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Consider a tube with several orifices out of which fluid of a
given volume protrudes. In gravity free conditions the equi-
librium configuration will be one which minimizes total sur-
face area subject to the volume constraint. The surface of
each liquid drop will have the same constant mean curvature.
Suppose that the orifices are cirlces with radii ri where each
exposed drop is a spherical cap. We analyze this problem
from the viewpoint of catastrophe theory. For a tube with
two circular openings the interesting situation occurs when
the configuration supports a double hemisphere (h, h) equi-
librium. This gives a cusp catastrophe with the radii r1, r2 as
universal unfolding parameters. For the case of three open-
ings with a triple hemisphere equilibrium (h, h, h) we obtain
an elliptic umbilic with the radii r1, r2, r3 as unfolding param-
eters. Further surprising phenomena occur along the cusp
lines emanating from the elliptic umbilic.

1. Introduction.

Consider a tube with two (widely separated) orifices whose bounding edges
are circles of the same radius. Let a small amount of fluid be forced through
the openings. In gravity-free conditions the equilibrium configuration will be
one which minimizes the total surface area subject to a volume constraint.
The controlling force is the surface tension of the liquid-air interface. In
equilibrium each liquid drop will have the same constant mean curvature
and so each drop will be a spherical cap of the same radius. For small
volumes the unique minimizer will be two identical “small” caps which we
identify as (s, s). With increasing volume this situation persists until the two
hemisphere state (h, h) is reached. This is still a minimizing configuration.
Beyond this critical volume there will exist three equilibrium configurations
which we label as (s, l), (l, l) and (l, s). The two large cap configuration
is unstable and the minimizers are either (s, l) or (l, s). This is a classic
example of a pitch fork bifurcation and is often cited in texts as an example
of a symmetry breaking phenomenon. See the book of A.W. Adamson [1]
or the classic book on soap bubbles by C.V. Boys [3].

F. Duzaar and K. Steffen [6] considered the following generalization. Re-
peat the two bubble experiment but now assume we have a tube with three
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openings. Again for small volumes the unique minimizing configuration is
three small drops (s, s, s). As the volume is increased towards the critical
state of three hemispheres the (s, s, s) configuration remains a local mini-
mizer of area and is stable. It turns out that the (h, h, h) point is no longer
a local minimizer of area for the volume constraint. The apparatus must
jump to a distinct (and distant) new stable equilibrium state of the form
(s, s, l), (s, l, s) or (l, s, s). A real catastrophe has occured.

As Duzaar and Steffen pointed out, there is a value 0 < v∗ < vc where
vc is the critical volume of three hemispheres such that the small bubble
configuration is the area minimizer when 0 < v < v∗ while for v∗ < v <
vc the small bubble configuration, although stable, is no longer a global
minimizer. They exhibited this three bubble experiment as an example
where the set of minimizing configurations for various volumes do not form
a connected set. We note there is a jump in the mean curvature of the
absolute minimizer as the volume passes through v∗.

The goal of this paper to analyze these experiments from the point of
view of catastrophe theory. The two bubble pitchfork bifurcation is the hall
mark of the cusp catastrophe. There will be two unfolding parameters which
can be naturally produced by allowing the radii of the two circles r1, r2 to
become parameters. For the three bubble apparatus a similar analysis will
yield another one of R. Thom’s seven elementary catastrophes, the elliptic
umbilic. The universal unfolding now requires three parameters and again
a suitable choice is the radii of the three circles r1, r2 r3.

In each experiment one wishes to eliminate the homothety as an expan-
sion of this type produces a physically identical situation. This is most
conveniently done by setting the total exposed volume VT = n(2π/3) where
n is the number of openings. The critical catastrophe then occurs when
each ri = 1. One often likes to keep the openings fixed and allow the vol-
ume to increase from zero to infinity. This may be done by choosing a ray
(tr1, tr2, tr3) emanating from the origin. As one moves from infinity to the
origin along this ray one passes through a family of experiments equivalent
(via a homothety) to that of increasing the volume with fixed openings.

For the three bubble experiment with the elliptic umbilic at (r1, r2, r3) =
(1, 1, 1) and VT = 2π there emanate three cusp lines which are part of the
bifurcation set. One such cusp line lies in the plane r1 = r2 and is tangent
to the ray r1 = r2 = r3 at (1, 1, 1). This cusp line has two parts. One part
consists of points r1 = r2 > r3 which support equilibrium configurations
(h, h, s) of total volume 2π while the other piece will support configurations
of the form (h, h, l) of total volume 2π. We refer to the first case as branch
[A] and the second as branch [B].

On branch [A] all points but one determine a cusp catastrophe. It turns
out that as one passes through this critical point P ∗ = (r∗1, r

∗
2, r

∗
3) with

r∗3 < r∗1 = r∗2 and r∗3/r
∗
1
∼= .95 along the cusp curve there is a reversal in the
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direction of bifurcation. There is a switch from the cusp to its dual. The
critical point P ∗ is a catastrophe of order six, the butterfly. This catastrophe
requires four parameters for a universal unfolding. The three we have are
not sufficient. We present two different perturbations of the system either
of which will generate the necessary fourth unfolding parameter. One is to
introduce a gravitational potential on the exposed mass of the fluid leading
to new equilibrium configurations in the form of pendant and sessile drops.
The other is to introduce surface tension as a parameter. The energy then
becomes a weighted sum of the areas of the individual drops. A surprise (to
me at least) is that a perturbation of the boundary curves away from circles
fails to produce a universal unfolding at the butterfly point.

In Section 2 we derive the basic formulas needed in our analysis and
prove some elementary but useful lemmas. As essential point is that we can
reduce the problem to a finite dimensional setting by the device of replacing
any oriented surface spanning a circle by a spherical cap spanning the same
circle, enclosing the same volume but having smaller area. We also give
a simple convincing argument why there is a real catastrophe in the three
bubble case. In Section 3 we give a quick review of the key definitions and
tools of catastrophe theory we shall need. Our main source is the book of D.
Castrigiano and S. Hayes [5] and the exposition of T. Poston and I. Stewart
[10]. In Section 4 we carry out the analysis for the two bubble experiment
for the sake of completeness and to prepare us for the three bubble case.
In Section 5 we analyze the three bubble configuration. First we display
the elliptic umbilic at the three hemisphere state and show that the three
parameters r1, r2, r3 provide a universal unfolding. We then demonstrate
the existence of the butterfly catastrophe on branch [A] of the cusp line,
the branch with (h, h, s) equilibria. In the final Section 6 we produce the
universal unfolding for the butterfly. We show that either the introduction
of a gravitational potential or a perturbation of the surface tension succeeds
while any attempt to produce a universal unfolding by bending the boundary
circles fails.

There have been many applications of Catastrophe Theory to problems
in the physical sciences and geometry. Of special relevance is the paper of
M. Beeson and A. Tromba [2]. They study Enneper’s Minimal Surface as a
solution to Plateau’s Problem spanning a family of Jordan curves Γr lying
in the surface and increasing in size. Initially, Enneper’s surface is the only
solution, being the area minimizer. At a certain value r = 1 the Enneper’s
surface losses stability and there is a bifurcation into three minimal surfaces
spanning Γr when r > 1. This phenomenon was first observed by J.C.C.
Nitsche [9]. Beeson and Tromba carried out the detailed analysis, identified
the cusp catstrophe and produced unfolding. An extension of this approach
with other examples was recently carried out by J. Büch [4]. A further inter-
esting application of Catastrophe Theory in the study of minimal surfaces
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is described by A.T. Fomenko in [8]. In his book a swallowtail catastrophe
is exhibited where the unfolding parameters correspond to bending of the
boundary curve.

The author wishes to express a special thanks to the referee who made a
number of very pertinent and beneficial suggestions.

2. Essential Formulas and Observations.

First we display the formulas for the surface area and volume of a single
spherical cap bounded by a circle of radius r. Let C be the circular arc in
the upper half plane whose center is (0, t) and which passes through (r, 0).
The surface is generated by rotating this arc about the y-axis while the
point (r, 0) generates the bounding circle. We shall use t as a convenient
parameter. One has

A(r, t) = 2π
(
r2 + t2 + t

√
r2 + t2

)
(2.1)

V (r, t) =
π

3

[
2(r2 + t2)

3
2 + 3t(r2 + t2)− t3

]
.

Note that for t < 0 we have a small cap, for t = 0 the hemisphere and for
positive t the large spherical cap. One checks that dA/dV = 2/a = 2H
where H is the mean curvature and a =

√
r2 + t2. In particular we will use

these formulas when r = 1.

a(t) = A(1, t) = 2π
(
1 + t2 + t

√
1 + t2

)
(2.2)

v(t) = V (1, t) =
π

3

[
2(1 + t2)

3
2 + 3t(1 + t2)− t3

]
.

One finds that

v̇(t) = π
(
t+
√

1 + t2
)2

is positive so that we have a = a(v).

Lemma 2.1. The area of a spherical cap as a function of volume has the
following derivatives

a′(v) = 2/
√

1 + t2(2.3)

a′′(v) = (−2/π)
[
t/(1 + t2)

3
2

] [√
1 + t2 − t

]2
a′′′(v) = (−2/π2)

[(√
1 + t2 − t

)4
/(1 + t2)

5
2

] [
1− 2t2 − 2t

√
1 + t2

]
a(4)(v) = (2/π3)

[(√
1 + t2 − t

)6
/(1 + t2)

7
2

] [
6 + t− 14t2

(√
1 + t2 + t

)]
.

For t = 0 we have v = vc = 2π/3. We find
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(a) a(v) has an inflection point at v = vc with a′′(vc) = 0, a′′(v) is positive
for 0 ≤ v < vc and a′′(v) is negative for v > vc. Observe that a′′(0) =
8/π.

(b) a′′′(v) = 0 when t =
√

2/4 which corresponds to a value v1 > vc.
We have a′′′(v) negative for 0 < v < v1 and positive for v > v1.
Furthermore a′′′(vc) = −2/π2.

(c) a(4)(v) is positive in some interval about v = vc with a(4)(vc) = 12/π3.
It is negative outside this interval.

It is very convenient to rescale this function by setting v = (2π/3)u and
E = a/π.

Definition 2.1. The rescaled energy function is E = F (u) = 1
πa(

2π
3 u)

where a(v) is given by (2.2).

Corollary. The rescaled function E = F (u) has the following properties,
(see Figure 2).

a) F (u) is an increasing function of u with F ′(u) positive for u > 0. We
have F (0) = 1, F ′(0) = 0, F (1) = 2 and F ′(1) = 4/3.

b) F (u) has an inflection point at u = 1 with F ′′(1) = 0. F ′′(u) is positive
for 0 < u < 1 and negative for u > 1, F ′′(0) = 32/9.

c) F ′′′(u) = 0 at a value u1 > 1. F ′′′(u) is negative for 0 < u < u1 and
positive for u > u1 with F ′′′(0) = 0 and F ′′′(1) ≡ −γ = −16/27.

d) F (4)(u) is positive in some interval about u = 1 and is negative outside
that interval with F (4)(1) ≡ δ = 64/27.

Definition 2.2 (The Experiment). Consider the apparatus consisting of a
tube with n circular orifices of corresponding radii ri. Let the total exposed
volume be VT = (2π/3)UT where generally UT = n. By replacing each
bubble by its equivalent spherical cap, our state space S consists of all n-
tuples u = (u1, u2, . . . , un) with u1 + u2 + · · · + un = n, where we assume
each ui ≥ 0. The energy is given by

E =
n∑

i=1

r2i F (ui/r
3
i )(2.4)

where E = (area)/π. We look for equilibria of this function subject to the
constraint u1 + u2 + · · ·+ un = UT = n.

Using the constraint condition and regarding E as a function of (u1, . . . ,
un−1) one finds that at an equilibrium point there is a constant H with

1
ri
F ′(ui/r

3
i ) = 2H i = 1, 2, . . . , n.(2.5)

Each spherical cap has the same mean curvature. We shall label any spher-
ical cap by s (small), h (hemisphere) or l (large). We have the following
result for equilibrium configurations consisting of small caps.
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Lemma 2.2. Let ri > 0 be given and let S′ be the set of states u =
(u1, . . . , un) where ui ≤ r3i so that each bubble is a small (possibly hemi-
spherical ) cap. Let u∗ = (u∗1, u

∗
2, . . . , u

∗
n) be an equilibrium configuration for

E subject to the constraint u1 + u2 + · · ·+ un = n and which lies in S′.

a) The stae u∗ is a minimizer of E in the state space S′ subject to u1 +
u2 + · · ·+ un = n.

b) If u∗ is an interior point of S′ then u∗ is a strictly stable local minimizer
of E in S as well.

Proof. By the Corollary to Lemma 2.1 we see that the function E given
by (2.4) is a strictly convex function of (u1, u2, . . . , un) on the set S′. Its
Hessian is diagonal with entries

Euiui =
1
r4i
F ′′(ui/r

3
i ) ≥ 0.(2.6)

It follows that on the linear convex set u1 + u2 + · · ·+ un = n the function
E has a unique minimizing point u∗. If this minimum is at an interior point
then it must be stable as the Hessian is positive definite. Also, if u∗ is an
interior equilibrium point then by the convexity of E it will be a stable
minimizer for the constrained problem. �

Theorem 2.1. We collect the following facts.
(a) Any equilibrium with two or more large caps is unstable.
(b) Suppose n = 2 and fix r1 = r2. As we allow the total volume to

vary there are two smooth families of equilibria. One is the symmetric
family (s, s) → (h, h) → (l, l), the other is (s, l) → (h, h) → (l, s)
giving the pitchfork bifurcation at (h, h). The stable minimizers are
(s, s), (h, h) and (s, l), (l, s) while (l, l) is unstable.

(c) Suppose n = 2 and r1 > r2. There are now two smooth disjoint fam-
ilies. One is (s, s) → (l, s) while the other is (s, l) → (l, l). We can
parametrize either family by t, the center of the first drop. (One could
also use the volume u1 of the first drop as parameter.) On the first
family the rate of change of volume V̇ (t) is positive. All configurations
are stable equilibria and are minimizers for the constrained problem.
On the second family the volume function V (t) is a convex function
with limit V (t) = +∞ at each end. The configurations (s, l) for t near
−∞ are initially stable. There is a point before the (h, l) configuration
is reached where V̇ (t) = 0 giving a loss of stability. The (h, l) state
is not stable. The point t∗ where V̇ (t∗) = 0 with state (s∗, l∗) corre-
sponds to a fold catastrophe. In particular there are states (s, l) which
are unstable.

Proof. To prove (a) it is sufficient to consider the case of two bubbles. Sup-
pose (l, l) is an equilibrium configuration with u1 + u2 = 2 with the energy
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function E given by (2.4). Set u = u1, so that u2 = 2 − u. In equilibrium
we have Eu = 0 so that condition (2.5) is satisfied. But then

Euu =
1
r41
F ′′(u1/r

3
1) +

1
r42
F ′′(u2/r

3
2).(2.7)

For large caps u1/r
3
1 > 1 and u2/r

3
2 > 1 and so Euu is negative by the

properties of F (u) given in the Corollary to Lemma 2.1.
Statement (b) follows from (a) and the fact that the constrained problem

always has a minimizer.
For the families in (c) the volume V1(t) of the first bubble is given by

(2.1). For the first family the second bubble is a small cap whose radius
a =

√
r21 + t2 is that of the first bubble. The volume V2 of the small cap is

given by V2 = (π/6)x(x2 + 3r22) where x = a−
√
a2 − r22 is the height of the

cap. One finds

V̇ (t) = π

(a+ t)2 −
t
(
a−

√
a2 − r22

)
√
a2 − r22

 .(2.8)

Clearly this is positive when t ≤ 0. For positive t one checks that the ex-
pression on the right is decreased if we replace r2 by r1. This new expression
simplifies to 4πat and so V̇ (t) > 0 for all t.

Note. It is easily seen from the isoperimetric inequality that when r1 > r2
the unique minimizing configuration is obtained by setting the second bubble
to be a small cap. Let (c1, c2) be a minimizing configuration. c1 is a large
or small cap of some sphere bounded by a circle of radius r1. Since r2 < r1
there is room to fit the small cap c2 on that remaining cap of the sphere not
covered by c1. The assertion follows.

In the same manner for the second family where c2 is a large cap we have
the same formula for V1(t) but V2(t) is now the volume of the large cap
determined by t. One finds

d2(V1 + V2)
dt2

=
(
a+

√
a2 − r22

)(
t

a
+

t√
a2 − r22

)2

(2.9)

+
π

2

(
2a2 + 2a

√
a2 − r22

)(
r21
a3

+
r21 − r22

(a2 − r22)
3
2

)
which is positive for all t. One sees that when t = 0 where the first cap is a
hemisphere that V̇1(0) is positive while the second drop has a turn around in
curvature showing that V̇2(0) = 0. Therefore on this second family the total
volume V (t) reaches a minimum at some point t∗ < 0 when the configuration
is in an (s, l) mode. We now check loss of stability at the turn around point
t∗. Let us set the first volume u1 = u as parameter with u1+u2 = U(u) where
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U(u) is the scaled total volume. This scaled volume U(u) is determined by
the equilibrium condition (2.5). The stability is determined by the sign of
Euu given by (2.7). We have in equilibrium

1
r1
F ′(u/r31)−

1
r2
F ′([U(u)− u]/r32) = 0.

Differentiating with respect to u = u1 and rearranging we find
1
r42
F ′′(u2/r

3
2) · [dU/du] =

1
r41
F ′′(u1/r

3
1) +

1
r42
F ′′(u2/r

3
2).

Since c2 is a large cap we have u2/r
3
2 > 1 and F ′′(u2/r

3
2) < 0. The right side

of our equation is opposite the sign of (dU/du) which is essentially dV/dt
and assertion (c) follows. �

We conclude this section by discussing one aspect of the three bubble
problem. Suppose r1 = r2 = r3 and consider the families which pass through
the three hemisphere (h, h, h) state. The symmteric family is (s, s, s) →
(h, h, h) → (l, l, l). This is a family of increasing volume where the (s, s, s)
segment is stable while the (l, l, l) segment is not, and for small exposed
volume the (s, s, s) family will be a global minimizer. The three other fam-
ilies are permutations of each other, for example (s, s, l) → (l, l, s). Note
that this family is equivalent to a two bubble picture where r2 = 0 and the
second bubble is a complete sphere, (simply put the spherical caps two and
three together to form an entire sphere). One can then use (2.9) to see that
the total volume of this family is a convex function. As earlier, one observes
that the total volume V (t) obtains its minimum at some point before the
three hemisphere state is reached. This family becomes unstable when Vmin

is obtained. Therefore in a neighbourhood of (h, h, h) the only stable con-
figurations are three small caps. A jump in the equilibrium must occur as
the volume is increased beyond the three hemisphere state. We shall see in
Section 5 that even (h, h, h) is not a local minimizer.

3. Review of Catastrophe Theory.

We now give a quick summary of those definitions and results of catastro-
phe theory which will be needed. We follow the discussion in the book of
Castrigiano and Hayes [5].

Definition 3.1. Let E be the algebra of germs of C∞-functions defined in
a neghbourhood of x = 0 in Rn. Two functions f and g determine the
same germ if they agree on some neighbourhood of the origin. The germ
determined by f is denoted by [f ].

Definition 3.2. m ⊂ E is the (maximal) ideal of germs of functions which
vanish at x = 0. Given m one can also form the ideals mk where

mk = {f |Dαf(0), |α| < k}, k ≥ 1.
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Definition 3.3. Let A be the set of all local C∞-diffeomorphisms ψ of a
neighbourhood of x = 0 with ψ(0) = 0.

Note: Dψ(0) is invertible. Frequently we will have Dψ(0) = identity.

Definition 3.4. If A ⊂ E is a subset of E then 〈A〉 is the linear subspace
of E generated by A while 〈A〉E = 〈EA〉 is ideal generated by A.

Definition 3.5. Let f ∈ E . The k-jet of f about x = 0 is the polynomial
of degree k

jk(f) =
∑
|α|≤k

1
α!
Dαf(0)xα

α = 〈α1, . . . , αn〉, xα = xα1
1 · · ·xαn

n , α! = α1! · · ·αn!.

Note that Jk, the space of k-jets in E is isomorphic to E/mk+1.

Definition 3.6. f is k-determinant at x = 0 if given g ∈ E with jk(f) =
jk(g) there exists a local diffeomorphism ψ ∈ A with g = f ·ψ. The smallest
integer k such that f is k-determined is called the determinancy of f , denoted
by det[f ].

We will display R. Thom’s short list at the end of this section but we now
note that
(1) f(x) ≡ c is not finitely determined.
(2) f(x) is k-determined ⇒ f(x) + c is also.
(3) ∇f(0) 6= 0 implies det[f ] = 1.
(4) ∇f(0) = 0, D2f(0) nondegenerate ⇒ det[f ] = 2.

Definition 3.7. The Jacobi Ideal J (f) is the ideal in E generated by the
first partial derivatives fi(x) = ∂f/∂xi, i = 1, 2, . . . , n.

J (f) = 〈f1(x), f2(x), . . . , fn(x)〉E .
Theorem 3.1 (Test for determinancy). Let f ∈ E and form J (f).
(1) If mk+1 ⊂ 〈m2J (f)〉 then f is k-determined.
(2) f is finitely determined if there exists k with mk ⊂ 〈mJ (f)〉. If k is

the smallest integer for which this is true then det[f ] = k or k − 1.
(3) If f is k-determined, then mk+1 ⊂ 〈mJ (f)〉.

Definition 3.8. Let f ∈ m2 be a finitely determined germ with det[f ] > 2.
For such f

codimension [f ] ≡ cod [f ] = dim(m/J (f)).

Definition 3.9. An unfolding of a germ f is a local C∞ map F : Rn+L →
R with F = F (x, r) where x = (x1, . . . , xn), r = (r1, . . . , rL) such that
F (0, r) = 0 and F (x, 0) = f(x).

Definition 3.10. An unfolding G(y, s) is induced by F (x, r) if there exist
smooth functions
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(a) x = ϕ(y, s) with y = ϕ(y, 0),
(b) r = ψ(s) with ψ(0) = 0,
(c) γ(s) ∈ R with γ(0) = 0,

such that G(y, s) = F (ϕ(y, s), ψ(s)) + γ(s).

Definition 3.11. An unfolding F is versal if any other unfolding G is in-
duced by F . It is universal if it is versal and the number of parameters L is
minimal and equal cod [f ].

Theorem 3.2. Let f be finitely determined with cod(f) = L. Let g1(x),
g2(x), . . . , gL(x) span the linear space [m/J [f ]]. Then

F (x, r) = f(x) +
L∑

i=1

rigi(x)

is a universal unfolding of f .

R. Thom’s Seven Elementary Catastrophes & Universal Unfoldings.

Germ & Unfolding det[f ] cod[f ] Name

±x3 − ax 3 1 fold

±x4 − ax2 − bx 4 2 cusp

x5 − ax3 − bx2 − cx 5 3 swallow tail

±x6 − ax4 − bx3 − cx2 − dx 6 4 butterfly

(x3 − xy2)− a(x2 + y2) 3 3 elliptic umbilic

−bx− cy

(x3 + y3)− axy − bx− cy 3 3 hyperbolic umbilic

(x2y + y4)− ax2 − by2 4 4 parabolic umbilic

−cx− dy

Theorem 3.3 (Splitting Lemma). Let f ∈ m2 and suppose the hessian
D2f(0) has rank L < n. There exists a local diffeomorphism about x = 0 so
that in the new coordinates f takes the form

f(y) =
L∑

i=1

εiy
2
i + g(yL+1, . . . , yn)

where εi = ±1 and g ∈ m3.

The following theorem allows us to identify universal unfoldings.
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Theorem 3.4. Let F (x, r) with x ∈ Rn, r ∈ RL be an unfolding of the
finitely determined function f(x) about (x, r) = (0, 0). Let

gi(x) = Fri(x, 0)− Fri(0, 0) ∈ m

and let V (F ) be the linear space generated by g1(x), . . . , gL(x). F (x, r) is
a versal unfolding if the image of V (F ) under the quotient map equals
[m/J (f)]. It is universal if in addition L = cod[f ] = dim(m/J (f)). Fur-
thermore the unfolding

G(x, r) = f(x) =
r∑

i=1

rigi(x)

is then also universal.

Finally we define the following sets.

Definition 3.12. Let F (x, r) be a universal unfolding of the finitely deter-
mined germ f .
(1) The catastrophe surfaceMF ⊂ Rn+L is the setMF = {(x, r)|DxF (x, r)

= 0}.
(2) The catastrophe set CF is the subset of MF consisting of those points

(x, r) in MF for which D2
F is degenerate.

(3) The bifurcation set BF is the projection of CF onto the parameter
space RL.

In the next section we shall encounter the function E(x) where DE(x0) =
0, D2E(x0) is degenerate and E(x) is finitely determined. We can extend
the definition of unfolding as given in Definition 3.9 by setting F (w) =
E(x0 + w)− E(x0) so that F (0) = 0 and the degenerate point is at w = 0.

4. The Double Pipe Catastrophe.

For the double pipe with openings r1, r2 and normalized volumes u1, u2 the
energy function E(u, r1, r2) is given by (2.4) where we set u = u1 and u1 +
u2 = 2. The double hemisphere occurs when r1 = r2 = 1. The catastrophe
surface ME is the set of points (u, r1, r2) in R3 where

Eu =
1
r1
F ′(u1/r

3
1)−

1
r2
F ′(u2/r

3
2) = 0.(4.1)

The catastrophe set CE are those points in ME for which Euu = 0.

Euu =
1
r41
F ′′(u1/r

3
1) +

1
r42
F ′′(u2/r

3
2) = 0.(4.2)

Its projection onto the parameter space (r1, r2) is the bifurcation set BE .
The cusp will occur when (u, r1, r2) = (1, 1, 1) ∈ CE and (1, 1) ∈ BE . At
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(1, 1, 1) we see that Euu = Euuu = 0 while

D4
u =

1
r10
1

F (4)(u1/r
3
1) +

1
r102

F (4)(u2/r
3
2)(4.3)

and soD4
uE(1, 1, 1) = 2F (4)(1) = 2δ = 128/27 using the Corollary to Lemma

2.1. Thus

j4(E) =
2δ
24

(u− 1)4 = (16/81)(u− 1)4(4.4)

or if we set x = u − 1, then j4(E) = (16/81)x4. The determinacy of E at
(1, 1, 1) is four, giving us the cusp catastrophe.

We now show that the parameters r1, r2 are unfolding parameters and that
this unfolding is universal. We know that cod[E] = 2 where m modJ (E) is
spanned by {(u− 1), (u− 1)2}. We now calculate

Ti(u− 1) = Eri(u, 1, 1)− Eri(1, 1, 1) i = 1, 2

and expanded these in power of (u− 1) = x. We find

T1(x) = (−4/3)x+ (8/9)x2 + · · ·
T2(x) = (4/3)x+ (8/9)x2 + · · ·

using the properties of F (u) given in the Corollary to Lemma 2.1. Clearly
the pair T1, T2 does span m modJ (E) and we have a universal unfolding
by Theorem 3.4. It is equivalent to the unfolding

E(u, r1, r2) ∼= (16/81)x4 + r1T1(x) + r2T2(x).

More symmetric parameters are obtained by setting s1 = r1+r2, s2 = r1−r2.
With these parameters the unfolding becomes

E(u, s1, s2) ∼= (16/81)x4 + (8s1/9)x2 − (4s2/3)x.

This is the standard unfolding of the cusp as given in the table. The tangent
direction through the cusp is the ray from the origin through (1, 1).

To complete the bifurcation set one must include the fold lines. These
are two symmetric curves with a cusp at (1, 1). One branch goes to the r1
axis and the other to the r2 axis.

Fix r1 > r2 > 0. As discussed in Section 2 there are two families of
equilibria namely (A) : (s, s) → (l, s) and (B) : (s, l) → (l, l). By Theorem
2.1 the volume function on family (A) is strictly monotonic, V̇ (t) > 0, and
this family provides the minimizers. On Family (B) the volume function
is strictly convex and there is a unique point t∗ < 0 with V̇ (t∗) = 0. This
determines the fold point on a given ray r2/r1 = constant.

When r2 = 0 we are in the problem of a spherical cap plus an entire
sphere. For such a configuration we have V (t) = V1(t) + V2(t) where V1(t)
is the volume of the cap (2.1) and V2(t) is the volume of an entire sphere
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of radius a where a2 = r21 + t2. If r1 = 1 then V̇ (t∗) = 0 when t∗ ∼= −.1,
V (t∗) ∼= (4π/3)(1.447).

For our normalization the total volume VT = 4π/3 giving us r∗1
∼=

(1.447)−1/3 ∼= .884 [see Figure 3].

5. The Triple Pipe Catastrophe.

We now consider the triple pipe configuration with bounding circles of radii
r1, r2, r3. The energy function is given by (2.4) where the exposed volume
is vi = (2π/3)ui, u1 + u2 + u3 = 3

E(u1, u2, r1, r2, r3) =
3∑

i=1

r2i F (ui/r
3
i ), u1 + u2 + u3 = 3.(5.1)

We describe the catastrophe at the triple hemisphere point (h, h, h) where
r1 = r2 = r3 = 1.

Theorem 5.1. The point (u, r) = (1, 1, 1, 1, 1) ∈ R5 lies on the catastrophe
set CE of the energy function E. At this point E is totally degenerate with
DuE = D2

uE = 0. The energy is a finitely determined function with det[E] =
3 giving us an elliptic umbilic point as listed in the table. This catastrophe
has codimension three and the parameters (r1, r2, r3) provide a universal
unfolding. The bifurcation set for the elliptic umbilic contains three cusp
lines which are tangent at (1, 1, 1) to the ray based at the origin.

Proof. As we are in equilibrium we know thatDuE = 0. FurthermoreD2
uE =

0 as well since F ′′(1) = 0. The Hessian is totally degenerate and we consider
the third derivatives. A direct computation using the properties of F (u) as
listed in the Corollary to Lemma 2.1 gives

j3(E) = (γ/2)
[
(u1 − 1)2(u2 − 1) + (u1 − 1)(u2 − 1)2

]
(5.2)

where F ′′′(1) = −γ = −16/27. Set u1 = x+ 1, u2 = y + 1 so then

j3(E) = (γ/2)(x2y + xy2), γ = 16/27.(5.3)

That this is an elliptic umbilic is easily seen by setting s = x+ y, t = x− y
giving us

j3(E) = (γ/8)(s3 − st2) = (2/27)(s3 − st2)(5.4)

which appears on Thom’s list with det[E] = 3.
Now consider the unfolding. Since det[E] = 3 we have m4 ⊂ 〈mJ (E)〉

where J (E) is the Jacobi ideal of E. Therefore J (E) is generated by the
3-jets of the functions Ei = ∂E/∂ui. In (x, y) coordinates this gives

J (E) = 〈2xy + y2, x2 + 2xy〉E .(5.5)
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From this it follows that m3 ⊂ 〈mJ (E)〉. The quotient space [m/J (E)] is
generated by the polynomials 〈x, y, x2 + y2〉. Our unfolding directions are

Eri(u1, u2, 1, 1, 1)− Eri(1, 1, 1, 1, 1), i = 1, 2, 3.

By the comments above we need only look at the 2-jet of these functions.
Upon rewriting these functions using the x− y coordinates we obtain

T1(x, y) = (−4/3)x+ (8/9)x2 + · · ·
T2(x, y) = (−4/3)y + (8/9)y2 + · · ·
T3(x, y) = (4/3)(x+ y) + (8/9)(x+ y)2 + · · ·

It remains to check that m = J (E)⊕ V (E) where V (E) is the linear space
generated by T1, T2, T3 and J (E) is the ideal generated by e1, e2 as listed
in (5.5). Since m3 ⊂ 〈mJ (E)〉 one needs only look at polynomials of
degree at most two in m. This is a five dimensional space spanned by
〈e1, e2, T1, T2, T3〉. Our unfolding is universal. �

Note. From the discussion of Section 2 we know that a three small cap
configuration (s, s, s) is a stable local minimizer of energy while the three
large cap configuration (l, l, l) is unstable. At the triple hemisphere point
(h, h, h) the leading term in the energy function is the cubic (5.2) which
shows that (h, h, h) is not a local minimizer of energy. The configuration
must travel to a new stable equilibrium.

We have identified (1, 1, 1) on the bifurcation set BE corresponding to the
(h, h, h) configuration with the elliptic umbilic catastrophe. Three cusp lines
pass through this point tangentially. One such cusp line lies in the plane
r1 = r2 and consists of those points r1 = r2 ≥ r3 supporting equilibrium
configurations (h, h, s) or (h, h, l). At these points the second derivative will
have rank one and the energy function will have determinacy greater than
three. [Figure 4.]

Lemma 5.1. The cusp line for E lying in the plane r1 = r2 consists of
those points (r1, r2, r3) where r1 = r2 ≥ r3 ≥ 0 supporting an equilibrium
configuration of the form (h, h, s) or (h, h, l). Let branch [A] correspond to
those points supporting (h, h, s). This branch connects (1, 1, 1) to a point
(rA, rA, 0) where rA = (3/2)1/3 ∼= 1.1447. At this limit point the small cap
has disappeared and (h, h) consists of two hemispheres with u1 + u2 = 3 or
V = 2π. Branch [B] are those points supporting (h, h, l). It connects (1, 1, 1)
to a point (rB, rB, 0) where the equilibrium configuration is two hemispheres
plus an entire sphere of total volume 2π. This implies that rB = (3/4)1/3 ∼=
.9086. [Figure 5.]

Proof. A straightforward calculation.
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Theorem 5.2. Let (r1, r2, r3) be a point on the cusp curve [A] with r1 = r2
and r3 = λr1, 0 < λ < 1. Fix this point and consider the two families
of equilibria with varying volume. One family is the symmetric family C1 :
(s, s, s) → (h, h, s) → (l, l, s) and the other is the bifurcating family C2 :
(s, l, s) → (h, h, s) → (l, s, s). As in Section 2 we parametrize each family by
t where (0, t) locates the center of the first bubble with radius a2 = r21 + t2.
Let V (t) be the total volume function for each family. For the symmetric
family one finds that V (t) is increasing with V̇ (t) > 0 for all t. On the
family C2 the volume function has the following properties.
(a) V (t) is an even function of t with limit V (t) being +∞ at each end.
(b) There is a value λ∗ ∼= .98517 such that:

(i) For 0 < λ < λ∗ the volume function has just one critical point at
t = 0 with V̇ (0) = 0 and V̈ (0) > 0. For t > 0 we have V̇ (t) > 0
and for t < 0 we have V̇ (t) < 0.

(ii) For λ∗ < λ < 1 the volume function has three critical points. For
t = 0 we have V̇ (0) = 0 and V̈ (0) < 0. The other critical points
are at a value t1 > 0 and t2 = −t1. For 0 < t < t1 V̇ (t) < 0 while
for t > t1 we have V̇ (t) > 0.

(iii) V (t) has a single critical point at t = 0 when λ = λ∗. The second
and third derivatives also vanish at t = 0 but V (4)(0) is positive.
Finally, V̇ (t) > 0 for t > 0 so that V (t) has a minimum at t = 0.

In other words if 0 < λ < λ∗ as one increases volume along the symmetric
family C1 there will occur a forward bifurcation into stable non-symmetric
equilibria while for λ∗ < λ < 1 there is a reverse bifurcation into unstable
non-symmetric equilibria. In this case the state (h, h, s) will fail to be a
local minimizer. These two possibilities correspond to a cusp and its dual.
Finally, as we shall see in Theorem 5.3, when λ = λ∗ there will occur a
catastrophe of determinancy six (the Butterfly) at the (h, h, s) point [Figure
5 and 6].

Proof. Consider the symmetric family C1, with total volume V = V1+V2+V3.
From Theorem 2.1 we have that d(V1 +V3)/dt is positive. Since V2(t) is also
increasing we see that dV/dt is positive.

Now consider the non-symmetric family C2. The volume at any equilib-
rium is an entire sphere plus a small cap. From Section 2 one finds

V = (π/3)[6a3 − 3a2h+ h3](5.6)

a2 = r21 + t2, h2 = a2 − r23 = (r21 − r23) + t2.

If we set r3 = λr1 and t = τr1 we find

V̇ (t) = πτr21

[
6
√

1 + τ2 − (2− λ2 + 2τ2)√
(1− λ2) + τ2

]
(5.7a)
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= πτr21ϕ(λ, τ)

V̈ (0) = πr1

[
6− 2− λ√

1− λ2

]
= πr1ϕ(λ, 0).(5.7b)

From the second equation one concludes that there is exactly one value λ∗,
0 < λ∗ < 1, a root of λ4 + 32λ2 − 32 = 0 such that V̈ (0) is positive for
0 < λ < λ∗ and is negative for λ∗ < λ < 1.

Consider the function ϕ(λ, τ) on the strip 0 < τ < ∞ and 0 ≤ λ ≤ 1.
A close analysis reveals that ϕτ is positive on the strip. It follows that the
zero set of ϕ(λ, τ) is given by a function τ = τ(λ) defined for λ∗ ≤ λ ≤ 1
connecting (λ∗, 0) to (1, τ∗) for some τ∗ > 0. It follows that for 0 < λ < λ∗,
V̇ (t) is positive when t > 0 while for λ∗ < λ ≤ 1 V̇ (t) is initially negative
until we cross the zero set of ϕ(λ, τ) after which it is positive.

At λ = λ∗ we have V̈ (0) = 0 and moreover
...
V (0) = 0 as V (t) is an

even function of t. We claim that V (4)(0) is positive. Since V (t) is an even
function of t we can express V (t) = G(t2) for any fixed λ. By the chain
rule finds that V̈ (0) = 2G′(0) and then V (4)(0) = 12G′′(0). Again setting
r3 = λr1 one obtains

G′(0) = (πr1/2)
[
6− 2− λ2

√
1− λ2

]
=
πr1
2
ϕ(λ, 0)

G′′(0) =
π

4r1

[
6 +

3λ2 − 2

(1− λ2)
3
2

]
.

When λ = λ∗ and G′(0) = 0 one sees that G′′(0) is positive whence V (4)(0)
is also positive. �

Now we shall compute more explicitly the energy function E along the
cusp line [A]. We introduce an explicit change of coordinates so that the
4-jet of the energy function splits into a non-degenerate part and a totally
degenerate part, making obvious the nature of the catastrophe. We do this
with a view to examing the unfolding introduced by our three parameters.

Theorem 5.3. For each point (r1, r2, r3) on the cusp curve [A] with equi-
librium configurations of the form (h, h, s) there exists a smooth change of
coordinates (u1, u2) → (w1, w2) which is a local diffeomorphism and is a
polynomical function such that the 4-jet of the energy E (up to a constant)
on the cusp line [A] takes the form

j4(E) = w2
1 +Dw4

2, D = C − 1(5.8)

where C = (9/2)(r1/r3)4F ′′
(
û3/r

3
3

)
.

If D 6= 0 then det[E] = 4 and we have, after splitting off the w1 coordinate,
the standard cusp catastrophe. The direction of the bifurcation is determined
by the sign of D. At exactly one point on the curve [A] D will vanish. At



A SURPRISING BUBBLE CATASTROPHE 355

this point (corresponding to λ = λ∗) det[E] = 6 and one can introduce
coordinates so that

j6(E) = w2
1 + Fw6

2 where F > 0.(5.9)

At this point the energy has, after splitting off the first coordinate, a butterfly
catastrophe requiring four parameters for a universal unfolding. The expres-
sions j4(E) and j6(E) are evaluated at û1 = r31, û2 = r32 and û1+û2+û3 = 3
where (r1, r2, r3) with r1 = r2 > r3 lies on the cusp line [A].

Proof. Let (r1, r1, r3) lie on the cusp curve [A] supporting a configuration
(h, h, s). Let (û1, û2, r1, r1, r3) be the corresponding point on the catastrophe
set CE so that û1 = û2 = r31, û3/r

3
3 < 1 and û1 + û2 + û3 = 3. The energy

E is given by (5.1). We want to expand E about (û1, û2) in powers of
(u1− û1, u2− û2). If we set x = u1− û1 and y = u2− û2 then the n-th order
term in the power series expansion of E is

En =
1
n!

[An(xn + yn) + (−1)nBn(x+ y)n](5.10)

An =
1

r3n−2
1

F (n)(1), Bn =
1

r3n−2
3

F (n)
(
û3/r

3
3

)
.

Noting that A2 = 0 as F ′′(1) = 0 we find the 4-jet of E (up to a constant)
to be

B2

2
(x+ y)2 +

1
6
[A3(x3 + y3)−B3(x+ y)3](5.11)

+
1
24

[A4(x4 + y4) +B4(x+ y)4].

On the curve [A] B2 is positive (while on the other curve [B] the factor B2 is
negative). We simplify (5.11) by first making a linear change of coordinates
s = x+ y, σt = x− y getting

j4(E) =
a

2
{s2 + (−2st2 + 2αs4) + (As4 +Bs2t2 + Ct4)}.(5.12)

Here a = B2, σ
2 = −8a/A3, A3 =

1
r71
F ′′′(1) = −γ/r71 < 0

2α =
A3 − 4B3

12a
, A =

A4 + 8B4

96a
, B =

σ2A4

16a
, C =

σ4A4

96a
.

On the cusp curve [A] a = B2 is positive and so D2
uE has rank one. We

complete the splitting at the 4-jet level by using a device found in Poston
and Stewart [10]. The cubic term Q3 in (5.12) has a factor s, so we write
Q3 = 2sR2 where R2 = αs2 − t2. Define the transformation (v1, v2) =
Φ1(s, t) by

v1 = s+R2 = s+ (αs2 − t2), v2 = t.(5.13)
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Note that Φ1 is a local diffeomorphism with DΦ1(0) = Id. To compute the
inverse of the map Φ1 we note that t = v2 and αs+ s = (v1 + v2

2). With the
aid of the quadratic formula and the binomial series we find

s = (v1 + v2
2)− α(v1 + v2

2)
2 + 2α2(v1 + v2

2)
3(5.14)

− 5α3(v1 + v2
2)

4 + · · ·
t = v2.

We can now rewrite (5.12) as

j4(E) =
a

2
{v2

1 + [(A− α2)v4
1 + (B + 2α)v2

1v
2
2] + (C − 1)v4

2}.(5.15)

The expression in brackets has a v1 factor so we write it as 2v1R3. Now
define (w1, w2) = Φ2(v1, v2) by

w1 = v1 +R3 = v1 +
1
2
[(A− α2)v3

1 + (B + 2α)v1v2
2](5.16)

w2 = v2.

Again Φ2 is a local diffeomorphism with DΦ2(0) = Id. We end up with

j4(E) =
a

2
{w2

1 + (C − 1)w4
2}.(5.17)

Using the fact that F ′′′(1) = −γ = −16/27 and F (4)(1) = δ = 64/27 and
the formulas in (5.12) we obtain

C = (9/2)(r1/r3)4F ′′(û3/r
3
3).(5.18)

As λ increases from 0 to 1 the ratio û3/r
3
3 does the same as the small cap

of (h, h, s) expands into a hemisphere. Since F ′′′(t) is negative it follows that
F ′′(t) is decreasing on the interval (0, 1). We conclude that C is decreasing
on 0 < λ < 1 from +∞ to 0. It equals one for a single value λ = λ1. We
claim that C = 1 precisely when λ = λ∗ where λ∗ is that value determined
in Theorem 5.2. Thus, for 0 < λ < λ∗ the quantity C−1 is positive and the
bifurcation is forward while for λ∗ < λ < 1 the quantity C−1 is negative and
the direction of bifurcation is reversed. Finally, we shall show that at the
point P ∗ = (r∗1, r

∗
1, r

∗
3) where C = 1 the energy function E has determinancy

six and in suitable coordinates takes the form (5.9).
We compute the 6-jet of E at the point on the cusp curve [A] where C = 1,

proceeding in the same manner as in the calculation of the 4-jet, by making
further C∞ changes of coordinates until the desired form is reached. Using
the same notation as in (5.10-5.12) we find the 6-jet of E (up to a constant)
to be

B2

2
(x+ y)2 +

1
6
[
A3(x3 + y3)−B3(x+ y)3

]
(5.19)

+
1
24
[
A4(x4 + y4) +B4(x+ y)4

]
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+
1

120
[
A5(x5 + y5)−B5(x+ y)5

]
+

1
720

[
A6(x6 + y6) +B6(x+ y)6

]
.

Once again we rewrite this expression by setting s = x + y, σt = x + y to
obtain

j6(E) =
a

2
{s2 + (−2st2 + 2αs3)(5.20)

+ (As4 +Bs2t2 + Ct4) + (Ds5 + Es3t2 + Fst4)

+ (Gs6 +Hs4t2 + Is2t4 + Jt6)}.

The constants a, σ2, α,A,B,C are displayed in (5.12). The remaining con-
stants are calculated in a similar fashion. In particular we need to observe

J =
(

2
a

)(
σ6A6

(720)(64)

)
=

σ6A6

23040a
(5.21)

where we have made use of the identity

x6 + y6 =
1
64

(s6 + 15σ2s4t2 + 15σ4s2t4 + σ6t6).

Now make the transformation (v1, v2) = Φ1(s, t) given by (5.13) to rewrite
j6(E) as

j6(E) =
a

2
{
v2
1 + [(A− α2)v4

1 + (B + 2α)v2
1v

2
2 + (C − 1)v4

2](5.22)

+ v1P4(v1, v2) + v1P5(v1, v2) + (2α+B + J)v6
2

}
.

Here P4(v1, v2) and P5(v1, v2) are homogeneous polynomials of degree four
and five, respectively. We note that there is a factor v1 in front of these
terms. If C − 1 6= 0 we need only consider the 4-jet and arrive at the
expression (5.17). We continue with the case C − 1 = 0. The successor
transformation (w1, w2) = Φ2(v1, v2) is given by (5.16). Rewrite the expres-
sion (5.22) in the new coordinates. Recall that v2

1 + 2v1R3 = w3
1 − R2

3 and
that the inverse transformation has the form

v1 = w1 −R3(w1, w2) + [higher order terms](5.23)
v2 = w2

leading to

j6(E) =
a

2

{
w2

1 −
1
4
w2

1[(A− α2)w2
1 + (B + 2α)w2

2]
2(5.24)

+ w1P4(w1, w2) + w1P5(w1, w2) + (2α+B + J)w6
2

}
=
a

2
{w2

1 + 2w1Q4(w1, w2) + (2a+B + J)w6
2}
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where Q4(w1, w2) is a polynomial each of whose terms are of degreee at least
four. We make a final change of coordinates

w′1 = w1 +Q4(w1, w2)(5.25)

w′2 = w2

keeping in mind that Q4(w1, w2) is of degree at least four and that w2
1 +

2w1Q4(w1, w2) = w′2 −Q2
4(w1, w2) we arrive at

j6(E) =
a

2
{w2

2 + (2α+B + J)w6
2}(5.26)

where (for convenience) we have deleted the primes in the formula and we
have suppressed the additive constant.

We need to show that 2α + B + J is positive. In fact, we will find that
each term in this expression is positive.

At this point we need to verify that the condition C = 1 (5.18) occurs
precisely when λ = r3/r1 satisfies the polynomial identity λ4+32λ2−32 = 0,
0 < λ < 1 as given in Theorem 5.2. From the equilibrium condition of
(h, h, s) along the cusp curve [A] one has

F ′(u3/r
3
3) = (r3/r1)F ′(1) = 4λ/3.(5.27)

Now assume λ = λ∗ is a root of the polynomial equation λ4 +32λ2−32 = 0,
0 < λ < 1 (λ∗ ∼= .98517). We want to show

F ′′(û3/r
3
3) =

2
9
(r3/r1)4 =

2λ4

9
.(5.28)

Recall that F (u) = 1
πa(

2πu
3 ) where a(v) is expressed as a function of t in

(2.2). It follows that F ′(u) = 2a′(v)/3 = 4/3
√

1 + t2 using (2.3), leading
to the relation λ2(1 + t2) = 1 where t is negative (t∗ ∼= −.17416). We have
F ′′(u) = 4π

9 a
′′(2πu

3 ). Now use the expression for a′′(v) given in (2.3) to obtain

F ′′(û3/r
3
3) = −8

9

[
t/(1 + t2)3/2

] (√
1 + t2 − t

)2
.

Since λ2(1 + t2) = 1 with t < 0 we have t = −
√

1− λ2/λ and find

F ′′(û3/r
3
3) =

8
9
(1− λ2)

[
2− λ2

√
1− λ2

+ 2
]
.

By (5.7b) we observe that (2− λ2)/
√

1− λ2 = 6 and so

F ′′(û3/r
3
3) =

64
9

(1− λ2) =
2λ4

9
showing that C = 1 when λ = λ∗.

We now compute 2α = (A3 − 4B3)/12a where a = B2 is positive and
A3, B3 are given in (5.10). Using the fact that F ′′(1) = −16/27 and r3/r1 =
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λ we obtain

A3 − 4B3 =
1
r71

[
F ′′′(1)− 4

λ7
F ′′′(u3/r

3
3)
]

=
−4
27r33

[4λ7 + 27F ′′′(u3/r
3
3)].

However F ′′′(u) = 8π2

27 a
′′′(2πu

3 ) and upon using (2.3) we find

A3 − 4B3 =
−16
27r71

{
1− 4(1 + t2)

(√
1 + t2 − t

)4 (
1− 2t2 − 2t

√
1− t2

)}
.

If we evaluate this quality for t∗ ∼= −.17416 we find

A3 − 4B3
∼= 5.722/r71.

Now a = F ′′(u3/r
3
3)/r

4
3 = 2/9r41 when C = 1 giving us

2α =
A3 − 4B3

12a
∼= 2.146/r31.(5.29)

We next calculate B = σ2A4/16a. Here A4 = F (4)(1)/r101 = 64/27r101 ,
σ2 = −8a/A3 with a = B2 = 2/9r14. Clearly B is positive and we find

B = 2/r31.(5.30)

Finally we calculate J = σ6A6/20340a. Substituting σ2 = −8a/A3 with
a = 2/9r41 when C = 1 leads to

J =
27

5120
F (6)(1)
r31

.

The calculation of F (6)(1) is based on the identity F (6)(u)= 1
π (2π

3 )6a(6)(2πu
3 ).

We use the formula for a(4)(v) given as a function of t in (2.3). Call a(4)(v) ≡
θ(t) and use the expression for v̇(t) as displayed in (2.2). We have

a(6)(2π/3) =
v̇(0)θ̈(0)− θ̇(0)v̈(0)

v̇(0)3
.

We see that v̇(0) = π, v̈(0) = 2π and also

θ(t) =
2
π3
{6− 35t+ 67t2 + · · · }.

Our calculations give F (6)(1) = 8576/243 leading to

J =
67
360

· 1
r31
.(5.31)

The quantity 2α+B+J is positive and the 6-jet of E has the form (5.9). �

At the point P ∗ the state (h, h, s) determines a butterfly with det[E] = 6.
We note that this (h, h, s) state is a local (and global) minimizer of energy.
From our table we see that cod[E] = 4 and so any universal unfolding
requires four parameters. Three parameters (r1, r2, r3) are at hand. One
more is needed. As discussed in the introduction any attempt to introduce
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a fourth unfolding parameter by perturbing the boundary curves away from
circles fails.

6. The Butterfly Unfolding.

We now shall introduce a fourth unfolding parameter for the energy at the
point P ∗ where there is a butterfly catastrophe for the configuration (h, h, s).
Three unfolding parameters are provided by (r1, r2, r3). A fourth unfolding
parameter will first be developed by adding a gravitational potential to the
exposed fluid mass. This will give new equilibrium configurations whose
surfaces will have prescribed mean curvature and which we represent as a
normal graph over the upper hemisphere, [Theorem 6.2]. Following this we
consider the effect of varying the surface tensions of the liquid-air interfaces
and show that this also yields a universal unfolding at the butterfly point,
[Theorem 6.3].

Definition 6.1. Let ρ(ϕ, θ) = 1 + f(ϕ, θ) describe a surface given by a
radial graph over the hemisphere which in spherical coordinates is given by
ρ = 1, 0 ≤ ϕ ≤ π/2, 0 ≤ θ ≤ 2π. For such a normal graph we have

A =
∫ 2π

0

∫ π/2

0
ρ
√
ρ2

θ + (ρ2 + ρ2
ϕ) sin2 ϕdϕdθ,(6.1)

V =
1
3

∫ 2π

0

∫ π/2

0
ρ3 sinϕdϕdθ,

P =
1
4

∫ 2π

0

∫ π/2

0
ρ4 sinϕ cosϕdϕdθ.

Here A is the surface area, V is the volume enclosed by the surface along
with the planar region spanning its boundary and P is a gravitational po-
tential energy with the force acting vertically with intensity ε. We assume
that ρ = 1 + f where f ∈ C2,α(Σ0). We can identify Σ0 with the unit disk
and shall usually represent points on Σ0 using spherical polar coordinates.

Σ0 = {x ∈ R3|x2 + y2 + z2 = 1, z ≥ 0}.(6.2)

For any ε and f ∈ C2,α
0 (Σ0) we define the perturbed energy by

E ≡ A(ρ) + εP (ρ), ρ = 1 + f.(6.3)

For general ε we look for local minimizers of the energy E subject to the
volume constraint V (f) = v. By the method of Lagrange multipliers there is
a constant k such that for any h ∈ C2,α

0 (Σ0) the first variation of the energy
will vanish.

∂[A+ εP + kV ](f)(h) = 0.(6.4)
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The following theorem establishes the existence of solutions to this prob-
lem for (ε, v) close to (0, 2π/3). The Euler-Lagrange equations in spherical
coordinates take the form

M(ρ) + ε(ρ cosϕ) + k = 0, ρ = 1 + f(6.5)

M(ρ) =
1

ρ2 sinϕ

{
− ∂

∂ϕ

(
ρρϕ sin2 ϕ

W

)
− ∂

∂θ

(ρρθ

W

)
+
ρ2

θ + (2ρ2 + ρ2
ϕ) sin2 ϕ

W

}
where W =

√
ρ2

θ + (ρ2 + ρ2
ϕ) sin2 ϕ. M(ρ) is the mean curvature operator

withM(ρ) = 2H whereH is the mean curvature of the surface. The function
ρ(ϕ, θ) is an extremal when the corresponding surface Σρ has the property
that its mean curvature satisfies the relation 2H + εz + k = 0 where (ε, k)
are constants and z is the vertical coordinate.

Theorem 6.1. Consider the function F : C2,α
0 (Σ0) × R2 → Cα(Σ0) × R

defined by

F(f, ε, k) = 〈M(ρ) + εz + k, V (ρ)〉, ρ = 1 + f.(6.6)

Note that F(0, 0,−2) = (0, 2π/3). For each choice of (ε, v) near (0, 2π/3)
there exists a uniquely determined pair of smooth functions g : U→C2,α

0 (Σ0)
and k : U → R where U ⊂ R2 is a neighborhood of (ε, v) = (0, 2π/3)
such that the set of solutions to F(f, ε, k) = (0, v) in a neghborhood of
(ε, v) = (0, 2π/3) when g = 0, k = −2 is given by the pair 〈g, k〉. In other
words, for a given volume v near 2π/3 and gravitational potential energy
with intensity ε near zero there is a surface Σρ represented by a normal
graph over the hemisphere whose radial function satisfies the Euler-Lagrange
Equation (6.4), spans the unit circle and encloses the desired volume.

Proof. The proof is an application of the inverse function theorem. We shall
compute the derivative of F in the direction (f, k) evaluated at (f, ε, k) =
(0, 0,−2) and show that the corresponding linear operator mapping C2,α

0 (Σ0)
×R into Cα(Σ0) × R is invertible. It is a Fredholm operator (by general
elliptic theory) and we shall prove directly that it has a trivial kernel and is
surjective. We compute

D(f,k)F [f = 0, ε = 0 k = −2] (h, k̇)(6.7)

=
〈
− 1

sinϕ

[
∂

∂ϕ
(sinϕhϕ) +

∂

∂θ

(
hθ

sinϕ

)]
− 2h+ k̇,∫ 2π

0

∫ π/2

0
h sinϕdϕdθ

〉
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=
〈
−∆h− 2h+ k̇,

∫∫
h dA

〉
, h ∈ C2,α

0 (Σ0), k̇ ∈ R.

Here ∆h is the surface Laplacian on the upper unit hemisphere Σ0 and
integration is taken over this surface. We claim that the kernel of DF is
(h, k̇) = (0, 0). Suppose that (h, k̇) is in the kernel with k̇ = 0 so that
∆h + 2h = 0 on Σ0 with h = 0 on ∂Σ0. This means that h is a spherical
harmonic vanishing on the equator. The only solution up to a scalar factor
is h0(x) = z. Since h0(x) is positive on Σ0 we have

∫ ∫
h0 dA is positive

violating the second condition. Now suppose (h, k̇) is in the kernel with
k̇ 6= 0 and

∫ ∫
h0 dA = 0. One obtains two identities involving h0, h and

k̇ by multiplying the respective PDE’s satisfied by h0 and h by the other
function and integrating by parts, obtaining

−D(h0, h) + 2
∫∫

h0h dA = 0(6.8)

−D(h0, h) + 2
∫∫

hh0 dA− k̇

∫∫
h0 dA = 0

where D(h0, h) is the Dirichlet inner product of h0 and h. This is not
possible unless k̇ = 0. The kernel of DF is trivial. Now we show that
the range of DF is all of Cα(Σ0) × R. Select w(x) ∈ Cα(Σ0) and v ∈ R.
We are to show that there is a pair (h, k̇) with −∆h − 2h + k̇ = w(x) and∫ ∫

h dA = v where h ∈ C2,α
0 (Σ0). The PDE ∆h + 2h = k̇ − w(x) ≡ r(x)

has a solution h(x) ∈ C2,α
0 (Σ0) precisely when r(x) is orthogonal to the

eigenfunction h0(x) = z. This means∫∫
h0(k̇ − w(x)) dx = 0.

Since h0(x) = z is positive we have determined a unique value k̇. Now
let h1(x) be a solution to ∆h1 + 2h1 = k̇ − w(x). Then so is hλ(x) =
h1(x) + λh0(x) for any λ. But we are to have∫∫

hλ dA =
∫∫

h1 dA+ λ

∫∫
h0 dA = v.

Since h0(x) is positive there is a unique value of λ so that the pair (hλ, k̇)
solves our problem. The map DF is surjective and thus is invertible. Since
F is a differentiable map we can apply the implicit function theorem to
complete the proof. �

Corollary. There is a smooth function E(v, ε) defined in a neighborhood
of (2π/3, 0) by

E(v.ε) = A(v, ε) + εP (v, ε)

where A(v, ε) = A[ρ(ϕ, θ, ε, v)]
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P (v, ε) = P [ρ(ϕ, θ, ε, v)]

where ρ = 1 + g with g ∈ C2,α
0 (Ω0) is determined from Theorem 6.1 with

V [ρ(ϕ, θ, ε, v)] = v and the integrals are given by (6.1).

Note that for fixed ε, g(ϕ, θ, ε, v) is an extremal for the volume constrained
problem with energy E(ρ, ε) = A(ρ)+ εP (ρ) where ρ = 1+ g. It follows that

Aε(v, ε) + εPε(v, ε) = 0,(6.9)

as a result of which we find
∂

∂ε
[A(v, ε) + εP (v, ε)] = P (v, ε).(6.10)

When ε = 0 the spherical cap provides the area minimizer for a given vol-
ume. This allowed us to reduce the configuration space for a multiple orifice
problem from an infinite dimensional setting to one of finite dimensions by
replacing any configuration enclosing a given volume and spanning a circle
with the corresponding spherical cap of lower energy. For ε 6= 0 the role of
spherical caps are replaced by ε-extremals of Theorem 6.1 which are sessile
drops when ε is positive and pendant drops for negative ε. When ε 6= 0 these
extrema are never global minimizers but they are stable local minimizers of
the energy. Thus for ε 6= 0 we also have a finite dimensional configuration
space. For each opening the spherical cap is replaced by the corresponding
sessile or pendant drop. These drops are rotationally symmetric and are
strong local minimizers of energy. For a more complete discussion see [11].

Theorem 6.2. Let P ∗ = (r∗1, r
∗
1, r

∗
3) be that point on the cusp curve [A] of

the bifurcation set where the butterfly catastrophe occurs.
A universal unfolding of the butterfly is given by

E(u1, u2, r1, r2, ε) = E(u1, r1, ε) + E(u2, r2,−ε) + E(u3, r3, 0)(6.11)

where ui are the scaled volumes u1 + u2 + u3 = 3 and we write

E(u, r, ε) =
1
π

[A(u, r, ε) + εP (u, r, ε)]

where upon making use of scaling properties we have

A(u, r, ε) = r2A(v, r2ε)

P (u, r, ε) = r4P (u, r2ε), v = (2π/3)r−3u.

We have divided by π to be consistent with Definition 2.1. The apparatus
is arranged so that if the first drop is disturbed by positive gravity then the
second is disturbed in the opposite direction.

Proof. From the proof of Theorem 5.3 there is a change of coordinates
(u1, u2) → (x, y) → (s, t) → (w1, w2) where x = u1 − u∗1, y = u2 − u∗2,
s = x+ y, σt = x− y and the entire map is a local diffeomorphism of poly-
nomial type with w2 = t. Recall that the scaled volumes at P ∗ are (u∗1, u

∗
2, u

∗
3)
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where u∗1 = u∗2 = r∗31 . At P ∗ we have the butterfly with j6(E) = w2
1 + Fw6

2

and F > 0. The Jacobi ideal J (E) = 〈w1, w
5
2〉E , and so the space m mod

J (E) is spanned by 〈w2, w
2
2, w

3
2, w

4
2〉 with cod [E] = 4. To verify universality

of the unfolding we need to show that the four functions obtained by differ-
entiating the energy E (6.11) with respect to each of the four parameters
span m mod J (E). Let

Ti(x, y) = Eri(u1, u2, P
∗, 0)− Eri(u

∗
1, u

∗
2, P

∗, 0)(6.12)

where x = u1 − u∗1, y = u2 − u∗2. These are easily computed using (5.1).

T1(x, y) = âx+ b̂x2 + ĉx3 + d̂x4 + · · ·(6.13)

T2(x, y) = ây + b̂y2 + ĉy3 + d̂y4 + · · ·

T3(x, y) = Â(x+ y) + B̂(x+ y)2 + Ĉ(x+ y)3 + D̂(x+ y)4 + · · · .

We first want to show that T1, T2, and T3 are linearly independent in m mod
J (E). It is more convenient to use T1 = T1 + T2, T2 = T1 − T2 and T3 = T3

as unfolding directions. We need to express these functions using (w1, w2)
coordinates. The change of coordinates formula from (s, t) to (w1, w2) is
given in the proof of Theorem 5.3. We solve for (s, t) in terms of (w1, w2)
keeping in mind that our functions are to be expressed as members of m
mod J (E). We find s = w2

2 − αw4
2 modJ (E) and t = w2 whence

T1 =

(
â+

σ2b̂

2

)
w2

2 +

(
−αâ+

b̂

2
+

3σ2ĉ

4
+
σ4d̂

8

)
w4

2(6.14)

T2 = σ

{
âw2 +

(
b̂+

σ2ĉ

4

)
w3

2

}
T3 = Âw2

2 +
(
−αÂ+ B̂

)
w4

2, modJ (E).

At P ∗ these formulas can be simplified using (5.10)-(5.12). The coefficients
are to be evaluated at ri = r∗i and ui = u∗i where we have tended to drop
the star superscript in writing the formulas. Namely, from (5.12) we have

σ2 = −8B2/A3, B2 =
1
r43
F ′′(u3/r

3
3), A3 =

1
r71
F ′′′(1).

We obtain σ2 = (27/2)(r71/r
4
3)F

′′(u3/r
3
3) as F ′′′(1) = −16/27. However, at

P ∗ we can also use (5.17) with C = 1 giving us σ2 = 3r31. The formulas for
â, b̂, ĉ involve the rescaled energy function F (u) and its first four derivatives
evaluated at u = 1. The formulas for â, b̂ and ĉ involve the appropriate
derivatives of E evaluated at P ∗. We find

â = Eu1r1 = −4/3r21

b̂ =
1
2
Eu1u1r1 = 8/9r51
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ĉ =
1
6
Eu1u1u1r1 = −40/81r81.

This leads to

T2 = σ

{(
−4
3r21

)
w2 +

(
14

27r51

)
w3

2

}
modJ (E).(6.15)

We observe that T2 is an odd function of w2.

Next we establish the linear independence of T1, T3 both even functions of
w2. At P ∗ one finds that the coefficient of w2

2 in the expansion of T1 equals
zero while

Â =
1
r23
F ′(u3/r

3
3) +

3u3

r53
F ′′(u3/r

3
3)

is positive because (u3/r
3
3) < 1. Thus we need only to check that the

coefficient of w4
2 in the expansion of T1 is not zero. The formula for d̂

involves the fourth and fifth derivatives of F (u) at u = 1. With the aid of
Lemma 2.1 we can find the fifth derivative. In fact F (5)(1) = −(2240/243).
This gives us

d̂ =
1
24
Eu1u1u1u1r1 =

40
243r111

.

The coefficient of w4
2 reduces to

4α
3r21

− 13
27r51

∼=
.95
r51

(6.16)

where we have used the expression for α given in (5.12) and computed in
(5.29). The coefficient of w4

2 is positive and the functions T1, T2 and T3 are
linearly independent in m mod J (E).

Similarly the ε unfolding direction is computed by

Eε(u1, u2, P
∗, 0)− Eε(u∗1, u

∗
2, P

∗, 0).(6.17)

By (6.11) we see that the energy function splits into the sum of three terms
with ε present only in the first two. Considering the first term we have by
(6.10)

Eε(u1, r
∗
1, 0) =

1
π
P (u1, r

∗
1, 0)(6.18)

where P (u1, r1, 0) is the gravitational potential energy of a spherical cap
with volume v = (2π/3)(u1/r

3
1) and boundary the circle of radius r in the

horizontal plane. Go back to the formulation of Section 2 where we com-
puted area and volume as function of (r, t) where (0, t) located the center of
the generating circle. A direct calculation gives∫∫∫

z dx dy dz =
π

12

(
t+
√
r2 + t2

)(
3
√
r2 + t2 − t

)
(6.19)
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where integration is over the solid region bounded by the spherical cap and
the disk of radius r. We must expand P as a function of volume about the
value u1 = u∗1 with u∗1 = r∗31 which is the hemisphere configuration. After
some calculation we find after setting x = u1 − u∗1

π · T4(x, y) = P (u1, r
∗
1, 0)− P (u∗1, r

∗
1, 0)(6.20)

= (4r∗1/9)x+ (4/27r∗21 )x2 − (8/243r∗51 )x3 + · · · .

Using (6.11) the total derivative with respect to ε of the energy at ε = 0 is
just T4 = T4(x) − T4(y), giving us another unfolding which will be odd in
the variable w2 after changing coordinates from (x, y) to (w1, w2) as before.
As in the calculation of T2 we now use (6.14) along with the fact that at P ∗,
σ2 = 3r∗31 giving us

πT4 = (σ/81r∗21 ){(36r∗31 )w2 + 5w3
2} modJ (E).(6.21)

Comparing (6.15) with (6.21) we see that T2, T4 are linearly independent.
The unfolding is universal. �

Addendum to Theorem 6.2. Let P̂ = (r̂1, r̂2, r̂3) be a point on the cusp
curve [A] other than butterfly point P ∗. In this case the parameters r1, r2
are unfolding directions and E(u1, u2, r1, r2, r̂3) is a universal unfolding.

Proof. From Theorem 5.3 we know that at points P̂ on the cusp curve [A]
other than P ∗ the 4-jet of the energy E (up to a constant) has the form
j4(E) = w2

1 + Dw4
2 with D = C − 1 6= 0 where C is given by (5.8). This

gives the cusp catastrophe with det(E) = 4 and cod (E) = 2. In fact the
Jacobi ideal is J (E) = 〈w1, w

3
2〉E so that m mod J (E) is spanned by w2, w

2
2.

Following the discussion in the proof of Theorem 6.2 setting ε = 0 there and
using (6.14) we need to show that

T1 =

(
â+

σ2b̂

2

)
w2

2(6.22)

T2 = σâw2 modJ (E)

span m mod J (E). Following the calculations given there we find σ2 =
3r̂31C > 0, â = −4/3r̂21 and b̂ = 8/9r̂51 which leads to

â+
σ2b̂

2
=

4
3r̂21

(C − 1) 6= 0 for P̂ 6= P ∗.

The function T1, T2 are linearly independent in m mod J (E) and the un-
folding E(u1, u2, r1, r2, r̂3) is universal. �

We now show that introducing surface tension as a parameter also gener-
ates a universal unfolding at the butterfly point.
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Theorem 6.3. Let P ∗ be the butterfly point on the cusp curve [A]. Let E
be the energy function obtained by introducing surface tension

E(u1, u2, r1, r2, r3, c1, c2, c3) =
3∑

i=1

cir
2
i F (ui/r

3
i ).(6.23)

Consider the perturbation at P ∗ = (r∗1, r
∗
2, r

∗
3) and at c1 = c2 = c3 = 1

obtained by increasing c1, decreasing c2 and keeping c3 fixed so that c1 = c,
c1+c2 = 2 and c3 = 1 with c as parameter. This generates a fourth universal
unfolding parameter.

Proof. We follow the calculations used in the proof of Theorem 6.2. First,
differentiate the energy function (6.23) in the direction c1 to obtain

Ec1(u1, u2, P
∗, 1, 1, 1) = r∗21 F (u1/r

∗3
1 ).(6.24)

The unfolding parameter c1 leads to the unfolding direction

T4(x, y) = Ec1(u1, u2, P
∗, 1, 1, 1)− Ec1(u

∗
1, u

∗
2, P

∗, 1, 1, 1)

where x = u1 − u∗1, y = u2 − u∗2 leading to

T4(x, y) = âx+ b̂x2 + ĉx3 + d̂x4 + · · ·

similar to (6.13). In the present instance the coefficients â, b̂, ĉ, d̂ are easily
computed. We find â = 4/3r∗1, b̂ = 0, ĉ = 8/81r∗71 , d̂ = 8/81r∗101 . Differenti-
ation of the energy functional with respect to c2 gives us a similar function
T ′4 where x = u1 − u∗1 is replaced by y = u2 − u∗2. We have selected c = c1,
c2 = 2 − c, c3 = 1 so that the unfolding direction is T4 = T4 − T ′4. This is
written in w1, w2 coordinates in (6.14). We obtain

T4 = σ{(4/3r∗1)w2 + (2/27r∗41 )w3
2} modJ (E).(6.25)

Upon comparing this with the expression for T2 given in (6.15) we see that
T2, T4 are linearly independent. We have a universal unfolding. �

Note. It might seem that introducing surface tension as a parameter is
just a rescaling device and so should be equivalent to our original problem.
However, this is not the case as any rescaling would also introduce weighted
sums of the total volume.

Finally, we now consider unfoldings induced by perturbations of the
boundary circles and will show that such variations fail to lead to a uni-
versal unfolding at P ∗. For a given volume v let Σ0 be the spherical cap in
the upper half space with boundary the unit circle C0 in the x − y plane
which along with the unit disk M0 encloses a solid region T0 whose volume
is v. We define a perturbation of the boundary curve C0 as follows.
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Definition 6.2. Let f(θ), g(θ) be smooth C∞-functions with period 2π.
Define a one-parameter family of curves Cε by

xε(θ) = (1 + εf(θ))b(θ) + εg(θ)k(6.26)

where b(θ) = 〈cos θ, sin θ, 0〉 is the position vector for C0 and k is the unit
vector in the direction of the z-axis. We observe that Cε is described by
a normal perturbation of C0. For convenience we make the perturbation
linear in ε. Furthermore suppose that there are C∞-functions L(θ), β(θ) of
period 2π such that for each θ, f = L cosβ and g = L sinβ. Note that the
family of curves collectively form a parametric surface surrounding C0.

Given a family of curves Cε as described with C0 the unit circle we consider
a one-parameter family of pair of surfaces Σε,Mε where Σε is a smoothly
varying family of surfaces with Σ0 the initial spherical cap such that the
boundary of Σε is the perturbed curve Cε. Suppose the spherical cap is part
of the sphere S0 of radius R whose center lies on the z-axis. The surface Σ0

along with the unit disk enclose a volume v and we let α denote the interior
angle of contact of Σ0 with M0 along the unit circle C0. Let p denote a
point on S0 and ξ = ξ(p) the unit normal vector to S0. We assume that Σε

can be represented by a normal graph over a region on S0 whose boundary
is the normal projection of Cε on S0.

x(p, ε) = p+ φ(p, ε)ξ(p) = p+ εN(p)ξ(p) + o(ε).(6.27)

Here φ(p, ε), N(p) are C∞-functions on a region containing the closure
of the domain describing the surface Σε. The function N(p) = φε(p, 0) is
the “initial speed” of the perturbation with Nξ the initial vector field of the
perturbation.

For small ε the curves Cε project onto a convex curve Γε in the plane.
It follows that there is a uniquely determined minimal surface Mε with
boundary Cε which can be represented in non-parametric form.

z = f(x, y, ε) = εÑ(x, y) + o(ε)(6.28)

where Ñ(x, y) = fε(x, y, 0). The functions f(x, y, 0) are solutions to the
minimal surface equation and can be extended in a smooth manner to be
C∞-functions in some region containing M0 × [−ε0, ε0]. Since f(x, y, 0) = 0
it follows that Ñ(x, y) is a harmonic function on the unit disk.

We assume that the pair Σε,Mε together bound a solid region Tε whose
volume is the given constant v. We have that Σ0 is the spherical cap and
imagine that each Σε is also a cmc surface but for our calculations this
assumption is not needed. We have the following result.

Theorem 6.4. Let Cε be the smooth one-parameter family of boundary
curves as given in Definition 6.2 and suppose Σε,Mε is a one-parameter
family with common boundary Cε as just described with Σ0 the spherical
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cap, M0 the unit disk and such that the pair Σε,Mε together enclose volume
v. Let A(v, ε) be the area of the surface Σε. We have the following formula
for the derivative of this area function with respect to ε at ε = 0:

Aε(v, 0) = cosα
∫ 2π

0
f(θ) dθ(6.29)

where f(θ), g(θ) are those C∞-functions describing the curves Cε in Defini-
tion 6.2.

Proof. We have α as the interior angle of contact of Σ0 with M0. Let γ =
γ(θ) be the interior agle of contact of Σ0 with the surface determined by the
Cε. One sees that γ(θ) = α+ β(θ) where β(θ) is the angle of inclination of
the straight line determined by the normal slice to C0 of this surface as in
Definition 6.2. We have the following facts.

a)

Aε(v, 0) ≡ δA(N) =
∫∫

Σ0

−2HN dA+
∫

C0

Ncotγ ds.(6.30)

This is the classic formula for the first variation of area [7, p. 9] or [11,
p. 457]. Here the mean curvature H of the spherical cap is negative
with sinα = 1/R = −H. Also, since f = L cosβ one sees that along
C0 we have N = L sin γ so that Ncotγ = L cos γ.

b) Since the volume v remains constant with ε we find

0 =
∫∫

Σ0

N dA−
∫∫

M0

Ñ dA(6.31)

(see either [7, 11]).
c) Since Ñ is harmonic on M0 we have by the mean value property for

harmonic functions∫∫
M0

Ñ dA =
1
2

∫
C0

Ñ ds.(6.32)

d) Since Σε and Mε both span Cε we find (referring to Definition 6.2) that
on C0

L = Ncscγ = Ñcscβ.(6.33)

Now use the information above to express δA(N) as a line integral over
C0. We find

δA(N) =
∫

C0

(Ncscγ)(cos γ + sinα sinβ) ds(6.34)

=
∫

C0

(L)(cosα cosβ) ds.

Finally note that L cosβ = f and upon switching to integration with
respect to θ we obtain (6.29). �
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Corollary. Suppose we have an unfolding of the triple pipe configuration
determined by a perturbation of the boundary curves Cε as given by Defi-
nition 6.2. An equivalent unfolding is given by a simple expansion of the
boundary circles C ′

ε : x(ε, θ) = (1 + εfo)b(θ) where

2πfo =
∫ 2π

0
f(θ) dθ.(6.35)

The Two Bubble Bifurcation.

The Three Bubble Catastrophe.
Figure 1.
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A = Area of spherical cap.
V = Volume of cap.

E = 1
πA(2π

3 u) = the scaled energy = F (u).
u = 0 ⇒ Flat Disk ⇒ A = π so E = 1.
u = 1 ⇒ hemisphere ⇒ A = 2π so E = 2.
1) F (0) = 1, F (1) = 2.
2) F ′(u) > 0 when u > 0.

3) F ′′(u) =


> 0, 0 ≤ u < 1
= 0, u = 1
< 0, u > 1

 .

4) F ′′′(1) = −γ = −16/27 < 0.
5) F (4)(1) = δ = 64/27 > 0.

Figure 2. The Energy Function.
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Figure 3. The Double Bubble Cusp Catastrophe.
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Three Cusp Curves emanate from an Elliptic Umbilic Point. They are
connected by Fold Surfaces.

Figure 4.
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Figure 5. The cusp curve when r1 = r2 = r3.

At S we have ∩– + ∩– + © . Total volume = 3
(

2π
3

)
= 4

(
2π
3

)
r31 =⇒ r31 = 3

4
or r1 = .908.

At T we have ∩– + ∩– + · · · . Total volume = 3
(

2π
3

)
= 2

(
2π
3

)
r31 =⇒ r31 = 3

2
or r1 = 1.1447.

Bifurcation at cusp point
(h, h, s) when r3 < λ∗r1.

Bifurcation at cusp point
(h, h, s) when r3 > λ∗r1.

Figure 6.
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