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In 1981, Nomizu introduced isoparametric hypersurfaces
in Lorentzian space forms and studied the Cartan identities.
Later Hahn, 1984, generalized Nomizu’s work to the pseudo-
Riemannian space forms and presented many examples. In
general, the shape operator of a hypersurface in a pseudo-
Riemannian space form may be not diagonalizable. This
makes the isoparametric theory in pseudo-Riemannian space
form different from that in Riemannian space forms. In
1985, Megid classified Lorentzian isoparametric hypersurfaces
in Rn+1

1 . He showed that there are three types of Lorentzian
isoparametric hypersurfaces in Rn+1

1 . Type I are exactly
cylinders and umblic hypersurfaces while the other two types
of hypersurfaces have properties close to cylinders and umblic
hypersurfaces. Megid called them generalized cylinders and
umblic hypersurfaces. In this paper, the local classification of
Lorentzian isoparametric hypersurfaces in Hn+1

1 is obtained
and the properties of them are discussed.

Introduction.

A hypersurface in Hn+1
1 is called isoparametric if the minimal polynomial of

the shape operator is constant. This allows complex or non-simple principal
curvatures (eigenvalues of the shape operator). In this paper, we classify
Lorentzian isoparametric hypersurfaces in an anti-de Sitte sphere Hn+1

1 .
More precisely, we show that there are four types of such hypersurfaces.
Type I hypersurfaces are determined by two orthogonal subspaces of Rn+2

2
and the principal curvatures; type II and type III hypersurfaces are deter-
mined by two 1-parameter orthogonal subspaces of Rn+2

2 and the principal
curvatures; and the type IV hypersurfaces are homogeneous.

The classification theorem we obtain here plays an essential role in the
study of isoparametric hypersurfaces in complex hyperbolic spaces CHn [9].
A connected hypersurface in CHn is called isoparametric if all parallel hy-
persurfaces Mt for t sufficiently close to zero have constant mean curvatures.
In [9], we get the complete classification of isoparametric hypersurfaces in
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CHn. In fact, we prove that all isoparametric hypersurfaces are homoge-
nous.

The paper is organized as follows. In Section 1, we recall basic definitions,
notations and the structural equations of a Lorentzian hypersurface in Hn+1

1 .
We use a result of Megid [4] to conclude that there are four types of local
isoparametric hypersurfaces in Hn+1

1 . In Section 2, we study the Cartan
identities and show that a Lorentzian isoparametric hypersurface has at most
a pair of conjugate complex and two real principal curvatures. In Sections
3, 4 and 5, we classify hypersurfaces of type I, II, III and IV, respectively.
Combining these results, we get the classification.

This work was done when the author was a visiting scholar at Northeast-
ern University in Boston. He wishes to express his gratitude to Professor
Chuu-Lian Terng for her many helpful conversations and support. He is
grateful to Professor Chia-Kuei Peng for his long term guidance and help.

1. Preliminaries.

In this section we recall the basic definitions and the structure equations
of a Lorentzian hypersurface in Hn+1

1 . Then we give the definition of an
isoparametric hypersurface and show the forms of the shape operator.

Let Rn+2
2 be an n + 2-dimensional real vector space with a bilinear form

of signature (2,n) given by

〈x, x〉 = −
2∑

i=1

x2
i +

n+2∑
i=3

x2
i ,

Hn+1
1 be the hypersurface

{x ∈ Rn+2
2 | 〈x, x〉 = −1},

which is the anti-de Sitte sphere with constant sectional curvature −1. Hn+1
1

is a non-simply connected Lorentzian space form.
Let V be a vector space with a Lorentzian metric 〈 , 〉. An orthonomal ba-

sis {E1, . . . , En} is one satisfying 〈E1, E1〉 = −1, 〈Ei, Ej〉 = δij , 〈E1, Ej〉 = 0
for 2 ≤ i, j ≤ n. A pseudo-orthonormal basis is a basis {X, Y,E1, . . . , En−2}
such that 〈X, X〉 = 0 = 〈Y, Y 〉 = 〈X, Ei〉 = 〈Y, Ei〉, 〈X, Y 〉 = −1 and
〈Ei, Ej〉 = δij for 1 ≤ i, j ≤ n− 2.

Generally, a hypersurface M in Hn+1
1 is called a Lorentzian hypersurface

if the induced metric has signature (1, n− 1). Next, we recall the structure
equations of a Lorentzian hypersurface M .

Let X be the position vector of M , i.e., X is the inclusion map from M
to Rn+2

2 , e1, . . . , en+1 a local frame on Hn+1
1 ⊂ Rn+2

2 such that e1, . . . , en

are tangent to M , en+1 normal to M , and ω1, . . . , ωn+1 the dual 1-forms.
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We can write

dX =
n+1∑
A=1

ωAeA,(1)

deA =
n+1∑
B=1

ωB
AeB + ωAX,(2)

where A = 1, . . . , n + 1, and ωB
A and ωA satisfy the first structural equation

of Hn+1
1 :

dωA +
n+1∑
B=1

ωA
B ∧ ωB = 0,(3)

dgAB =
n+1∑
C=1

gCBωC
A + gACωC

B ,

ωA =
n+1∑
B=1

gABωB.

Especially for an orthonomal frame, ω1
1 = 0, ωi

1 = ω1
i , ω

j
i + ωi

j = 0, (2 ≤
i, j ≤ n + 1), and for a pseudo-orthonomal frame, ω1

1 + ω2
2 = 0, ω2

1 = ω1
2 =

0, ωi
1 = ω2

i , ω
i
2 = ω1

i , ω
j
i + ωi

j = 0, (3 ≤ i, j ≤ n + 1).
The second structural equation of Hn+1

1 is:

(4) dωB
A −

n+1∑
C=1

ωC
A ∧ ωB

C − ωA ∧ ωB = 0.

Restricting these forms to M , we have

(5) ωn+1 = 0, ωn+1
n+1 = 0.

Write

(6) ωi
n+1 =

n∑
j=1

hi
jω

j .

Exterior differenting (5), we get

(7)
n∑

k=1

gikh
k
j =

n∑
k=1

gjkh
k
i .

The shape operator is a linear transformation for any x ∈ M defined by

(8) A : TxM → TxM : ei 7→
n∑

j=1

hj
iej .
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A is a symmetric linear transformation on TxM with Lorenzian product,
i.e., for any X, Y ∈ TxM ,

〈AX, Y 〉 = 〈X, AY 〉 = II(X, Y ).

Here II(X, Y ) is the second fundamental form of M . The eigenvalues of
A are called principal curvatures of M . Corresponding to every principal
curvature λ, we have algebraic multiplicity and geometric multiplicity. Alge-
braic multiplicity ν is the exponent of (x−λ) in the characteristic polynomial
and geometric multiplicity µ is the dimension of the eigenspace

Tλ = {X ∈ TxM | AX = λX}.
A principal curvature λ is called diagonalizable if ν = µ.

The structural equations of M are

dωi +
n∑

j=1

ωi
j ∧ ωj = 0,(9)

dgij =
n∑

k=1

(gikω
k
j + gkjω

k
i ),

ωi =
n∑

j=1

gijω
j ,

gijω
j
n+1 + ωn+1

i = 0,(10)

dωj
i −

n∑
k=1

ωk
i ∧ ωj

k = ωn+1
i ∧ ωj

n+1 + ωi ∧ ωj ,(11)

dωi
n+1 =

n∑
j=1

ωj
n+1 ∧ ωi

j .(12)

Among these equations, (11) and (12) are called Gauss equation and Codazzi
equation of M , respectively.

Define

(13)
n∑

k=1

hi
j,kω

k = dhi
j −

n∑
k=1

hi
kω

k
j +

n∑
k=1

hk
j ω

i
k.

Then Codazzi equation becomes

(14) hi
j,k = hi

k,j .

A hypersurface is called isoparametric if the minimal polynomial of shape
operator is constant. In this paper we only consider Lorentzian isopara-
metric hypersurfaces. In [4], Megid showed that such a hypersurface has
constant principal curvatures and the shape operator A can be put into
exactly one of the canonical forms I, II, III or IV.
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I.

A =

a1 . . . 0
...

. . .
...

0 . . . an

 .

II.

A =


a0 0
1 a0

a1

. . .
an−2

 .

III.

A =



a0 0 0
0 a0 1
−1 0 a0

a1

. . .
an−3


.

IV.

A =


a0 b0

−b0 a0

a1

. . .
an−2

 .

Here b0 is assumed to be non-zero. In cases I and IV A is represented
with respect to an orthonomal basis while in cases II and III the basis
is a pseudo-orthonomal basis. In cases I, II and III the eigenvalues are
real, while a0 ± ib0 are eigenvalues in case IV. Throughout this paper, a
Lorentzian isoparametric hypersurface in Hn+1

1 is called a type I, II, III or
IV hypersurface according to the form of the shape operator A.

2. Cartan identities.

In this section, we use Hahn’s result on Cartan identities to study the possi-
ble number of principal curvatures of Lorentzian isoparametric hypersurfaces
in Hn+1

1 , and prove the following theorem.

Theorem 2.1. A type I, II or III Lorentzian isoparametric hypersurface has
at most two real principal curvatures, and a type IV Lorentzian isoparametric
hypersurface has a pair of conjugate complex principal curvatures and at
most two real principal curvatures.

We need a couple of Lemmas to prove the theorem. The first one is proved
by Hahn:
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Lemma 2.2 ([2]). Let M be a Lorentzian isoparametric hypersurface in
Hn+1

1 , and λ1, . . . , λp all distinct principal curvatures of M with algebraic
multiplicities ν1, . . . , νp. If λi is a (real ) diagonalizable principal curvature,
then we have Cartan identity

p∑
j=1,j 6=i

νj
−1 + λiλj

λi − λj
= 0.

Lemma 2.3. Let M be a type I, II or III hypersurfaces. Then p ≤ 2.
Moreover, if p = 2, then λ1λ2 = 1.

Proof. If M is type I, then all principal curvatures of M are real and diag-
onalizable. By Lemma 2.2, we have

(15)
p∑

j=1,j 6=i

νj
−1 + λiλj

λi − λj
= 0

for any i in {1, . . . , p}. Without loss of generalities, we may assume λ1 <
λ2 < · · · < λp, and λp ≥ 0. Choose the largest nonnegative λi such that
λiλi−1 ≤ 1. Then

λiλj − 1
λi − λj

≤ 0

for any j 6= 0. Hence λiλj = 1 if i 6= j. Therefore p ≤ 2.
If M is type II or type III, then only one principal curvature of M is not

diagonalizable. Without loss of generalities, we may assume that λ1 is not
diagonalizable. By Lemma 2.2, we have

(16)
p∑

j=1,j 6=i

νj =
λiλj − 1
λi − λj

= 0

for any i in {2, . . . , p}.
Note that

p∑
i,j=1,i6=j

νiνj
λiλj − 1
λi − λj

(17)

=
p∑

i<j

νiνj(λiλj − 1)
(

1
λi − λj

+
1

λj − λi

)
= 0.

Combining (16) and (17), we have

(18)
p∑

j=1,j 6=i

νj
λiλj − 1
λi − λj

= 0

for any i in {1, . . . , p}, which is exactly the equation (15). Hence we know
that p ≤ 2. �
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Lemma 2.4. Let M be a type IV hypersurface, and λ1, . . . , λp all distinct
principal curvatures of M . Then p ≤ 4.

Proof. If M is a type IV, then M has a pair of conjugate complex principal
curvatures with algebraic multiplicities 1. We may assume λ1 = a0 + ib0,
λ2 = a0 − ib0, b0 6= 0, ν1 = ν2 = 1, and λ3 < λ4 < · · · < λp. By Lemma 2.2,
λ3, . . . , λp satisfy

(19)
2a0(1 + λ2

i )− 2λi(a2
0 + b2

0 + 1)
λ2

i − 2a0λi + (a2
0 + b2

0)
+

∑
j=3,j 6=i

νj =
λiλj − 1
λi − λj

= 0

for any i in {3, . . . , p}.
First we claim that if a0 ≤ 0, then λi ≤ 0 for any i in {3, . . . , p}.
Suppose the claim is false. Then λp > 0. We choose the largest positive

λi such that λiλi−1 ≤ 1. Then

2a0(1 + λ2
i )− 2λi(a2

0 + b2
0 + 1)

λ2
i − 2a0λi + (a2

0 + b2
0)

≤ 0,(20)

λiλj − 1
λi − λj

≤ 0(21)

for any j in {3, . . . , p} − {i}. From (19), (20) and (21), it follows that

(22) 2a0(1 + λ2
i )− 2λi(a2

0 + b2
0 + 1) = 0.

This is a contradiction since a0 ≤ 0 and λi > 0. Therefore λi ≤ 0 for any i
in {3, . . . , p}. Similarly, we can prove that λi ≥ 0 for any i in {3, . . . , p} if
a0 ≥ 0.

Note that
2a0(1 + λ2

i )− 2λi(a2
0 + b2

0 + 1)
λ2

i − 2a0λi + (a2
0 + b2

0)
(23)

=
2a0(t)(1 + λ2

i (t))− 2λi(t)(a2
0(t) + b2

0(t) + 1)
λ2

i (t)− 2a0(t)λi(t) + (a2
0(t) + b2

0(t))
,

λiλj − 1
λi − λj

=
λi(t)λj(t)− 1
λi(t)− λj(t)

.

Here

a0(t) =
(a2

0 + b2
0 + 1) sinh t cosh t + a0(cosh2 t + sinh2 t)

cosh2 t + 2a0 cosh t sinh t + (a2
0 + b2

0) sinh2 t
,(24)

b0(t) =
b0

cosh2 t + 2a0 cosh t sinh t + (a2
0 + b2

0) sinh2 t
,

λi(t) =
sinh t + λi cosh t

cosh t + λi sinh t

and t is any real number satisfying cosh t + λi sinh t 6= 0 for any i in
{3, . . . , p}.
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Let λ1(t) = a0(t) + ib0(t), λ2(t) = a0(t) − ib0(t). Then λ1(t), λ2(t), . . . ,
λp(t) are p distinct numbers satisfying the equation system (19) for any t
satisfying cosh t + λi sinh t 6= 0. Hence if a0(t) ≤ 0 then λi(t) ≤ 0 for any i
in {3, . . . , p} and if a0(t) ≥ 0 then λi(t) ≥ 0 for any i in {3, . . . , p}.

If a0 = 0, then λi = 0 for any i in {3, . . . , p} which implies p = 3. Note
that b0 6= 0. If a0 6= 0, then we can choose t0 ∈ R− {0} such that

a0 +
1
a0

+
b2
0

a0
= − tanh t0 −

1
tanh t0

,

which implies a0(t0) = 0. We claim that limt→t0 λi(t) = 0 or ∞ for all 3 ≤
i ≤ p. Suppose the claim is false. Then limt→t0 λk(t) > 0 or limt→t0 λk(t) < 0
for some k in {3, . . . , p}. Without loss of generalities, we may assume that
limt→t0 λk(t) > 0. Hence we can choose a real t1 satisfying that cosht1 +
λi sinh t1 6= 0 for any i in {3, . . . , p} such that a0(t1) < 0 and λk(t1) > 0.
This is a contradiction. So λi = − tanh t0 or− coth t0 for any i in {3, . . . , p}.
Hence p ≤ 4 and λ3, λ4 satisfy the following equation

2a0(1 + λ2
i )− 2λi(a2

0 + b2
0 + 1) = 0.

�

As a consequence of Lemma 2.3 and 2.4, we obtain Theorem 2.1.

3. Type I hypersurfaces.

The main result of this section is the following result.

Theorem 3.1. Let M be a Lorentzian isoparametric hypersurfaces in Hn+1
1 .

Then M is type I if and only if M is congruent to an open part of one of
the following hypersurfaces:

i) Hm
1

(√
1− λ2

)
× Sn−m

(√
1−λ2

λ2

)
, where −1 < λ < 1;

ii) Sm
1

(√
λ2 − 1

)
×Hn−m

(√
λ2−1

λ2

)
, where λ is real and λ2 > 1;

iii) {x ∈ Hn+1
1 | 〈x,C〉 = λ}, where λ is real, and C is a constant vector

with 〈C,C〉 = 1− λ2.

Proof. We shall arrange the index as follows: 1 ≤ i ≤ m, m + 1 ≤ α ≤ n.
Let M be a type I hypersurface. By Lemma 2.3, we can choose a local

orthonormal frame e1, . . . , em, em+1, . . . , en, en+1 such that en+1 is normal
to M , ωi

n+1 = λωi for 1 ≤ i ≤ m and ωα
n+1 = 1

λωα for m + 1 ≤ α ≤ n. Note
that m = n if λ = 0 or ±1.

Consider the Codazzi equation

(25) dωi
n+1 =

n∑
A=1

ωA
n+1 ∧ ωi

A = λ

m∑
j=1

ωj ∧ ωi
j +

1
λ

n∑
α=m+1

ωα ∧ ωi
α.
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On the other hand

(26) dωi
n+1 = λ(dωi) = λ

m∑
j=1

ωj ∧ ωi
j + λ

n∑
α=m+1

ωα ∧ ωi
α.

Hence

(27)
n∑

α=m+1

ωα ∧ ωi
α = 0.

By Cartan’s Lemma, ωi
α is a linear combination of ωm+1, . . . , ωn. Similarly

we can prove that ωα
i is a linear combination of ω1, . . . , ωm.

From (3),we know that ωi
α = ωα

i (if i = 1) or −ωα
i (if i > 1) since

e1, . . . , en is an orthonormal frame. Therefore

(28) ωi
α = 0.

From (1), (2), (3) and (28), we get

d(X − λen+1) = (1− λ2)
m∑

i=1

ωiei,(29)

dei =

 m∑
j=1,j 6=i

ωj
i ej

+ ωi(X − λen+1),

which imply that

(30) d(e1 ∧ e2 ∧ · · · em ∧ (X − λen+1)) = 0.

Similarly, we can prove that

(31) d(em+1 ∧ em+2 ∧ · · · ∧ en ∧ (λX − en+1)) = 0.

Let W1(x) be the linear span of {e1(x), e2(x), . . . , em(x), X − λen+1(x)},
and W2(x) the linear span of {em+1(x), . . . , en(x), λX − en+1(x)}. From
(30) and (31) we know that W1(x) and W2(x) are fixed subspaces in R2n+2

2 .
Denote them by W1 and W2, respectively.

If λ 6= ±1, then
R2n+2

2 = W1 + W2

is a direct sum of subspaces. Write

X = X1 + X2,

where X is the position vector field of M , X1 ∈ W1 and X2 ∈ W2. Since
X − λen+1 ∈ W1, λX − en+1 ∈ W2, we know that

λen+1 = λ2X1 + X2.

Since 〈X, X〉 = −1, 〈en+1, en+1〉 = 1 and 〈X1, X2〉 = 0, we have

(32) 〈X1, X1〉 =
1

λ2 − 1
, 〈X2, X2〉 =

λ2

1− λ2
.
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If λ = ±1, then from (29) we have d(en+1−λX) = 0. Hence C = en+1−λX
is a fixed vector in Rn+2

2 and 〈X, C〉 = λ.
Therefore M can be represented as in Theorem 3.1. �

4. Type II and type III hypersurfaces.

In this section, we classify the type II and type III hypersurfaces. We state
the classification as a couple of theorems.

4.1. Type II hypersurfaces.
In this subsection, we arrange the index as follows: 3 ≤ i, j ≤ m, m+1 ≤

α, β ≤ n. By a direct calculation, we have:

Theorem 4.1. Let γ(s) be a null curve in Hn+1
1 ⊂ Rn+2

2 , and {γ̇(s), Y (s),
U3(s), . . . , Um(s), Vm+1(s), . . . , Vn(s), ξ(s)} a pseudo-orthonormal basis of
Tγ(s)H

n+1
1 such that

V̇α(s) ∈ span{Y (s), Vm+1(s), . . . , Vn(s)},

ξ̇(s) = λγ̇(s) + B(s)Y (s)

for some nonzero B(s). If M is one of the following parametrized hypersur-
faces in Hn+1

1 ⊂ Rn+2
2 :

(1) λ2 6= 0 or 1,

f(s, y, a3, . . . , am, bm+1, . . . , bn)

= ε1(λ)

√√√√ 1
(λ2 − 1)2

−
m∑

i=3

a2
i

λ2 − 1
(γ(s)− λξ(s))

+ ε2(λ)

√√√√ λ2

(1− λ2)2
−

n∑
α=m+1

b2
α

1− λ2
(ξ(s)− λγ(s))

+ yY (s) +
m∑

i=3

aiUi(s) +
n∑

α=m+1

bα=Vα(s),

where

ε1(λ) =

{
−1, if λ2 > 1
1, if λ2 < 1,

ε2(λ) =

{
−1, if λ(λ2 − 1) > 0
1, if λ(λ2 − 1) < 0.

(2) λ = 0,
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f(s, y, a3, . . . , an)

=

√√√√1 +
n∑

i=3

a2
i γ(s) + yY (s) +

n∑
i=3

aiUi(s).

(3) λ2 = 1,

f(s, y, a3, . . . , an)

=

(
1 +

1
2

n∑
i=3

a2
i

)
γ(s)− λ

(
1
2

n∑
i=3

a2
i

)
ξ(s) + yY (s) +

n∑
i=3

aiUi(s),

then M is type II.

Conversely, we have:

Theorem 4.2. Let M be a type II hypersurface in Hn+1
1 . Then for any

p ∈ M , there is a neighborhood Up of p in M such that Up is exactly one of
the parametrized hypersurfaces in Theorem 4.1.

Before proceeding to give the proof, we separate off the following lemma.

Lemma 4.3. Let M be a type II hypersurface, e1, e2, . . . , en+1 a local pse-
udo-orthonormal frame such that en+1 is normal to M , ω1

n+1 = λω1, ω2
n+2 =

λω2 + ω1, ωi
n+1 = λωi, ωα

n+1 = 1
λωα, and Tλ, T 1

λ
the distributions defined as

follows:

Tλ = ker(A− λ) = span{e2, e3, . . . , em},

and

T 1
λ

= ker(A− 1
λ

) = span{em+1, . . . , en}.

Then all distributions Tλ, T 1
λ

and Tλ + T 1
λ

are integrable, and ω1
α = ωα

2 =

ωi
α = 0, ωi

2 ∧ ω1 = 0 and ω2
α ∧ ω1 = 0.

Proof. Let ω̃1
n+1 = ω1

n+1 − λω1, ω̃2
n+1 = ω2

n+1 − λω2, ω̃i
n+1 = ωi

n+1 − λωi,
and ω̃α

n+1 = ωα
n+1 − λωα. Then

(33) ω̃1
n+1 = 0, ω̃2

n+1 = ω1, ω̃i
n+1 = 0, ω̃α

n+1 =
(

1
λ
− λ

)
ωα.

By (3), we have

(34) dω̃A
n+1 =

n∑
B=1

ω̃B
n+1 ∧ ωA

B,
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where A = 1, 2, . . . , n. (33) and (34) are exactly the Codazzi equation, which
Megid discussed in [4]. Following his results, we have Lemma 4.3. �

We are now in a position to give a:

Proof of Theorem 4.2. Let M be a type II hypersurface, x0 a point of M .
By Lemma 2.3, there is a local pseudo-orthonormal frame e1, e2, . . . , en,
en+1 defined in a neighborhhod of x0 such that en+1 is normal to M , and
ω1

n+1 = λω1, ω2
n+2 = λω2 + ω1, ωi

n+1 = λωi, ωα
n+1 = 1

λωα. Let γ(s) be the
integral curve of e1 through x0, and N(s) the integral manifold of Tλ + T 1

λ

through γ(s). Fixing s and restricting the forms to N(s), we have ω1 = 0.
From Lemma 4.3 and (3), we have

(35) de2 = ω2
2e2.

Denote Y (s) = e2(γ(s)), Ui(s) = ei(γ(s)) and Vα(s) = eα(γ(s)). Then
∀x ∈ N(s), e2(x) = λ(x)Y (s) for some function λ. So the integral curve of
e2 is a straight line in Rn+2

2 .
Define W1(s) = span {Y (s)}. Then W1(s) = span {= e2(x) | ∀x ∈ N(s)}.

From (1) and (2), we have

dX = ω2e2 +
m∑

i=3

ωiei +
n∑

α=m+1

ωαeα,(36)

den+1 = λω2e2 + λ

m∑
i=3

ωiei +
1
λ

n∑
α=m+1

ωαeα.(37)

Computing (37)−λ(36), we get

(38) d(en+1 − λX) =
(

1
λ
− λ

) n∑
α=m+1

ωαeα.

From (3) and Lemma 4.3, we have

(39) deα =
n∑

β=m+1,β 6=α

ωβ
αeβ −

1
λ

ωαen+1 + ωαX.

It follows from (38) and (39) that

(40) d(em+1 ∧ · · · ∧ en ∧ (en − λX)) = 0.

Denote W2(s) = span{em+1(γ(s)), . . . , en(γ(s)), en+1(γ(s))− λγ(s)}. Then
W2(s) = {em+1(x), . . . , en(x), en+1(x) − λx | ∀x ∈ N(s)}. Define W3(s) =
{e2(x), e3(x), . . . , em(x), x−λen+1(x)}. Note that 〈Z(x), e2(x)〉 = 0 for any
Z(x) in Tλ + T 1

λ
. Hence ∀x ∈ N(s), we have

(41) 〈x, Y (s)〉 = 0.
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If m = n, then it follows from (38) that

en+1(x)− λx = en+1(γ(s))− λγ(s).

So ∀x ∈ N(s), we get

〈x, en+1(γ(s))− λγ(s)〉 = λ.

This includes the cases λ = 0 or ±1.
Now suppose λ 6= 0,±1. By (38) and (39) and en+1(x) − λx ∈ W2(s),

x− λen+1(x) ∈ W3(s), we can write

x = X1 + X2,(42)

en+1 =
1
λ

X1 + λX2,

where X1 ∈ W2(s) and X2 ∈ W3(s). Since 〈X1, X2〉 = 0, we get

(43) 〈X1, X1〉 =
λ2

1− λ2
, 〈X2, X2〉 =

1
λ2 − 1

.

Hence M can be locally represented as a parametrized hypersurface in The-
orem 4.1. �

4.2. Type III hypersurfaces.
In this subsection, we arrange the index as follows: 4 ≤ i, j ≤ m, m+1 ≤

α, β ≤ n. By a direct calculation, we have:

Theorem 4.4. Let γ(s) be a null curve in Hn+1
1 ⊂ Rn+2

2 , and {γ̇(s), Y (s),
U3(s), . . . , Um(s), Vm+1(s), . . . , Vn(s), ξ(s)} a pseudo-orthonormal basis of
Tγ(s)H

n+1
1 such that

V̇α(s) ∈ span{Y (s), Vm+1(s), . . . , Vn(s)},

ξ̇(s) = λγ̇(s) + B(s)U3(s)
for some nonzero B(s). If M is one of the following parametrized hypersur-
faces in Hn+1

1 ⊂ Rn+2
2 :

(1) λ2 6= 0 or 1,

f(s, y, a3, . . . , am, bm+1, . . . , bn)

= ε1(λ)

√√√√ 1
(λ2 − 1)2

−
m∑

i=3

a2
i

λ2 − 1
(γ(s)− λξ(s))

+ ε2(λ)

√√√√ λ2

(1− λ2)2
−

n∑
α=m+1

b2
α

1− λ2
(ξ(s)− λγ(s))

+ yY (s) +
m∑

i=3

aiUi(s) +
n∑

α=m+1

bαVα(s),
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where

ε1(λ) =

{
−1, if λ2 > 1
1, if λ2 < 1,

ε2(λ) =

{
−1, if λ(λ2 − 1) > 0
1, if λ(λ2 − 1) < 0.

(2) λ = 0,

f(s, y, a3, . . . , an)

=

√√√√1 +
n∑

i=3

a2
i γ(s) + yY (s) +

n∑
i=3

aiUi(s).

(3) λ2 = 1,

f(s, y, a3, . . . , an)

=

(
1 +

1
2

n∑
i=3

a2
i

)
γ(s)− λ

(
1
2

n∑
i=3

a2
i

)
ξ(s) + yY (s) +

n∑
i=3

aiUi(s),

then M is type III.

Conversely, we have:

Theorem 4.5. Let M be a type III hypersurface in Hn+1
1 . Then for any

p ∈ M , there is a neighborhood Up of p in M such that Up is exactly one of
the parametrized hypersurfaces in Theorem 4.4.

Before proving Theorem 4.5, we need the following Lemma.

Lemma 4.6. Let M be a type III hypersurface, and e1, e2, . . . , em, em+1, ...,
en, en+1 a local pseudo-orthonormal frame such that en+1 is normal to M ,
ω1

n+1 = λω1, ω2
n+2 = λω2 + ω3, ω3

n+1 = λω3 − ω1, ωi
n+1 = λωi, ωα

n+1
1
λωα,

and Tλ, T 2
λ T 1

λ
the distributions defined as follows:

Tλ = ker(A− λ) = span{e2, e4, . . . , em},
T 2

λ = ker(A− λ)2 = span{e2, e3, . . . , em},

T 1
λ

= ker
(

A− 1
λ

)
= span{em+1, . . . , en}.

Then the distribution T 2
λ+T 1

λ
is integrable, and ω1

α = ωα
2 = ωi

α = 0, ωi
2∧ω1 =

0 and ω2
α ∧ ω1 = 0.
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Proof. Let ω̃1
n+1 = ω1

n+1 − λω1, ω̃2
n+1 = ω2

n+1 − λω2, ω̃3
n+1 = ω3

n+1 − λω3,
ω̃i

n+1 = ωi
n+1 − λωi, and ω̃α

n+1 = ωα
n+1 − λωα. Then

ω̃1
n+1 = 0, ω̃2

n+1 = ω3, ω̃3
n+1 = −ω1, ω̃i

n+1 = 0, ω̃α
n+1 =

(
1
λ
− λ

)
ωα.

By (3), we have

dω̃A
n+1 =

n∑
B=1

ω̃B
n+1 ∧ ωA

B,

where A = 1, 2, . . . , n. The above equations are also the Codazzi equation,
which Megid discussed in [4]. Hence the Lemma holds. �

We can proceed to the:

Proof of Theorem 4.5. Since the proof is similar to that of Theorem 4.2, we
give a sketch here.

Let M be a type III hypersurface, x0 a point of M . By Lemma 2.3,
there is a local pseudo-orthonormal frame e1, e2, . . . , en, en+1 defined in a
neighborhhod of x0 such that en+1 is normal to M , and ω1

n+1 = λω1, ω2
n+2 =

λω2+ω3, ω3
n+1 = λω3−ω1, ωi

n+1 = λωi, ωα
n+1 = 1

λωα Let γ(s) be the integral
curve of e1 and N(s) be the integral manifold of T 2

λ + T 1
λ

through γ(s). By
the similar discussion for type II, we have

de2 ∧ e2 = 0,(44)

d(em+1 ∧ · · · ∧ en ∧ (en+1 − λX)) ∧ e2 = 0.

Let W1(s) be the linear span of {e2(γ(s))}, W2(s) the span of {e2(γ(s)),
em+1(γ(s)), . . . , en(γ(s)), en+1(γ(s)) − λγ(s)}, and W3(s) the span of
{e2(γ(s)), e3(γ(s)), . . . , em(γ(s)), γ(s)− λen+1(γ(s))}.

For any x in N(s),
〈x, Y (s)〉 = 0.

Here Y (s) = e2(γ(s)). If λ 6= 0,±1, by (44) and en+1 − λx ∈ W2(s),
x− λen+1 ∈ W3(s), we can write

x = X1 + X2,

en+1 =
1
λ

X1 + λX2,

where X1 ∈ W2(s), X2 ∈ W3(s). Note that 〈X1, X2〉 = 〈X1, Y (s)〉 =
〈X2, Y (s)〉 = 〈Y (s), Y (s)〉 = 0. So we have

〈X1, X1〉 =
λ2

1− λ2
, 〈X2, X2〉 =

1
λ2 − 1

.

If m = n, then
〈x, en+1(γ(s))− λγ(s)〉 = λ.

This completes the proof of Theorem 4.5. �
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5. Type IV hypersurfaces.

The number p of distinct principal curvatures of type IV hypersurfaces is 2, 3
or 4. In this section we classify the type IV hypersurfaces. The classification
is based on the following theorems.

Let M be a type IV hypersurface, x a point of M . By Lemma 2.4, there
is a local orthonormal frame e1, e2, . . . , em, em+1, . . . , en, en+1 defined in a
neighborhhod of x such that en+1 is normal to M , ω1

n+1 = a0ω
1 + b0ω

2,
ω2

n+1 = −b0ω
1 + a0ω

2 (b0 6= 0), ωi
n+1 = λωi for 3 ≤ i ≤ m, and ωα

n+1 = 1
λωα

for m + 1 ≤ α ≤ n.

Theorem 5.1. Let M be a type IV hypersurface with p = 2. Then M is
congruent to an open part of a principal orbit of G ⊂ O(2, 2) in H3

1 , where

G =




cos s sin s 0 0
− sin s cos s 0 0

0 0 cos s sin s
0 0 − sin s cos s




cosh t 0 sinh t 0
0 cosh t 0 sinh t

sinh t 0 cosh t 0
0 sinh t 0 cosh t


∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ s, t ∈ R

 .

Proof. In this case, n = 2 and

(45) ω1
3 = a0ω

1 + b0ω
2, ω2

3 = −b0ω
1 + a0ω

2.

Note that e1, . . . , en is an orthonormal frame. It follows from (3) that

ω2
1 = ω1

2.

Exterior differenting (45), we get

ω1 ∧ ω1
2 = 0,(46)

ω2 ∧ ω1
2 = 0.(47)

From (46) and (47), we arrive at

(48) ω1
2 = 0.

Substituting (45) and (48) to Gauss equation (11), we have

a2
0 + b2

0 = 1.

From the theory of moving frame, (45) and (48) imply that M is locally
homogeneous. In fact M is congruent to an open part of a principal orbit
of G defined in Theorem 5.1. �
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Theorem 5.2. Let M be a type IV hypersurface with p = 3. Then M is
congruent to an open part of a orbit of G ⊂ O(2, 3) in H4

1 , where the Lie
algebra of G is generated by

0 1 0 0 0
−1 0 0 0 0
0 0 0 −1

√
3

0 0 1 0 0
0 0 −

√
3 0 0

 ,


0 0 1 0 0
0 0 0 1

√
3

1 0 0 0 0
0 1 0 0 0
0
√

3 0 0 0

 ,


0 0 0 1 0
0 0 1

2 0 0
0 1

2 0 0 0
1 0 0 0 0
0 0 0 0 0

 .

Proof. In this case, ω1
n+1 = a0ω

1 + b0ω
2, ω2

n+1 = −b0ω
1 + a0ω

2 (b0 6= 0),
ωi

n+1 = λωi for 3 ≤ i ≤ n. From the Codazzi equation (12), we know that

(49) ω2
1 = ω1

2 = cω3

for some function c and

ω3
1 =

2cb0

(a0 − λ)2 + b2
0

[(a0 − λ)ω1 + b0ω
2],(50)

ω3
2 =

2cb0

(a0 − λ)2 + b2
0

[(a0 − λ)ω2 − b0ω
1],(51)

ωi
1 = ωi

2 = 0(52)

for i > 3.
Substituting (50), (51) and (52) to Gauss equation (11), we have

4c2b2
0

(a0 − λ)2 + b2
0

= 1− a0λ,(53)

4c2(a0 − λ)
(a0 − λ)2 + b2

0

= λ,

8c2b2
0

(a0 − λ)2 + b2
0

= a2
0 + b2

0 − 1,

and

−ω3
1 ∧ ωi

3 = (a0λ− 1)ω1 ∧ ωi + b0λω2 ∧ ωi,(54)

−ω3
2 ∧ ωi

3 = (1− a0λ)ω2 ∧ ωi + b0λω1 ∧ ωi,

where i > 3. But (50), (51) and (54) have no solution for any i > 3. This
implies n = 3. From (49), (50), (51) and (53), we know that M is locally
homogeneous. In fact M is congruent to an open part of a principal orbit
of G defined in Theorem 5.2. �

Note. G ∼= SL(3, R).
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Theorem 5.3. Let M be a type IV hypersurface with p = 4. Then M is
congruent to an open part of the hypersurface

{(x1, . . . , x2n+2) ∈ Hn+1
1 :| −(x1 + ix2)2 + (x3 + ix4)2 + · · ·

+ (x2n+1 + ix2n+2)2 |= t}
where t > 1.

To prove the theorem, we need the following simple Lemma.

Lemma 5.4. Let A1, . . . , Ap be m × m matrices in o(1, n). If rank

(
∑p

j=1 ajAj) = 2 and its enginvalues are ±i
√∑p

j=1 a2
j , 0 for any a1, ..., ap ∈

R, and
∑p

j=1 a2
j 6= 0. Then m ≥ p + 1 and there is a invertible matrix P

such that PAjP
−1 = e1 j+1 − ej+1 1 for all 1 ≤ j ≤ p, where eij ∈ gl(n + 1)

whose ij-th entry is 1 and all other entries are 0.

Proof. Since we only need Linear algebra, we give an outline of the proof.
Since rankA1 = 2 and A1 has eigenvalues i,−i and 0, we can choose P1

such that

P1A1P
−1
1 =


0 x21 · · · xm1

−x21 0 · · · 0
...

...
...

−xm1 0 · · · 0

 .

Since rank
(∑p

j=1 ajAj

)
= 2 for any a1, . . . , ap satisfying

∑p
j=1 a2

j 6= 0, the

P1AiP
−1
1 take the form

P1AiP
−1
1 =


0 x2i · · · xmi

−x2i 0 · · · 0
...

...
...

−xmi 0 · · · 0

 .

From the fact that the eigenvalues of
∑p

j=1 ajAj are ±i
√∑p

j+1 a2
j and 0, it

follows that
m∑

k=2

xkixkj = δij .

Hence m− 1 ≥ p and the Lemma holds. �

Proof of Theorem 5.3. We consider the focal manifold N of M . Choose a lo-
cal orthonormal frame e1, e2, . . . , em, em+1, . . . , en, en+1 such that e1, e2, . . . ,
em are tangent to N and em+1, . . . , en, en+1 are normal to N . Note that M
is type IV. From Lemma 2.4, we know that for any (local) unit normal field
ν of N , its principal curvatures are ib, −ib, 0 for some b, and the multiplicity
of principal curvature 0 is m− 2. Here i2 = −1. From Lemma 5.4, we have
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m ≥ n+2−m, i.e., 2m ≥ n+2. Hence we can choose an orthonormal frame
e1, e2, . . . , em, em+1, . . . , en, en+1 such that

(55) ω1
m+l = bωl+1, ωl+1

m+l = −bω1, ωi
m+l = 0

for any l, and 1 ≤ l ≤ n −m + 1. Here 1 ≤ i ≤ m, and i 6= 1, l + 1. Note
that n + 1−m ≥ 2. Using Coddazzi equation, we get

ωj
1 = 0, (j = 1, . . . , m),(56)

and

ωm+k
m+l = ωk+1

l+1 , (1 ≤ k, l ≤ n−m + 1).(57)

Substituting (56) and (57) to Gauss equation (11), we have b2 = 1 and
ω1 ∧ ωj = 0 for n − m + 3 ≤ j ≤ m. This implies m ≤ n − m + 2, i.e.,
2m ≤ n + 2. Therefore 2m = n + 2.

Now we prove the existence and uniqueness of N .
Let Nm be the focal manifold of a type IV hypersurface Mn ⊂ Hn+1

1 ⊂
Rn+2

2 . Then n + 2 = 2m and for any x ∈ N , there is a local orthonor-
mal frame e1, e2, . . . , en+1 such that e1, e2, . . . , em are tangent to M , em+1,
. . . , en, en+1 are normal to M ,

ωi
1 = 0, (i = 1, . . . , m),(58)

and

ωm+j
m+i = ωj+1

i+1 , (i, j = 1, . . . , m− 1),(59)

ωj
m+i = δj

1ω
i+1 − δj

i+1ω
1 (i = 1, . . . , m− 1, j = 1, . . . , m).(60)

Here δj
i = 1 if i = j, and δj

i = 0 if i 6= j.
Let γ(s) be an integral curve of e1. Then

(61) de1 =
m∑

i=1

ωi
1ei +

m−1∑
j=1

ω1
m+j − ω1X,

where X is the position vector field of N . From (58) and (60),

(62) de1 =
m−1∑
i=1

ωi+1em+i − ω1X.

From (62), we know that e1 is parallel along γ in Hn+1
1 . This means that γ

is a geodesics of Hn+1
1 . Hence

(63) γ(s) = cos sγ(0) + sin se1(γ(0)),

and ω1 = ds. Choose the normal vector fields em+1, . . . , en, en+1 such that
each of them is parallel along γ(s), i.e., ωm+j

m+i = 0, (i, j = 1, . . . , m − 1) on
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γ. So along γ, we have

dei+1 = ω1em+i, i = 1, . . . , m− 1,(64)

dem+i = ω1ei+1, i = 1, . . . , m− 1,

which implies that

(65) ei+1(γ(s)) = cos sei+1(γ(0)) + sin sem+i(γ(0))

for i in {1, . . . , m−1}. Now consider the distribution E = span {e2, . . . , em}.
From the structural equation (3), we have

dω1 = 0, dωm+i = ωi+1 ∧ ω1

for i in {1, . . . , m − 1}, which implies that E is an integrable distribution.
Denote the integral manifold through γ(s) by P (s). Then e1, em+1, . . . , en+1

are normal vector fields of P (s). On P (s),

de1 =
m−1∑
i=1

ωi+1em+i, dem+i = ωi+1e1, i = 1, . . . , m− 1.

Hence P (s) is a totally geodesic submanifold of Hn+1
1 for every s.

Summarizing the arguments above, N is determined uniquely by e1(γ(0)),
e2(γ(0)), . . . , em(γ(0)), em+1(γ(0)), . . . , en+1(γ(0)). In fact N is congruent
to an open part of the submanifold:

{(x1, . . . , x2n+2) ∈ Hn+1
1 :| −(x1 + ix2)2 + (x3 + ix4)2 + · · ·

+ (x2n+1 + ix2n+2)2 |= 1}.

The second fundamental form of N is II(e1, e1) = 0, II(e1, ei) = 0,
II(e1, ei) = en+i for 2 ≤ i, j ≤ n. Since M is a tube of N , we obtain
Theorem 5.3. �

Hence we have finished the classification of Lorentzian isoparametric hy-
persurfaces in Hn+1

1 by combining Theorems in Sections 3, 4 and 5.

References

[1] J. Berndt, Real hypersurfaces with constant principal curvatures in complex hyperbolic
space, J. Reine Angew. Math., 395 (1989), 132-141.

[2] J. Hahn, Isoparametric hypersurfaces in pseudo-Riemannian space forms, Math. Z.,
187(2) (1984), 195-208.

[3] S. Kobayashi and K. Nomizu, Foundations of differential geometry, I, II, Intersciences,
1963.

[4] M. Megid, Lorentzian isoparametric hypersurfaces, Pacific J. Math., 118(1) (1985),
165-197.

[5] S. Montiel, Real hypersurfaces of a complex hyperbolic space, J. Math. Soc. Japan,
37(3) (1985), 515-535.



LORENTZIAN ISOPARAMETRIC HYPERSURFACES IN Hn+1
1 397

[6] K. Nomizu, Some results in E. Cartan’s theory of isoparametric families of hypersur-
faces, Bull. Amer. Math. Soc., 79 (1973), 1184-1188.

[7] , On isoparametric hypersurfaces in the Lorentzian space forms, Japan J. Math.
(N.S.), 7(1) (1981), 217-226.

[8] M. Vernon, Some families of isoparametric hypersurfaces and rigidity in a complex
hyperbolic space, Tran. Amer. Math. Soc., 312(1) (1989), 237-256.

[9] L. Xiao, Classification of isoparametric hypersurfaces in CHn, preprint.

Received November 23, 1997 and revised May 15, 1998.

Graduate School
University of Science and Technology of China
Beijing 100039
China
E-mail address: lxiao@tonghua.com.cn

mailto:lxiao@tonghua.com.cn

