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In this paper, we give a simple proof for a good-λ inequality
which means that nontangential maximal functions controls
area integrals.

Let u be a harmonic function on Rn+1
+ . The nontangential maximal func-

tion and the area integral function of f are defined by

Nβ(u)(x) = sup
(y,t)∈Γβ(x)

|u(y, t)| (β ∈ R1
+),

Aα(u)(x) =

(∫
Γα(x)

|∇u(y, t)|2 t1−ndydt

) 1
2

(α ∈ R1
+).

The main aim of this paper is to give a simple proof of the inequality

‖Aα(u)‖p ≤ Cn,p,α,β ‖Nβ(u)‖p (0 < p <∞, 0 < α, β <∞).(1)

As we know, this inequality is very important in Hp-theory, it is also a main
difficulty in generalizingHp-theory of one parameter toHp -theory of several
parameters, see [2, 6, 7, 8]. The first proof of (1) is probabilistic which was
given by Burkholder, Gundy and Silverstein, see [1]; Fefferman and Stein
first got an analytic proof of (1) by dealing with a kind of Green’s formula
on R = ∪x∈EΓα(x), see [4]; a sharpened inequality was obtained in [5] by
a different approach. In the two-parameter case, Gundy and Stein set up
a similar inequality to (1) by dealing with some multi-sub-linear operators
like

B(u, v)(x) =

(∫
Γ(x)

|∇1u|2 |∇2v|2 t1−n1
1 t1−n2

2 dx1dt1 dx2dt2

) 1
2

,

see [9]; Merryfield ([8]) and author ([2]) generalized Gundy-Stein’s work to
multi-parameter case independently and differently. In our proof ([2]), we
introduced a kind of Carleson measure technique which does not depend on
the dilation and translation structures of Rn such that the method works
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on more general case (see Chen and Wang [3]). Here, we shall use the idea
to give a simple proof of (1).

At first, we notice that for 1 < p <∞, the proof of (1) is elementary, and
for 0 < p ≤ 1, (1) can be followed from

|{x : Aα(u)(x) > λ}| ≤ Cn,α,β

(
|{x : Nβ(u)(x) > λ}|

+ λ−2

∫
Nβ(u)(x)≤λ

Nβ(u)2(x)dx
)(2)

where 0 < α, β, λ < ∞ (note that, for 0 < α < β < ∞, (2) was set up in
[4]). Now, we shall prove (2).

By a limitation procedure, we may assume u(x, t) = ũ(x, t + ε), where
Nβ(ũ) ∈ Lp. ∀λ > 0, set Eλ = {x : Nβ(u)(x) ≤ λ}, δ0 = δ(n, β) =∫
|x|<β p1(x)dx ∈ (0, 1), where pt is the Poisson kernel. Take a closed subset
Fλ of Eλ such that |F c

λ| ≤ Cn,α,β |Ec
λ|, pt ∗ χEλ

≥ 1− 1
2δ0 (on ∪x∈Fλ

Γα(x)),
which is possible by the definition of pt and the weak type (1,1)-boundedness
of nontangential maximal function operator; then, take ϕ ∈ C2(R1) ∩
L∞(R1), such that ϕ|(−∞,1−δo) = 0, ϕ|(1− 1

2
δo,+∞) = 1, |ϕ′| + |ϕ′′| ≤ cϕ3/4

(by using e−t−2
). Now, set v = pt ∗ χEλ

, then

the left side of (2)(3)

≤ |F c
λ|+ |Fλ ∩ {x : Aα(u)(x) > λ}|

≤ Cn,α,β

{
|Ec

λ|+ λ−2

∫
Fλ

∫
Γα(x)

ϕ(v) |∇u(w, t)|2 t1−ndwdtdx

}

≤ Cn,α,β

{
|Ec

λ|+ λ−2

∫ ∫
Rn+1

+

ϕ(v) |∇u|2 tdwdt

}
.

Note that

ϕ(v) |∇u|2 = −uϕ′(v)∇v · ∇u− 1
2
u2∆(ϕ(v)) +

1
2
∆(ϕ(v)u2);

and, ‖ϕ(v)u‖∞ ≤ Cϕλ for v ≤ 1 − δ0 on (∪x∈Eλ
Γβ(x))c; in addition, it is

not difficult to show that for a fixed ψ ∈ C∞c (Rn) satisfying ψ(|x| ≤ 1) = 1,
ψ(|x| ≥ 2) = 0, we have (where ψr(w) := ψ(w/r))∫ ∫

Rn+1
+

∆(ϕ(v)u2)tdwdt = lim
r→∞

∫ ∫
Rn×(0,r)

ψr(w)∆(ϕ(v)u2)tdwdt

=
∫
Rn

ϕ(v(x, 0))u2(x, 0)dx

by Green’s formula, because Nβ(ũ) ∈ Lp, and∥∥∥tk+n/p∇ku
∥∥∥
∞

+
∥∥∥tk∇kv

∥∥∥
∞
≤ Cε,n,p,k(ũ) <∞
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for k = 0, 1, 2, · · · . Therefore, by Hölder’s inequality, we get∫ ∫
Rn+1

+

ϕ(v) |∇u|2 tdwdt

≤ Cϕλ

(∫ ∫
Rn+1

+

|∇v|2 tdwdt

) 1
2
(∫ ∫

Rn+1
+

ϕ(v) |∇u|2 tdwdt

) 1
2

+ Cϕλ
2

∫ ∫
Rn+1

+

|∇v|2 tdwdt+
1
2

∫
Rn

ϕ(v(x, 0))u2(x, 0)dx

≤ Cϕ,n(λ2 |Ec
λ|)

1
2

(∫ ∫
Rn+1

+

ϕ(v) |∇u|2 tdwdt

) 1
2

+ Cϕ,n

(
λ2 |Ec

λ|+
∫

Eλ

Nβ(u)2(x)dx
)
.

Thus, by an elementary argument, we get∫ ∫
Rn+1

+

ϕ(v) |∇u|2 tdwdt ≤ Cϕ,n

(
λ2 |Ec

λ|+
∫

Eλ

Nβ(u)2(x)dx
)
.(4)

(3) and (4) give (2).
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