X

)
= d

‖G‖ . It follows imme-
diately from Lemmas 13 and 14 that (xj) has a β-basic subsequence, so let
us assume then that (xj) is already β-basic. Let η > 0 be decided later. We
shall choose (bj) a subsequence of (xj) and a sequence (fj) in X∗ satisfying
the following conditions for all n:

‖fn‖ <
1
d

+ η.(13)

fi(bj) = 0 for all 1 ≤ j < i ≤ n.(14)

G(fi) = 1 for all 1 ≤ i ≤ n.(15)

|fi(bn)− 1| < η

2n
for all 1 ≤ i ≤ n.(16)

First, by the Hahn-Banach theorem, choose F ∈ X∗∗∗ with

(17) ‖F‖ =
1
d
, F (G) = 1, and F (x) = 0 for all x ∈ X.

Now choose f1 in X∗ satisfying (13) and (15) for n = 1. Suppose n ≥ 1 and
f1, . . . , fn, b1, . . . , bn−1 chosen satisfying (13)–(15); suppose also bn−1 = xk

(if n > 1). Since (15) holds and G is a w∗-cluster point of the xj ’s, we
may choose an ` > k so that setting bn = x`, then (16) holds. Since the
span of b1, . . . , bn and G, [b1, . . . , bn, G], is finite dimensional, by (17) we
may choose fn+1 in X∗ with ‖fn+1‖ < 1

d + η, so that fn+1 agrees with F
on [b1, . . . , bn, G]; i.e., G(fn+1) = 1 and fn+1(bi) = 0 all 1 ≤ i ≤ n. This
completes the inductive construction of (bj) and (fj).
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Now let 1 ≤ k ≤ n and scalars c1, . . . , cn be given with ‖
∑n

j=1 cjbj‖ ≤ 1.∣∣∣∣∣∣
n∑

j=k

cj

∣∣∣∣∣∣ =

∣∣∣∣∣∣fk

 n∑
j=1

cjbj

+
n∑

j=k

cj(1− fk(bj))

∣∣∣∣∣∣ by (14)

≤ 1
d

+ η + sup
j
|cj |η by (13) and (16)

≤ 1
d

+ η + sup
j
‖b∗j‖η (where (b∗j )

is the sequence biorthogonal to (bj) in [bj ]∗).

Since (xj) was assumed basic, so is (bj), whence τ
df= supj ‖b∗j‖ < ∞. Thus if

η is such that η(1 + τ) ≤ ε, the proof is finished. �
The next result yields absolute constants in the selection of general basic

sequences in Banach spaces.

Corollary 15. Let (xj) be a bounded non relatively compact sequence in the
Banach space X. Given ε > 0, there exists an x ∈ X and a subsequence
(x′j) of (xj) so that the following holds, where bj = x′j − x for all j.

1) If {x1, x2, . . . } is relatively weakly compact, then (bj) is a (1 + ε)-basic
sequence.

2) If {x1, x2, . . . } is not relatively weakly compact, then (bj) is a (2 + ε)-
basic sequence. Moreover there exists a convex block basis (uj) of (bj)
and a c > 0 so that (cuj) is a (1 + ε)-wide-(s) sequence.

Proof. Since (xj) is non-relatively compact, we may by passing to a subse-
quence assume that for some δ > 0, ‖xi − xj‖ ≥ δ for all i 6= j.

In Case 1), choose (x̄j) a subsequence of (xj) and x ∈ X with x̄j → x
weakly. Then (x̄j − x)∞j=1 satisfies the hypotheses of Lemma 13 for η = 1,
where “Y ” = X∗. The conclusion of 1) is now immediate from Lemma 13.

In Case 2), we may choose G ∈ X∗∗ ∼ X with G a w∗-cluster point of
(xj). Now let d = dist(G, X∗∗), η > 0 to be decided later, and choose x ∈ X
with

(18) ‖G− x‖ < d + η.

Now setting H = G− x, we have by Riesz’s famous argument that since

d ≤ ‖H‖ ≤ d + η ,(19)

dist
(

H

‖H‖
, X

)
≥ d

d + η
.(20)

Thus if η
d < ε, it follows from Lemmas 13, 14, and the fact that H is a

weak*-cluster point of (xj − x), that (xj) has a subsequence (x′j) satisfying
the first statement in (2). Finally, it follows by the techniques in [R1] that
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there exists a convex block basis (uj) of (bj) and a separable isometrically
norming subspace Y of X∗ so that

(21) ‖uj‖ < d + η for all j

and

(22) y(uj) → H(y) as j →∞, for all y ∈ Y.

Now (19), (21) and (22) yield that if F is any w∗-cluster point of (uj) in
X∗∗, then

(23) ‖F‖ ≤ d + η and dist(F,X) ≥ d.

Fixing such an F , let c = ‖F‖−1; then of course (cuj) has F/‖F‖ as a
w∗-cluster point. It now follows from the Corollary to Theorem 12 (still
assuming η < εd) that (cuj) has a (1 + ε)-wide-(s) subsequence. �

Remarks. 1. We may now easily obtain the following quantitative refine-
ment of the non-trivial part of Theorem 5.

Theorem 5′. If T ∈ L(X, Y ) is non-Tauberian, then for all ε > 0, there
exists a (1 + ε)-wide-(s) sequence (bj) in X with (Tbj) norm-convergent.

Proof. We may deduce this by just quantifying our proof of Theorem 5 and
Corollary 15. We prefer, however, to deduce the result directly from Theo-
rem 5 and Corollary 15. Choose (xj) wide-(s) with (Txj) norm-convergent,
by Theorem 5. Now choose by Corollary 15, a convex block basis (uj) of

(xj), an element x ∈ X, and a c > 0 so that bj
df= c(uj − x) is 1 + ε-wide-(s).

But of course since (Txj) is norm-convergent, so is (Tbj). �

2. We also obtain a quantitative refinement of Proposition 2(a), which
moreover sharpens Theorem 11, namely:

Theorem 11′. If T ∈ L(X, Y ) is non-weakly compact, then for all ε > 0,
there exists a (1 + ε)-wide-(s) sequence (bn) in X with (Tbn) wide-(s).

Proof. By Proposition 2(a), first choose (xj) in X with (xj) and (Txj) wide-
(s). By Corollary 15, ε > 0 given, there is a convex block basis (uj) of (xj),
a u in X, and a c > 0, so that (bj) is (1+ε)-wide-(s), where bj = c(uj−u) for
all j. But of course (Tuj) is again wide-(s), so (Tbj) cannot have a weakly
convergent subsequence, hence finally we can choose a subsequence (b′j) of
(bj) with (Tb′j) also wide-(s). �

3. It is easily seen that the (1 + ε)-wide-(s) sequences in Theorem 5′ and
Theorem 11′ may be chosen to be normalized. In fact, in most of the results
formulated here, we can take our sequences normalized. Indeed, suppose
(bj) is an arbitrary semi-normalized sequence in a Banach space. Then we
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may choose b′j a subsequence and a positive number c so that ‖b′j‖ rapidly
converges to c, say

∣∣ ‖b′j‖ − c
∣∣ < 1

2j for all j. Then η > 0 given, it follows
from standard perturbation results that for some N , the sequence (b′j)

∞
j=N is

1 + η-equivalent to (cb′j/‖b′j‖)∞j=N . Now if (bj) is λ-wide-(s), then of course
1
λ ≤ c ≤ λ and we obtain that (b′j/‖b′j‖)∞j=N is (c ∨ 1

c )(1 + η)2λ-wide-(s). So
of course this normalized sequence is λ2(1 + η)2-wide-(s). Thus if ε > 0 is
given and λ2(1 + η)2 < 1 + ε, λ > 1, and (bj) is λ-wide-(s) with (Tbj) norm-
convergent, then also (Tuj) is norm-convergent, where uj = b′j+N/‖b′j+N‖
all j, and (uj) is (1 + ε)-wide-(s).

4. For a uniformity estimate in the biorthogonal constant of uniformly
separated bounded sequences, see [HKPTZ].

5. A basic sequence (bj) is called (s.s.) (strongly summing) if it is weak-
Cauchy and for all choices of scalars (cj), if supn ‖

∑n
j=1 cjbj‖ < ∞, then∑∞

j=1 cj converges. If (bj) is (s.s.) and (b∗j ) is its biorthogonal sequence
in ([bj ])∗, then (

∑n
j=1 b∗j )∞n=1 is non-trivial weak-Cauchy, hence [bj ]∗ is not

weakly sequentially complete (cf. [R3]). Of course every (s.s.) sequence is
an (s) sequence. The following result now follows from the `1-Theorem, the
“c0-Theorem” and natural permanence properties established in [R3] (cf.
Theorem 1.1 and Proposition 2.5), the non-distortability property of c0 and
`1 discovered by R.C. James [J3], and Corollary 15.

Theorem. Let X be a non-reflexive Banach space, ε > 0. Then X con-
tains a normalized sequence (bj) so that one of the following three mutually
exclusive alternatives holds:

(i) (bj) is (1 + ε)-equivalent to the usual `1-basis.
(ii) (bj) is (1 + ε)-equivalent to the summing basis for c0.
(iii) (bj) is an (s.s.)-sequence which is (1 + ε)-wide-(s).

(Sequences (xj) and (yj) in Banach spaces X and Y are called λ-equivalent
if there is an invertible bounded linear operator T : [xj ] → [yj ] with Txj = yj

for all j and ‖T‖ ‖T−1‖ ≤ λ. Of course if (bj) is normalized and satisfies
alternatives (i) or (ii), (bj) is (1 + ε)-wide-(s).)

We next pass to the stability of wide-(s) sequences under perturbations.
We first show that after passing to subsequences, triangular arrays and wide-
(s) sequences are manifestations of the same phenomena.

Definition 5. Given λ ≥ 1, a finite or infinite sequence (bj) in a Banach
space is called λ-triangular if there exists a sequence (fj) in X∗ so that

(i) fi(bj) = 1 for all j ≥ i,

fi(bj) = 0 for all j < i,
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and

(ii) ‖fj‖, ‖bj‖ ≤ λ for all j.

Evidently Proposition 9 and Definition 3 yield immediately that every
(finite or infinite) λ-wide-(s) sequence (bj) is λ-triangular . Thus Theo-
rem 11 yields immediately that every non-reflexive Banach space has, for
every ε > 0, a normalized (1 + ε)-triangular sequence. (This result is due
to R.C. James; see Theorem 8 of [J2].) Now conversely, suppose (bj) is an
infinite λ-triangular sequence, and assume without loss of generality that
X = [bj ]. Now let G be a w∗-cluster point of (bj) in X∗∗. Then of course
‖G‖ ≤ λ, and G(fi) = 1 for all i. Then letting F be a w∗-cluster point of
(fi) in X∗∗∗, it follows that F (G) = 1 and F (x) = 0 all x ∈ X. Hence

(24) dist(G, X) ≥ 1
λ

.

The Corollary to Theorem 12 now immediately yields

Corollary 16. If (bj) is a λ-triangular sequence, then for every ε > 0, (bj)

has a
(

λ2+1
2 + ε

)
-wide-(s) subsequence.

A refinement of this reasoning now yields the following perturbation re-
sult.

Corollary 17. Let λ ≥ 1 be given. There exist β ≥ 1 and ε > 0 so that if
(bj) and (pj) are infinite sequences in a Banach space with (bj) λ-wide-(s)
and ‖pj‖ ≤ ε for all j, then

(25) the sequence (bj + pj)∞j=1 has a β-wide-(s) subsequence.

Proof. Let ε > 0; we shall discover the appropriate bounds for ε and β in
the course of the argument. Choose (fj) in X∗ satisfying (i), (ii) of Defi-
nition 5. Since (bj) is λ-triangular, it follows as in the argument preceding
Corollary 16 that if G is any w∗-cluster point of (bj) in X∗∗, then

(26) ‖G‖ ≤ λ and dist(G, Y ) ≥ 1
λ

,

where Y = [bj ]. But then (cf. Lemma 2.6 of [R2])

(27) dist(G, X) ≥ 1
2λ

.

Of course if P is any w∗-cluster point of (pj), then ‖P‖ ≤ ε. Hence we
obtain that if H is a weak*-cluster point of (bj + pj)∞j=1, then

(28) ‖H‖ ≤ λ + ε and dist(H,X) ≥ 1
2λ

− ε.
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Evidently we thus obtain from the Corollary to Theorem 12 that (bj +pj)∞j=1

has a β-wide-(s) subsequence provided

(29) ε <
1

2λ

where

(30) β = ε +
((

λ2 +
1
2

)
∨ 2λ

)/
(1− 2ελ).

Now if we just let ε = 1
4λ , we obtain that (bj + pj) has a (2λ2 + 5)-wide-(s)

subsequence. �

Remarks. 1. If we assume the pj ’s lie in the closed linear span of the bj ’s,
we obtain the better estimate

ε <
1
λ

and β =
λ2 + 1

2(1− λε)
+ ε.

Indeed, this follows immediately from the Corollary to Theorem 12 and the
fact that then in (28), we have the better estimate dist(H,X) ≥ 1

λ − ε.
(Thus if (bj) is say (1 + η)-wide-(s), η small, then for ε-sufficiently small,
the perturbed sequence would have a (1 + 2η)-wide-(s) subsequence.)

2. Of course the proof only requires that (bj) is λ-triangular. Moreover
the same qualitative conclusion holds if we just assume instead that (pj) is
uniformly bounded so that all weak*-cluster points have distance at most ε
from X. That is, we obtain then the following generalization.

Corollary 17′. Let λ ≥ 1, ε < 1
2λ , and (bj), (pj) be sequences in X with

(bj) λ-triangular, and (pj) bounded such that all weak*-cluster points of (pj)
in X∗∗ have distance at most ε from X. Then assuming ‖pj‖ ≤ M all
j, there exists a β depending only on λ, M and ε, so that (bj + pj) has a
β-wide-(s) subsequence.

For the sake of definiteness, we note that the proof actually yields that
given η > 0 (arbitrarily small), we may choose

β =
(λ2 + λM + 1

2 − λε) ∨ 2λ

1− 2ελ
+ η.

Of course an interesting special case occurs when (pj) is weakly convergent
or even a constant sequence; then we have (since ε = 0) that

β =
((

λ2 + λM +
1
2

)
∨ 2λ

)
+ η,

or in the case where the pj ’s lie in [bj ],

β =
(

(λ + M) ∨
(

λ2 + λM + 1
2

))
+ η.
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3. Combining the last observation in the preceding remark with Theo-
rem 5′, we obtain that if T ∈ L(X, Y ) is non-Tauberian, then for all ε > 0
there exists (bj) a (2+ε)-wide-(s) sequence in X with (Tbj) norm-convergent
and ‖Tbj‖ ≤ ε for all j.

Indeed, simply choose (xj) a (1 + ε)-wide-(s) sequence in X with (Txj)
norm-convergent, by Theorem 5′. Now given ε > 0, choose k with ‖Txn −
Txk‖ ≤ ε

2 for all n ≥ k. But then (xn − xk)∞n=k+1 has a λ-wide-(s) subse-
quence, with

λ ≤
((

1 +
ε

2

)2
+

1
2

+ ε

)
∨ (2 + ε) = 2 + ε for ε small enough.

(We do not know if “2” can be replaced by “1” in the above assertion.)
4. Most of our results here are of a “refined subsequence” nature. Nev-

ertheless, wide-(s) sequences and triangular arrays may have large spans.
For example, J.R. Holub [Ho] (cf. also [S2], pp. 627-628) has obtained that
L1([0, 1]) has a wide-(s) basis; his argument yields also that C(∆) has a
wide-(s) basis, ∆ the Cantor set, and hence C(K) has such a basis, any
uncountable compact metric space K. �

This suggests the following problem.

Question 1. Does every non-reflexive Banach space with a basis have a
wide-(s) basis?

Now triangular arrays may have large linear spans, even when the space
has no basis. This suggests:

Question 2. Does every separable non-reflexive Banach space have a λ-
triangular fundamental sequence for some λ > 1? For every λ > 1?

(A sequence (bj) in a Banach space B is called fundamental if [bj ] = B.)

We now localize some of our preceding results.

Proposition 18. Given λ ≥ 1, ε > 0, and k, there is an n so that every
λ-triangular sequence of length at least n has a

(
λ2+1

2 + ε
)
-wide-(s) subse-

quence of length k.

Proof. We given an “old fashioned” compactness argument, just using Corol-
lary 16. If this is false, we can find for every n a norm ‖ · ‖n on Rn so that
if (bj)n

j=1 denotes the usual unit vectors, then setting Xn = (Rn, ‖ · ‖n), and
letting fj =

∑n
i=j b∗j for all n, we have that

(31) ‖bj‖n ≤ λ, ‖fj‖∗n ≤ λ all 1 ≤ j ≤ n,

and (bj)n
j=1 has no subsequence of length k which is β-wide-(s) in Xn, where

β = λ2+1
2 + ε.
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Now of course (b∗j )n
j=1, the functionals biorthogonal to (bj), are bounded

by 2λ. But then it follows that regarding (bj)∞j=1 instead as the usual unit
basis of c00, the set of all sequences which are ultimately zero, we may choose
k1 < k2 < · · · so that for all x ∈ c00,

(32) lim
n→∞

‖x‖kn

df= ‖x‖ exists.

Of course this limit will exist uniformly on Wn
df={x ∈ Rn : ‖x‖∞ ≤ 1}, for

each n. Now let X be the completion of (c00, ‖ · ‖). But then it follows
immediately that (bj)∞j=1 is λ-triangular in X, yet (bj) has no (β − ε

2)-wide-
(s) subsequence in X, of length k. But by Corollary 16, (bj) has an infinite
(β − ε

2)-wide-(s) subsequence. This contradiction completes the proof. �

We next consider localized results which follow directly from our work
above, known facts about ultraproducts, and certain results in [GM] to
which we refer for all unexplained concepts. First, we briefly recall some
ideas concerning ultraproducts. Let U be a non-trivial ultrafilter on N. XU ,
an ultraproduct of X, denotes the Banach space `∞(X)/NU (X) : `∞(X)
denotes the Banach space of all bounded sequences in X, and NU (X) its
subspace of sequences (xj) with limj∈U ‖xj‖ = 0. For any bounded sequence
(xj) in X, we denote its equivalence class in XU by [(xj)]∞j=1. For such an
object x, we have ‖x‖ = limj∈U ‖xj‖. Given T ∈ L(X, Y ), the ultrapower
TU : XU → YU is defined by TU (x) = [(Txj)]∞j=1 for all x = [(xj)]∞j=1

in XU . By the results in [GM], we may take as a working definition: T
is super weakly compact (resp. super Tauberian) provided TU is weakly
compact (resp. Tauberian). We note that (by results cited in [GM]), these
definitions are independent of the chosen ultrafilter.

We first localize Proposition 2 and Corollary 4.

Proposition 19. Let T ∈ L(X, Y ). Then the following are equivalent.
1) T is non-super weakly compact.
2) There is a λ ≥ 1 so that for all n, there exist b1, . . . , bn in X with

(bi)n
i=1 and (Tbi)n

i=1 λ-wide-(s).
3) There is a λ ≥ 1 so that for all n, there exist e1, . . . , en in X with

(ei)n
i=1 and (Tei)n

i=1 λ-wide-(c).

Proof. 2) ⇔ 3) follows by Proposition 10. Now suppose first that condition
2) holds. Fix U a non-trivial ultrafilter on N, and let XU , YU be the ultra-
powers of X, Y respectively. For each n, let bn

1 , . . . , bn
n be chosen in X with

(bn
i )n

i=1 and (Tbn
i )n

i=1 λ-wide-(s). For n < i, set bn
i = 0, and now define (bi)

in XU by bi = [(bn
i )]∞n=1 for all i. Then it follows that (bi) is λ-wide-(s) and

(TUbi) is also λ-wide-(s). But then TU is not weakly compact by Proposi-
tion 2, hence T is not super weakly compact. Conversely, if TU is not weakly
compact, then again applying Proposition 2, there exists a sequence (bj) in
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XU with (Tbj) λ-wide-(s) in YU . But now assuming (bj) and (Tbj) are both
β-wide-(s) and letting λ > β, standard properties of ultraproducts allows
us to deduce the existence of finite sequences satisfying 2) for all n. �

Remark. It follows moreover from Theorem 11′ and the remark following
that in fact T is non-super weakly compact iff there is a λ ≥ 1 so that for
all n and ε > 0, T maps a normalized (1 + ε)-wide-(s) sequence of length n
to a λ-wide-(s) sequence.

We thus obtain immediately the following:

Corollary. The following assertions are equivalent, for all given Banach
spaces X.

1) X is non-super reflexive.
2) There is a λ ≥ 1 so that X contains λ-wide-(s) sequences of arbitrarily

large length.
3) For all ε > 0, X contains normalized (1 + ε)-wide-(s) sequences of

arbitrarily large length.

Proposition 20. Let T ∈ L(X, Y ). Then the following are equivalent.
1) T is non-super-Tauberian.
2) There is a λ ≥ 1, so that for all n, all ε > 0, there exist b1, . . . , bn in

X with (bi)n
i=1 λ-wide-(s) and diam{Tbi : 1 ≤ i ≤ n} < ε.

3) For all ε > 0 and all n there exist b1, . . . , bn in X with (bi)n
i=1 (1 + ε)-

wide-(s) and diam{Tbi : 1 ≤ i ≤ n} < ε.
4) There is a λ ≥ 1 so that for all n, all ε > 0, there exist e1, . . . , en in

X with (ei)n
i=1 λ-wide-(c) and

∑n
i=1 ‖Tei‖ < ε.

Proof. Again 2) ⇔ 4) follows by Proposition 10.
We now proceed with the same method as in the preceding case. Again,

suppose condition 2) holds. Then for all n, we may choose bn
1 , . . . , bn

n in X
with (bn

i )n
i=1 λ-wide-(s) and diam{Tbn

i : 1 ≤ i ≤ n} < 1
n . Again, letting

U , XU , YU , and TU be as in the preceding proof, and again defining bi =
[(bn

i )]∞n=1, we have that (bi)∞i=1 is a λ-wide-(s) sequence in XU . In this case,
we have that (TUbi) is a constant sequence, hence TU is non Tauberian
by Theorem 5. (Thus T is non-super-Tauberian by the results in [GM].)
Indeed, we have that for all j,

(33) ‖TUb1 − TUbj‖ = lim
n∈U

‖Tbn
1 − Tbn

j ‖ = 0.

Conversely, suppose T is non-super-Tauberian. Thus by [GM], TU is
non-Tauberian, so by Theorem 5′, for all ε > 0, there is a 1 + (ε/2)-wide-
(s) sequence (bj) in XU with diam{Tbi : 1 ≤ i ≤ n} ≤ ε/2. Again it
follows from standard properties of ultraproducts that 3) holds. Thus we
have shown 2) ⇒ 1) ⇒ 3) and of course 3) ⇒ 2) is trivial. �
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Remarks. 1. A proof of the above result may also be obtained by directly
applying our Proposition 15 and Proposition 12 of [GM].

2. Our proof also yields (cf. the third remark following the proof of
Corollary 16 above) that if T is non-super-Tauberian, then for all ε > 0 and
n, there exists (b1, . . . , bn) in X which is (2 + ε)-wide-(s) and ‖Tbi‖ < ε for
all 1 ≤ i ≤ n. Actually, Proposition 12 of [GM] and our Proposition 18 yield
that “2” may be replaced by “1” in this assertion. We may deduce this from
our work as follows: Choose any (bn

1 , . . . , bn
n) in X with (bn

1 , . . . , bn
n) 3-wide-

(s) and ‖Tbn
i ‖ < 1

n all n, and let bj = [(bn
j )]∞n=1 in XU for all j (U a specified

non-trivial ultrafilter on N). But then (bj) is 3-wide-(s) in XU , yet TUbj = 0
all j. But this yields the result in [GM] that ker TU is non-reflexive. But then
by Theorem 11, we have that given ε > 0, there exists (vj) in ker TU with (vj)
(1 + ε)-wide-(s). Of course now using standard ultraproduct techniques, we
indeed obtain that if T is non-super-Tauberian, then for all n and ε, there
exists (bi, . . . , bn) in X (1 + ε)-wide-(s) and ‖Tbi‖ < ε for all i. Since the ε
here may be chosen arbitrarily, it also follows that in fact (b1, . . . , bn) may
be chosen normalized.

Proposition 20. 3) also yields the result of D.G. Tacon [T] that the super-
Tauberian operators form an open set in L(X, Y ) (with the same argument
as the proof given in [GM]).

Corollary. The non-super-Tauberian operators from X to Y are a closed
subspace of L(X, Y ).

Proof. Assume Tn → T , Tn non-super-Tauberian operators in L(X, Y ) for
all n. Now ε > 0 given, if Tn is fixed with ‖Tn − T‖ < ε, for all k,
choose b1, . . . , bk (1 + ε)-wide-(s) with diam1≤i≤k Tn(bi) < ε. But then
diam1≤i≤k T (bi) < 2ε(1 + ε) + ε. Thus T is non-super-Tauberian by Propo-
sition 20 part 3). �

We now introduce a new class of operators, intermediate (as we shall see)
between the classes of Tauberian and super Tauberian operators.

Definition 6. T in L(X, Y ) is called strongly Tauberian provided its in-
duced operator T̃ from X∗∗/X to Y ∗∗/Y is an (into) isomorphism.

(In this definition, letting π : X∗∗ → X∗∗/X denote the quotient map,
T̃ is defined by T̃ (πx∗∗) = π(T ∗∗x∗∗).) Evidently T is Tauberian precisely
when its induced operator T̃ is one–one. The stronger property given by
Definition 6 immediately yields that the strongly Tauberian operators form
an open semi-group; as we shall shortly see, this class is also closed under
such natural operations as taking double adjoints. We now list several equiv-
alences for these operators. (A word about notation: We regard X ⊂ X∗∗

and X∗∗ ⊂ X4∗; for Y ⊂ X, Y ⊥ = {x∗ ∈ X∗ : x∗(y) = 0 all y ∈ Y }; thus
e.g., X⊥ is a subspace of X3∗ so X⊥⊥ is a subspace of X4∗. Recall that
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although X⊥⊥ is canonically isometric to X∗∗, X⊥⊥ ∩X∗∗ = X. Also, we
denote T ∗∗∗ by T 3∗, X∗∗∗ by X3∗ etc.)

Theorem 21. Let T ∈ L(X, Y ). Then the following are equivalent.
1) T is strongly Tauberian.
2) There is a δ > 0 so that for all x∗∗ ∈ X∗∗, dist(T ∗∗x∗∗, Y ) ≥ δ dist(x∗∗,

X).
3) T 3∗Y ⊥ = X⊥.
4) T 4∗|X∗⊥ is an isomorphism.
5) T ∗∗ is strongly Tauberian.
6) For all λ > 1, there exists a β > 1 so that every (infinite) λ-wide-

(s) sequence in X has a subsequence which is mapped to a β-wide-(s)
sequence by T .

7) Same as 6), (except replace “for all λ > 1”) by “there exists λ > 1”.

Remark. It follows immediately from the definition that if T, S ∈ L(X, Y )
are given with T strongly Tauberian and S weakly compact, then T + S is
strongly Tauberian, since T̃ + S = T̃ + S̃ = T̃ . We obtain a simultaneous
generalization of this observation, together with the openness of the set
of strongly Tauberian operators in L(X, Y ), as follows: Given T strongly
Tauberian, there exists ε > 0 so that if S ∈ L(X, Y ) satisfies ‖S̃‖ < ε, then
S +T is strongly Tauberian. Indeed, simply choose δ as in Theorem 21 part
2), then any ε < δ works.

Proof of Theorem 21. 1) ⇔ 2) Immediate from Definition 6.
1) ⇔ 3) (X∗∗/X)∗ is canonically identified with X⊥; now we always have

that T 3∗Y ⊥ ⊂ X⊥ and moreover (T̃ )∗ may be canonically identified with
T 3∗|Y ⊥. Now this equivalence follows from the observation that an operator
is an isomorphism iff its adjoint is surjective.

For the next two equivalences, it is convenient to isolate out the following
elementary fact.

Lemma. Let Z,W , be Banach spaces, Zi, Wi be closed linear subspaces
of Z,W respectively, 1 ≤ i ≤ 2, S : Z → W be a given bounded linear
operator with SZi ⊂ Wi, 1 ≤ i ≤ 2, and Z = Z1 ⊕ Z2, W = W1 ⊕ W2.
Let S̄ : Z/Z1 → W/W1 be the induced operator defined by S̄(πz) = π(Sz),
π the appropriate quotient map. Then S̄ is an isomorphism iff S|Z2 is an
isomorphism.

1) ⇔ 4) We apply the Lemma to Z (resp. W ) = X4∗ (resp. Y 4∗), Z1

(resp. W1) = X⊥⊥ (resp. Y ⊥⊥), Z2 = X∗⊥ (resp. Y ∗⊥), and S = T 4∗. Now
we have, by standard Banach space theory, that X3∗ = X⊥ ⊕ X∗, hence
X4∗ = X⊥⊥ ⊕ X∗⊥. Thus the hypotheses of the Lemma are fulfilled. Of
course for any operator U , U is an isomorphism iff U∗∗ is an isomorphism.
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Now first assuming T is strongly Tauberian, we thus have that (T̃ )∗∗ is an
isomorphism. But (X∗∗/X)∗∗ may be canonically identified with X4∗/X⊥⊥

and (T̃ )∗∗ with S̄. Hence by the Lemma, S̄|Z2 = T 4∗|X∗⊥ is an isomorphism.
But conversely, T 4∗|X∗⊥ an isomorphism implies (T̃ )∗∗ is an isomorphism,
again by the Lemma, so T is strongly Tauberian.

4) ⇔ 5) Now we apply our Lemma to the fact that X4∗ = (X∗)3∗ =
X∗⊥ ⊕X∗∗. Thus we obtain that T 4∗|X∗⊥ is an isomorphism iff T̃ ∗∗ is an
isomorphism.

2) ⇒ 6) Let T be strongly Tauberian, and choose δ > 0 satisfying 2).
Now let (xj) be a λ-wide-(s) sequence in X, and let G be a w∗-cluster point
of (xj) in X∗∗. By an argument in the proofs of Corollaries 16, 17, we have
that

(34) dist(G, X) ≥ 1
2λ

.

Then T ∗∗G is a w∗-cluster point of (Txj), so by 2),

(35) dist(T ∗∗G, Y ) ≥ δ

2λ
.

Hence by the Corollary to Theorem 12, (Txj) has a β-wide-(s) subsequence,
where (ε > 0 given)

(36) β =

(
2λ

δ
∨

λ2 + δ
2

δ
∨ λ

)
+ ε.

6) ⇒ 7) is trivial, so it remains to prove 7) ⇒ 1). This is an immediate
consequence of the following equivalence.

Proposition 22. T ∈ L(X, Y ) is non-strongly Tauberian iff for all ε > 0,
there exists (xj) a (1+ε)-wide-(s) sequence in X with diam{Tx1, Tx2, . . . } <
ε.

Proof of Proposition 22. It suffices to prove the direct implication. Indeed,
if the second assertion of Proposition 22 holds, then (since trivially any 1+η-
wide-(s) sequence is 1 + ε-wide-(s) if η < ε), 6) of Theorem 21 fails, whence
by 1) ⇒ 6) of the latter, T is non-strongly Tauberian.

Now assume T is non-strongly Tauberian, and let 0 < η < 1. Then we
may choose G in X∗∗ satisfying

(37) ‖G‖ < 1, dist(G, X) > 1− η, and dist(T ∗∗G, Y ) < η.

Of course then we may also choose y ∈ X with

(38) ‖T ∗∗G− y‖ < η.

Now standard techniques (cf. [R1]) yield:

Lemma 23. Let L = {x ∈ X : ‖x‖ < 1 and ‖Tx− y‖ < η}. Then G ∈ L̃.
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(For M ⊂ B a Banach space, M̃ denotes the w∗-closure of M in B∗∗.)

Proof of Lemma 23. If not, by the Hahn-Banach separation theorem, choose
x∗ ∈ X∗ and a < b

df= G(x∗) so that

(39) x∗(`) ≤ a for all ` ∈ L.

Now it follows that setting W = {x ∈ X : ‖x‖ < 1 and x∗(x) > a+b
2 }, then

G ∈ W̃ and of course W ∩ L = ∅. Thus W is a convex set so that

(40) T ∗∗G ∈ T̃W and ‖Tw − y‖ ≥ η all w ∈ W.

Then again by the Hahn-Banach theorem, there exists a y∗ in Y ∗ with
‖y∗‖ = 1 and

(41) y∗(Tw − y) ≥ η all w ∈ W.

But since T ∗∗G− y is in the w∗-closure of TW − y, we obtain that

(42) ‖T ∗∗G− y‖ ≥ 〈y∗, T ∗∗G− y〉 ≥ η,

contradicting (38). (Here we have assumed L 6= ∅. However if L = ∅, instead
let W = {x ∈ X : ‖x‖ < 1}; now (40) holds, and the rest of the argument
following (40) again yields a contradiction to (38).) �

We may now complete the proof of Proposition 22 as follows. Let ε > 0,
and let η > 0 be chosen, with 1

1−η < ε. First, the proof of Theorem 12 yields
that we may choose (bj) a 1

1−η -triangular sequence in L. (The proof of the
existence of (bj) in L, (fj) in X∗ satisfying (13)–(16) does not require the
separability of X.) Here, we are just using that G ∈ L̃ and dist(G, X) >

1−η. Then by Corollary 16, (bj) has a

[“
1

1−η

”2
+1

2 + η

]
-wide-(s) subsequence

(xj). Of course we are now finished, as long as(
1

1−η

)2
+ 1

2
+ η < 1 + ε and η <

ε

2
.

Indeed, then since xj ∈ L for all j, ‖Txi − Txj‖ < 2η < ε all i, j. �

Remark. The proof of 2) ⇒ 6) yields a non-linear estimate for the depen-
dence of β on λ (36). However using Theorem 12 itself, we obtain that if δ
is as given in 2) of Theorem 21, then given ε > 0, every infinite λ-triangular
sequence in X has a subsequence which is mapped into a (2λ

δ + ε)-triangular
sequence by T which is also β-wide-(s), with β as in (36). Thus working
with λ-triangular sequences, we recapture the best “δ” in 2), to within a
factor of 2.

Of course Proposition 22 and Proposition 20, part 3) have the following
immediate consequence.
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Corollary 24. Every super-Tauberian operator is strongly Tauberian.

Remark. We thus have for a given T ∈ L(X, Y ),

T super-Tauberian ⇒ T strongly Tauberian ⇒ T Tauberian.

It is easily seen these implications are strict (in general). Indeed, there exist
reflexive Banach spaces X which admit non-super Tauberian operators on
them (e.g., X = (

⊕∞
n=1 `1

n)2); of course any operator on a reflexive Banach
space is strongly Tauberian. If X = (

⊕∞
n=1 c0)2, and T ((xn)) = ( 1

nxn)
all (xn) ∈ X, then T is Tauberian and any open neighborhood of T in
L(X) contains a non-Tauberian operator, namely Sxn = 1

nxn for n ≤ N ,
S(xn) = 0 for n > N , for suitable N . Hence T is non-strongly Tauberian
since the strongly Tauberian operators are an open set in L(X), contained in
the Tauberian ones. (I am indebted to A. Mart́ınez for this conceptual proof
that T is non-strongly Tauberian.) It is also known there exist Tauberian
operators T with T ∗∗ non-Tauberian [AG].

Our next result, localizing Corollary 6, yields a “direct” characterization
of super-Tauberian operators. Its proof requires our main result on strongly
Tauberian operators, Theorem 21.

Corollary 25. Let T ∈ L(X, Y ). Then the following are equivalent.
1) T is super-Tauberian.
2) For all λ ≥ 1 there exists β ≥ 1 so that for all positive integers k, there

exists n > k so that if (x1, . . . , xn) is a λ-wide-(s) sequence in X; then
(Txj1 , . . . , Txjk

) is β-wide-(s) for some j1 < j2 < · · · jk ≤ n.
3) Same as 2), except replace “For all λ ≥ 1” by “There exists λ ≥ 1”.

Remark. This corollary immediately yields “directly” the semi-group
property: ST is super Tauberian if T , S are.

Now fix λ ≥ 1, and let U , XU , YU , and TU be as in the proof of Propo-
sition 9. Since T is super-Tauberian, it follows easily that also TU is super-
Tauberian. Hence by Corollary 24, TU is strongly Tauberian. Thus we may
choose β > 1 so that

(43) Theorem 21 holds for “X” = XU , “T” = TU .

Now we claim that 2β works for the Corollary. If not, then there exists a
positive k so that for all n, we may choose (xn

1 , . . . , xn
n) λ-wide-(s) in X, so

that no subsequence of (Txn
1 , . . . , Txn

n) of length k is 2β-wide-(s). Now as
usual, define (xj) in XU by xj = [(xn

j )]∞n=1 for all j. Then it follows that (xj)
is λ-wide-(s) in XU . Hence by (43), there exists j1 < j2 < · · · with (TUxji)
a β-wide-(s) sequence. But then for n sufficiently large, (Txn

j1
, . . . , Txn

jk
) is

2β-wide-(s), a contradiction. �
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We conclude with a perturbation result whose proof follows from ultra-
product considerations, which generalizes Proposition 18. This result is a
localization of Corollary 17 (cf. the remark following its proof). We say that
for sequences (xj) and (yj) in a Banach space, (yj) is an ε-perturbation of
(xj) if ‖xj − yj‖ ≤ ε all j.

Proposition 26. Let λ ≥ 1 be given. There exist β ≥ 1 and ε > 0 so that
for all k, there is an n > k so that every ε-perturbation of a λ-triangular
sequence of length n has a β-wide-(s) subsequence of length k.

Proof. Let β and ε be chosen satisfying the conclusion of Corollary 17,
and let β′ > β. We shall show that β′ and ε satisfy the conclusion of
Proposition 26. Were this false, by simply taking the c0-sum of some finite-
dimensional Banach spaces, we may choose a Banach space X and for every
n, sequences (bn

j )n
j=1 and (pn

j )n
j=1 in X with (bn

j )n
j=1 λ-triangular, ‖pn

j ‖ ≤ ε all
j, yet (bn

j +pn
j ) has no β′-wide-(s) subsequence of length k. But then letting

U and XU be as before, and defining bj = [(bn
j )]∞n=1, pj = [(pn

j )]∞n=1 for all j,
then (bj) is λ-triangular in XU and ‖pj‖ ≤ ε for all j, hence (bj + pj) has a
β-wide-(s) subsequence in XU , by Corollary 17. But then for n sufficiently
large, (bn

j + pn
j )n

j=1 has a β′-wide-(s) subsequence of length k, contradicting
our assumption. �
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