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The paper provides a sufficient condition on the oblique
derivative. Under this condition, an existence, uniqueness and
regularity theorem is proved for the oblique boundary value
problem of Monge-Ampeére equations in a smoothly bounded
strictly convex domain in Eulidean spaces.

1. Introduction and main results.

Let Q be a bounded strictly convex domain in R™. We consider the Monge-
Ampere equation:

(1.1) det< Pu > = f(z,u,Vu), z €
O0x;0x;
associated to the oblique boundary condition:
(1.2) Dpu(z) = ¢(z,u(x)), =« € 09,
where 3(z) is a smooth unit vector field on Q satisfying
(1.3) B(z) -v(z) >0, @ulz,u) < —0(z) <O0.
Here v is the unit outer normal to 9L, v is a positive function on 0f2, and
Dg=p3-V.

The existence and uniqueness of the classical convex solution of the equa-
tions (1.1) and (1.2) under some suitiable conditions on f, ¢ and v was
studied by P.L. Lions, N. Trudinger and J. Urbas [9]. They applied the
method of continuity plus a priori estimates to study the problem. The key
and hard analysis in their argument is to obtain a priori estimates on the
convex solution u up to C>*(Q) for some a > 0. By a result obtained by
P.L. Lions and N. Trudinger [8], the problem can be reduced to prove the
CYY(Q) a prioriestimate on u. The C1 () a priori estimate of u for a general
oblique boundary condition was obtained in [9]. A very elegent argument
was applied in [9] to obtain an a priori estimate on the second derivatives
of u when 8 = v. Therefore, they solved the existence and uniqueness of the
classical convex solution u for Neumann boundary problems (1.1) and (1.2)
(with # = v) under the condition (1.3) and some constructive condition on
f. Their technique is highly dependent on the assumption that 3 is normal.
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For the case n = 2, the oblique boundary value was solved by J. Urbas [10]
and later by X-J. Wang [12] with the condition:

(1.4) [_251' (fk) (x) + 52(;E Z)) 6ij 7T < =y < 0, xe€dN

for all 7(x) € T,(0Q) N S"~ L, where &; = (6;; — viv;)0;. However, the exis-
tence of the classical convex solutlon of oblique boundary problem remains
open when dimension n > 2. Since det(u;;) becomes much more compli-
cated, there are essential difficulties to be overcome. In fact, V. Pogorelov
gave a counterexample indicating that, in general, the oblique boundary
value has no smooth solution even if 3 is strictly oblique and smooth. It is
natural to search for a condition on 3 so that the oblique boundary value
has a classical convex solution. It was shown in [9] that the oblique bound-
ary value problems (1.1) and (1.2) has classical convex solution under the
condition (1.4) when € is the unit ball B C R™. This suggests us to transfer
the problem on 2 to a related problem on the unit ball B by using a change
of variables. Unfortunately, the Monge-Ampeére equation is not invariant
under a change of variables. However, this observation is still helpful. In
this paper we shall isolate the difficulty and formulate a suitable condition
to avoid it in order to obtain our main results (we solve the general oblique
boundary value problem when g is big enough).

Let 2 be a bounded strictly convex domain in R™ with smooth boundary.
Let p be a convex defining function for €2 so that v(y) = Vp(y) for y € 09.
Let p attain its minimum at yo € 2. Without loss of generality, we may
assume that yg = 0. Then we define

(1.5) to(z) =max{\A >0: \x € Q}, z€IB.

It is easy to show that ty € C*°(9B) when 0 is C*°. We let (for x # 0)

(1.6) t(z) = |z|*[to(x/|z]) — m] +m, m =min{ty(x):x € IB}.

Let

(1.7) dij(z) = 1
' A Y vt

Let A(z, &) be the smallest eigenvalue of the matrix T" = [T};(z, §)] with

[2t710;t 0;t — Oyt

2.7 LU 5 Z§k|x|akdm ) e Sn_l.

Then we define
(1.8) A(z) = min{\(z, &) : £ € S"1Y.

It is clear that A(x) < 0. In particular, A(z) = 0 when  is the unit ball
and yp = 0. Let \g(z) and A be the smallest and largest eigenvalues of the
matrix [d;;] at z, and let A(z) = max{|Ao(z)|, |[Ao(z)|}. Let ¢(z) = t(x)z
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which is a C*!-map from B to Q. Let bj(x) be the smallest eigenvalue of
¢ (2)t¢/(x) at € B and let by be the maximum of the largest eigenvalue of
¢ (z)t¢/(x) for all x over B. We let b(z) = by(z)/bo.

Let r(x) = p(¢(z)) for z € B. Tt is easy to see from the chain rule that
Vr(z) = ¢/'(x)Vpo ¢(x), and we let n(z) = ¢'(x) "3 o ¢(x). Then

(1.9) (@) = Vr(z) -n(z) = Vp- 5o d(z).
It is easy to see that Vr(x) = |Vr(x)|z for all z € 0B. Let
(1.10) ¢'(2)' H(p) o p(2)¢' () = [hij(2)]

where H(p) denotes real Hessian matrix of p. We let h(x) be the smallest
eigenvalue of [h;;] at . Since [h;;] is positive definite, we have h(z)b(z) > 0
on B. We let

X)) — xXr) — X — iL'2 2 —
(1.11) K:max{2/\() A(h)($)[j\(i))(1 1) :;UEB}.

Finally, for x € 0B we let

(1.12) ¢(z) = min {aik [3:’7”77} (2)&:&, €€ 8™ N TI((?B)} ,

and for each x € 9B we assume

(1.13) () := (z - 0(2))*v0(d(x)) + 2(z - n)’c(z) — Ky (@)n(z)* > 0.
We are ready to state our theorems, for simplicity, we state them only for
flx,u,p) = f(x,u), as follows.

Theorem 1.1. Let ) be a bounded strictly convex domain in R™ with smooth
boundary. Let f(z,u) € C®(Q x R) be positive and non-decreasing in u.
Let 3 € C™(Q) be a unit vector field and let p € C°(0 x R) satisfy (1.3),
and (1.13). Then the oblique boundary value problem of the Monge-Ampére

equations (1.1) and (1.2) has a unique convex solution u € C*°(Q).

Theorem 1.2. Let Q be a bounded strictly convexr domain in R™ with C*
boundary. Let f be a nonnegative function on Q such that fX/™ e Cch1(Q)
and ¢ € C3(0Q x R) satisfying (1.3), and (1.13). Then the oblique boundary
value problem of the Monge-Ampére equations (1.1) and (1.2) has a unique
convez solution u € CH1(Q).

The paper is organized as follows. In Section 2, we collect some known
results and formulate the problems for later sections. We will translate
the problems from a convex domain to other problems in the unit ball in
Section 3. The main theorems will be proved in Section 4. The statements
and proofs of the results for more general equations are also given there.

This work was partially done when the author was visiting MSRI, Berke-
ley in June, 1996. He would like to the institute for their hospitality. The
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author would like to thank X. Huang, S. Krantz, Peter Li, L. Nirenberg, B.
Russo, and J. Wang for some useful conversations.

Added to proof: The referee pointed out that the related work was also
carried out by J. Urbas [11] independently using a completely different
method.

2. Preliminary.

In this section, we shall outline how to prove our main results, and formulate
the problems for later sections.

We consider a more general equation by replacing (1.1) by
(2.1) det(H (u) — o(z)u) = f(x,u) >0

where o(x) is n X n symmetric non-negative matrix with smooth entries on
Q with o9 > 0. Here oo(z) be the smallest eigenvalue of o(z) at z € Q.

By a standard argument, one can prove the uniqueness of the solution
of (2.1) and (1.2) under the assumption that f is non-decreasing in u. For
convenience of the readers, we recall a theorem in [8] concerned with the
existence of a convex solution. By the method of continuity and a priori
estimate, the following theorem is proved by P. L. Lions and N. S. Trudinger
[8].

Theorem 2.1. Let Q be a bounded stm’ctlyiconvez domain in R™ with C*
boundary. Let o € C3(O0xR) and 3 € C*(Q) be unit vector fields satisfying

(2.2) Y(z) >0, ~o(x)+oo(x) >0, and [(z)-v(x) > 0.

Let f(x,t) € C?(2 x R) be positive and non-decreasing in t. Then (2.1) and
(1.2) has a strictly convex solution u € C>*(Q) so that

(2.3) ’u‘c&a(ﬁ) < O, ’u‘cl,l(ﬁ))

for all 0 < o < 1 provided ||ul| 1.1 (g is finite, where C' is a constant de-
pending only on |fly 5, 2, 70, Y0+00, @ [¢l3.00, min{yi1(2) : © C B} and
||u|\0171(§). Here |uly x denotes the C* norm on X.

Combining Theorem 2.1 and uniqueness, the proofs of Theorems 1.1 and
1.2 are reduced to proving a priori estimates on the convex solution u up to
the second order derivatives on (2. We first need the following result.

Lemma 2.2. Let Q be a bounded strictly convexr domain in R"™ with C3
boundary. Let 3 be a smooth unit vector field on O, let ¢ € C%(02 x R)
satisfy (2.2), and let f(x,t) € C1(Q x R) be positive and non-decreasing in
t. If u € C3(Q) is a strictly convex solution of (2.1) and (1.2), then

(2.4) ul, g < C,
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where C' is a constant depending only on | f|, g, 2, Y0, |¢
x C OB}.

0,00 and min{y(2) :

Proof. Lemma 2.2 is a special case of Theorems 2.1 and 2.2 in [9]. In fact,
one can easily estimate the upper bound of u, say, N. Then g(x) = f(z, N)
and h(p) = 1 satisfy the conditions (2.3) and (2.4) in [9]. Thus, Lemma 2.2
follows as a special case of their theorems. O

The main result of this paper is now the following theorem, which will be
proved in Section 4.

Theorem 2.3. Let Q be a bounded strictly convexr domain in R™ with C*
boundary. Let B be a smooth vector field on 0 and let p € C3(9Q x R)
satisfy (2.2) and (1.13). Let f(x,t) € CHY(Q x R) be positive and non-
decreasing in t. If u € CHQ) is a convex solution of (2.1) and (1.2), then

(2.5) |D?u(z)| < C, for all x €,

where C is a constant depending only on |fly g5, Q, v, min{B-v(z) : z €
N}, |¢lsoa and min{y1(z) : © C B}.

In order to prove Theorem 2.3, we need the following result, also proved
in [9]. Let My = |u|, g and My = |u|; 5. Then:

Lemma 2.4. With the assumptions of Theorem 2.3, we have
|DgDyul < C on 09, where C is the constant depending only on |U|Cl(§)f
1 ok = no 010] @1 |Pl2,000x [~ Mo, —Mp) and €.

For convenience of the reader, we sketch their proof here. Let
z(x) = Dgu(x) — ¢(z, u) + Kip(x).

Then we can choose a suitiable K; depending on M; and given data so
that z(x) attains its maximum on 02, but z = 0 on 992. Then we have
Dggu(x) < C on 0f2. Moreover, for e, = (0,...,1,...,0) = apT® + by
with 7% € §"~! and (7%, v) = 0. Thus

|DgDyu| = [Dg(arDru+ bpDgu)|
]Dg(ak)DTku +arDgD wu + (ngk)Dgu + kagﬁu‘
CM, + |ak(DﬁT]]-€)Dju| + |akDTkDgu\ + C(Ml)
C(My) + |ax Drep(z, u)|
C(My)

(VAN VAN VAN

where C'(M) is a constant depending only on M; and the smallest eigenvalue
of H(p) over Q. Therefore, the proof of Lemma 2.4 is complete. O
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3. A tramnslation of the Problem.

In this section, we shall translate our problem from a general convex domain
to a more complicated problem in the unit ball B,, C R".

Let 2 be a bounded strictly convex domain in R” with C*° boundary 0f).
Let to, t and ¢ be given as in Section 1 (see (1.5), (1.6), etc.) From the
definition of ¢, one can see that ¢ is a (C*!) homeomorphism from B,, onto
Q and also from B,, onto 2. We shall use the following notation.

(3.1) ¢(x) = (01(2), ... Pu(x)) = (218(2), . .., 2nl(2)),
and
B2 V@ == g =06
It is easy to see that
Pri = gik = t(2)0k; + w0t ()

and 5

6905223 = (5]%8]25(%) -+ (5@8,75(1‘) + :zka”t(x)
Therefore
(3.3) ¢ (x) = t(x)I, + x ® Vt(x)
and
(3.4) H(¢p) = e @ Vi(z) + Vi(z) ® e, + 2 H (1),
where e, = (0,...,0,1,0,...,0).

Let
(3.5) a(z) = t(x)(t(z) + z - Vi(x)) L.
Then we have
reoN—1 _ 1 a(r)

(3.6) d(x) = (x @ Vi(x)).

ta) " t(x)?

In fact, if we let B(z) = t(x) "1, — a(z)t(z)"%(z ® Vt(z)), we shall prove
B¢'(z) = 1. From

(x @ Vit)(x @ Vi) = (z - Vt(z))(z @ Vi(z))
and
Vit(z) = |2|*Vito + 42> (tg — m)z,
it follows that
(3.7) x - Vi(z) = |z[*z - Vg + 4]z|*(tg — m) = 4(t — m) > 0.
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Thus
a(z) = 5t(£>(:i)4m e C¥(B,)
and
Ba)d (@) = I+ 2o Vi)

t(x)

—M:L‘ T a<$) x X X
e Vila) ~ 75 0 Vi) o © V(o)
B 1 a(z)(t(z) + x - Vi(z))
= In—l—t(x)a:@Vt( x) — )
- I,

Therefore, ¢'(z)~! = B(z), the proof of (3.6) is complete.

x ® Vit(x)

Let Ap be smooth symmetric matrix-valued function defined as follows:

Ay H(¢1)

Then we have the following proposition:

Proposition 3.1. If p° € C'Q(Q) and r0(x) = pP(¢(z)), then
(3:8) )+ Z A = ¢/(2)' H(p") 0 ¢(2)¢/ ().

Proof. A simple calculation shows that

(3.9) H(r%)(z) = ¢ () H(p°) 0 p(2)¢' (x) + Z o o ¢(x)H (o).
k
By the definition of Ay, we have
(3.10) D @) Ap(x) = =D pi(e(x)) H(dr) ().
k k

Combining (3.9) and (3.10), we have
H(r%)(w) = ¢/ (2) H(p") 0 p(x)¢' (x) = Y r}(w) Ag ()
k

which completes the proof of the proposition. O

Let u be a solution of (2.1) and (1.2) with H(u) > o(z)u. We define
(3.11) v(@) =u(é(x)), T€B,
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and

(3.12) n(z) = ¢'(x) 7 8(6(x)).

Then we have following proposition.

Proposition 3.2. For any x € 0B,,, we have

(3.13) Dyv(z) = @(¢(x),v(x)), 7(x):=n(x) Vr(z) = (8-Vp)op(x) > 0.

Proof. The first identity of (3.13) follows from the chain rule. Since
Vr(z) = ¢'()'Vpo d(z)

we have

n(x)-Vr(z) = (¢(x)"'Bod(x))-(¢'(x)'Vpoo(z))

= (¢/(x)¢(x) "' Bod(x)) - (Vpoo(x))
= (B-Vp)og(z)>0.

Therefore, the second identity follows, and the proof of the proposition is
complete. O

It is easy to see that (2.1) is equivalent to

(3.14) det (H(U) + Z v A — 5(;10)11) = fo(x,v),
k=1

where

(3.15) d(z) = ¢/ ()’ (p(x))¢' (x)

folz,v) = f(é(x),v) det(¢'(x))?.
If u is a solution of (2.1) and (1.2) with H(u) > o(z)u then v is a solution
of (3.14) and (3.13) with H(v) 4+ >_;_, vgAr — &(z)v positive definite.

For use later, we shall compute Ay (z) explicitly. By (3.4)—(3.6), we have

Ay [H(¢1)] H(¢1)
: — () +f(;x))2(x®v7f(x))
An, _H(¢n)_ H(¢n>
[H(¢1)] 2135t H(¢;)
.
| H(¢n)| T 3t (65)
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Therefore
_ _ "ot
(3.16) A = —t(x) 1H((Z§]€) + a(x)t(g;) Zxk ; a—%H((b])
By (3.4), we have
ot ot ot
oz, H(¢;) = oz, =€ © Vi(z Z Vt®e]+;xj&xjH(t)
= 2Vt( ) ® Vi(z) + (a:-Vt)H( ).
Thus
—t Y H(t) + a(z)t™ 2y (z - V) H(t)
= apt 2 (—t +a(x)(x- Vi) H(t)
_ -1 . X - Vt
= aut [ 1+t+:c-Vt] H(t)
I
 t4ax- wH(t)'
Therefore
Muls) = = H() + alot(e) aR2VHe) © Tt(o) + o VOH()
= —t(l)[ek ® Vi(z) + Vi(z) ® ey]
2zpa(x) a(z)xy
Ve Vi - TEp(t) + o (x- VOH (1)
= —t(z) e, ® Vi(z) + Vi(z) @ ey
T 1 _
+7t o [2t7 " Vi(x) ® Vt — H(t)].
Thus if we let
(3.17) &, = —t(2) oyt + 85001
and
o 275718,'25 ajt — 8Z-jt . 2t7167;t ajt — aijt
(3.18) dij = t+ax-Vt 5t — 4m
then
(3.19) ay; = ¢y + wpdyj.

As a corollary of Lemmas 2.2 and 2.4, we have:

Proposition 3.3. With the assumptions of Theorem 2.3, we have
i) [v], 5 <CM; <C;
(ii) |DyDgv| < C on 0B.
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Here C' is the constant depending only on ’u‘cl(ﬁy |]f”1§x[7M0 Mo] and
|l2,00x [~ Mo, — M) and §2.

4. The proof of Theorem 2.3.

In this section, we shall complete the proof of Theorem 2.3. Let u € C*(Q)
be a solution of (2.1) and (1.2) so that H(u) > o(x)u.

Let W = [w;j] = H(v) + Apvp, — 6(x)v and [FY] = W1, Then we have
the following identity (see [9] and [7]).
(4.1) Fijaggwij = a&g(.%', 'U) + FMijagwijagwkg
for all £ € 0B,,, where 0 = ), &;0; and g(z) = log fo(x).
Theorem 4.1. Under the assumptions of Theorem 2.3, let u € C*(Q) is a

solution of (2.1) and (1.2) with H(u) > ou. Then v =wuo ¢ satisfies (3.14),
(3.13) and

(4.2) Z((su — xpxy)Opev(x) < C x € OB,
kit

where C' is a constant depending only on given data.
In order to prove Theorem 4.1, we need some lemmas.

Lemma 4.2. If v =wuo¢(x) is a solution of (3.14) and (3.13) with H(v) +
Apvp — G (z)v positive definite on B then

(4.3) tr(vre) (z) < O(My) + b(z) ' Mapp
where
(4.4) M; op = max{tr(vy)(x) : © € 0B}.

Here b(x)~! the ratio of the mazimum largest eigenvalue of ¢'(x)'¢'(x) on
B and the minimum eigenvalue of ¢'(y)t¢'(y) for y € OB.

Proof. Notice that
W(z) = H(v)+ Y afop = ¢/(x) H(u) 0 p(x)¢' ().
k=1

It is easy to verify there is a constant K3 = C depending only on M, f,o
and their first and second derivatives on 2 so that tr(uge) o ¢(x) + Ksr(x)
attains its maximum over B at some point 2! € 9B. Since

tr(uge) o (x) + Kar(z) = tr((¢/(z) )W ()71 + Kar(z)

attains its maximum over B at the point 2! € 9B, we have, with the notation
of by being minimum of the smallest eigenvalue of ¢'(z)'¢'(z) over B,

tr(W)(z) + Ksby(z) " 'r(z) < b(z) Hr(W)(a?)
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and so

tr(W)(z) < b(x)_ltr(W)(:vl) — Ks3bi(z) " tr(x).
Therefore (4.3) holds, and the proof of the lemma is complete. O
Lemma 4.3. If v =uo ¢(x) is a solution of (3.14) and (3.13) with H(v) +
Apvy, — o(z)v positive definite on B then

n

Inf?
(4.5) M op < C(My) + xseua% @ )2 kgz:l((m — p2e)Vke(T)

Proof. We write
N = a1z + as7(x)
where 7(z) € T,(0B) N S™ 1, and a} + a3 = |n|? with a; > 0. Let

(4.6) Nv](z) = Z Tpovge(T).
k(=1
Then for any z € 9B we have

N[v)(z) < a;'D,Dyv(x) —a;'azD,Dyv(x) + C

< C(My) —ay‘aaD, D v(x)
1 1 a3
< C(Ml) + *N{’U] + *jDTTU(l‘)a
2 2af
and hence
2
(4.7) N[v](z) < 2C + 2D, 0(x).
ai

Therefore for x € 9B, we have
a3 -
tI‘(’ng) < C(Ml) + <1 + ag) Z [519[ — mka:g]vkg(a:).
L7 k=1

Notices that 1+ada;? = |n(x)[*(x-n)~2. We have (4.5) hold, and the proof
of the lemma is complete. O

We now are ready to prove Theorem 4.1.

Proof of Theorem 4.1. Let

(4.8) M(x) = (ke — ze)vie + K1 |Vol” + Kor ()
kel

and let

(4.9) V(z) = M(x) + KoMs ppr(z) r€B

where

Ky = K + g min{y() @) 1 (@)(e - () - x € 9B).
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Let
(4.10) L =FY8;;+ Fa};0,.
We shall compute LV (z). For convenience, we shall use the following nota-
tion: v; = 0jv, vi; = O;;v and vy = O;jxv, etc.. First, note that
(4.11) FY0;;[0k0 — zpwe)vee = —dai F v — 2F Y05 4+ F9 53 — wpw0]vgeij -
The first term of RHS of (4.11) satisfies the following estimate:
—4:17kFijv,~jk = —4:L‘/€Fij8kwij + 4z, F9 9, [a%vp — 045V

= —4a, FY90,g + 4xkFija%vpk + 4xkvp8kafj — AFY 21,0 [5450]

> —C(M)tr(FY) + dwpop FYaf),
the second term of RHS of (4.11) satisfies the following estimate:

—2Fijvij = —2Fijwij + 2F% [afjvp — 045v] > —C[Ml]tr(Fij).
Notice that af; € C?%(B), we have F"0ya;; > —Ctr(F¥). Thus the third
term of RHS of (4.11) satisfies that
F[5k0 — wpwe|ve
= F90k — 220)Opewij — F 530 — 21,2¢) Ope (avp — Gijv)

> [Oke — 220)Opeg — F (010 — 21,20|Ope(af;vp — Fi5v)
> —C(My)(te(F7) + tr(vge)) + F7G55M (2) — FY a0, (Oke — whe) vd]

—F[5yp — apy) [8kafjwp + Ggafjvkp] — 2Fijxkvkpa%.
Moreover, we have the following two inequalities:
Fij&j|Vv\2 = 2kaijvijk + 2Fijvkivjk
= 20 FY0pw;; — 20, F9 0 [a};vp — Gijo] + 2F vk
> 2up0kg — F7al,0,|Vo|* — C(My)tr(FY) + 2F 7 ugj,

and
Lr(x) = F9h;; + Fijafjapr > h(z)tr(FY7) — Ctr(FY).
By combining the above five estimates and (4.11), we have
LM (x)
> —C(M)[(1 + K1)tr(FY) + tr(vge)] + F96;;M ()
—2F% [Oke — :kag]aka%vgp + kavkaijafj + KlFijvikvjk + Koh(x)tr(FY)
> [Koh(z) — C(My) (K1 + D)]tr(FY) + [K1 — O(M)]tr(vie) + F96;;M ()

— 2F" 630 — xkxg]aka%vgp + 21‘kvka”afj.
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We write

(4.12) Iv] = —2FY (6}, — :kag]ﬁkcfj Vep + kavkaijcfj

and

(4.13) Jv] = —2F% [0kt — Trxe) Ok (2pdij)vep + 2xkxpvkaijdij.
We claim that

(4.14) I[v] > —C[M]tr(FY).

In fact,

I[v]

= 2t(z) " FY [0 — z120) (Ontjv0i + Otivie)

— 2t(z) 2[00 — 22Ot F (Ot vip + Oit vje) — 2t wp Y (vgitj + vgjt;)
= %[5142 — l‘kxg]Fijtij&' — %[&d — a:kxg]aktFijﬁjtvig — %xkFijvkitj
—C(My)tr(FY) + %([5;6@ — a:ka:g]Fingi(tkj - t(:z:)*ltktj) — arkFijwkitj)
> —C(My)tr(F9)

v

and the proof of (4.14) is complete.
Next we consider J[v]. It is obvious that

J[U] = —2FU [5kg — :xkl’g]ak(mpdij)vpg + kavpkprijdij
= _2F% [0ke — zxxy] [xpvpgakdij + 5pkdijvpg] + 2:Ukvpkprijdij
= ZFUdZ'j(—tI‘(UM) + 2N[v]) — 2F" [§ke — wkxg]xpvpgakdij.

Now we consider

n n 2
|z|2 Ny [v])? = Z [0kt — TRx|Tpvpe
k=1 \pJt=1
2
n n
= Z TpUpk — TN [V]
k=1 \p=1
2
n n n n n
= prvpk - QZka[v] prvpk + Zw%N[v]z
k=1 \p=1 k=1 p=1 k=1
2
n n
= > wpvpr | — 2N + |22 N[v]*.
k=1 \p=1
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Without loss of generality, by rotation, we may assume that z = (|z|,0,...,
0) as a vector. Since H(v) — Apvp, — Gv is positive definite and we may
assume tr(v;;) > C, we have

2
Z (Z ﬁcpvpk:) = Z |20}y < |z|* (011 + O)(tr(vke))

k=1 \p=1 k=1
= (N[v] + Clz|*)(tr(vke))-
Thus
[z*Ni[v]* < (N[v] + Cla*)tr(vre) — 2N[v]* + 2> N[v]?
N[v](tr(vre) — 2N[v] + 2> N[v]) + Cla*tr(vke).
Thus

Nl[U]Q < N[ ]

<R (tr(vre) — 2N o] + |22 N[v] + C) + Ctr(vge).

Therefore, by Cauchy-Schwarz’s inequality, we have

Ni[o] < (1/2) (tr(vu)—QN[v]+\:U|2N[ |+ 2| 2N [v] + C/tr( W)

= (1/2)[tr(vie) — (1 = |2z[*) N[v] + IwI_ZN[ J(1 = |2[*)] + C/tr(vke)
= (1/2)[tr(vke) + || 2N[ J(1 = [21*)?] + CV/tr(vke)
< (1/2)[1 + (1 = |22 ?Jtr(vre) + Cv/tr(vpe).

Therefore (since A < 0)

1
1

—2Fij [5k£ - wk:cg]xpvpg(‘)kdij

2 2AN1 [U]

> Atr(F9)[14 (1 — |2]?)?)tr(vge) + 2CAtr(F9) 3 [tr(vi;).
It is obvious that

—2Fijdij[tr(vkg) — 2N[U]) > —2)\(x)tr(Fij)tr(vk4).

Thus
(4.15) J[v] > [A(@)(A+(1—|z]*)?) = 2\]tr (F7)tr(vge) +20 At (F9) [ tr(vij).
Now we assume that V(z) attains its maximum over B at 2° € B. By

Lemmas 4.2 and 4.3, we have (at z = 2°)

M(2%) > —C — Kyr(2°)Mypp + max{M(z) : z € 0B}

as (21)2
> —C(M)+ |-Kor(z°) + |771((xl))]2] M op
> —CO(My) + v2b(2°)tr(vge(2))
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where
(4.16) Yo := min {al(az)2|7](x)\_2 :x € OB} .

Therefore, by choosing K1 > 4C(M)(1 + h(z) + b(z)™!) and Ko > (K7 +
1)C(My)h(x)~! for all z € B, and (4.3), we have

LM ()
> %tr(FU) + oot (FM () + I[] + J[o] + 20(My) (h(x) + b~V )tr(F)
> Gotr(F)yab(2)tr(vge) (2) + 20 (M) () + b~ () ex (F9)

@)+ (1 — |22)2) — 2\t (F7 )t (vre) + 2CAtr(FI) [t (vyy)
= [oov2b(x) + Alz) (1 + (1 — |2[*)?) — 2X]tr(F7)tr(vge)

+20(My) (h(z) + b~ (z))tr(FY) + 2CAtr(F7) 4 /tr(vi;)

> —Kb(z)h(z)tr(FY)tr(vge) + 20Atr(F7)4 /tr(vij)

> —Kh(x)tr(F7) My pp + 2CAtr(F)\/ My ppb(x) !

where K = max{K°,0} and

oo, DoAMIERR ),

(417) K" =min {— hx) h(2)b()

Therefore, we have either
LV (2°) > h(z)tr(FY) My pp(— K + Ka) + 2CAtr(FY) /My spb(x)~1 > 0

or Mygp < C(Ks — K)72. In other words, we have either z° € 9B or
Msop < C(Ko—K) 72 If My pp < C(Ky—K)™2 then the proof of Theorem
4.1 is complete. Without loss of generality, we may assume 20 € 9B. Let

" =m-x) ', =g @9
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Now applying Proposition 3.3, at x = 2° with 6 = Z?zl(ékj - xgx?)ﬁj, we
have
0< D,V (2"
< Do M (2°) + 2K10p(2°) Dy v (2°) + Koys + KoysMaop
< CO(My) + DnoM(ﬂfo) + KoysMaop
= C(My) + Dy Y (6 — 29af)ve(2°) + Kov3My o5

k.t
= C(My) + D,p Z <8k -z Z l‘g@g) <8k — ) Z :U?@g) v(z%)
k=1 (=1
+ Kovs Moo
< C(My) + Z <6k — @y, ngag> <6k — xg Zx?@g) Dno’U(xO)
k=1 =1
- 222%%%% ) + K2y3Maop
k=1 p
< C(M) + (2% )(2°) " pu(p(2®), v(@®) M (2°) — 28k} )6k Opv (a)
+ Koy3Ms pp

< —[(2” ) (@) 0(@(2?)) — Kaysln(a®)*(a” - n(2°)) 7% M («°)
+ C(Ml) — 2((5kn2)5k8kv(x0)

Now we consider —2(6x7p)0x0pv(2%). Without loss of generality, we may
assume that 2 = (0,...,1). Thus §; = 9; for 1 < j < n and §,, = 0. Let

n—1 0
(4.18) c(x?) = min{ Z ((zzg(xo)fgfg €€ S"l} .
k

k,p=1

Notice that 70 (2°) = 1, we have

n n—1
—2(5kn2)5k8kv(m0) = -2 Z Z akng o (2°
p=1 k=1
n—1 n—1 9 0
= -2 Z 3k772 Upk(xo) _22Tmzvnk(x0)
p,k=1 k=1

IN

—2¢(x%) M (2°) + C(My).
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Therefore

0 < cm) - [%(xo)—20(560)—K273|n(x°)|2(960'?7(w0))2] M (2

@)
xo _
< 00n) - | U0~ 2e(a?) - Kula(e®)P 0 (%) ] i)
510 0(@) M ()
= (M)~ ) M) PM)

Since vy(x) > 0 for all z € B. We have M (z%) < C(M;)/v(2°) < C(My),
and so

(4.19) My < C(M).

Therefore, by combining Lemma 4.2 and (4.19), the proof of Theorem 4.1 is
complete, and so is that of Theorem 2.3. O

Combining Theorem 2.1 and Theorem 2.3, we have the following theorem.

Theorem 4.4. Let 2 be a bounded strictly conver domain in R™ with C'*
boundary. Let f(z,t) € C°(Q x R) be positive and non-decreasing in t. Let
B be a smooth vector field on 02 and let ¢ € C*(9 x R) satisfy (2.2). If
K is given by (4.17) and satisfies

(4.20) (z-1)(2)*y0(¢(x)) +2(x-n)(z)’c(z) — Kn(@)n(@)® >0, =€ dB,

then there is a unique solution u € C*() of (2.1) and (1.2) with H(u) >
o(z)u(x) on Q. In paricular, when o(x) =0, Theorem 1.1 holds.

Proof of Theorem 1.2. The proof of Theorem 1.2 can be obtained by com-
bining Theorem 1.1 and the argument of proof of Theorem 4.4 as well as
some treatments in [7] and [9]. We omit the details here. O
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