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The paper provides a sufficient condition on the oblique
derivative. Under this condition, an existence, uniqueness and
regularity theorem is proved for the oblique boundary value
problem of Monge-Ampère equations in a smoothly bounded
strictly convex domain in Eulidean spaces.

1. Introduction and main results.

Let Ω be a bounded strictly convex domain in Rn. We consider the Monge-
Ampère equation:

(1.1) det
(

∂2u

∂xi∂xj

)
= f(x, u,∇u), x ∈ Ω;

associated to the oblique boundary condition:

(1.2) Dβu(x) = ϕ(x, u(x)), x ∈ ∂Ω,

where β(x) is a smooth unit vector field on Ω satisfying

(1.3) β(x) · ν(x) > 0, ϕu(x, u) ≤ −γ0(x) < 0.

Here ν is the unit outer normal to ∂Ω, γ0 is a positive function on ∂Ω, and
Dβ = β · ∇.

The existence and uniqueness of the classical convex solution of the equa-
tions (1.1) and (1.2) under some suitiable conditions on f, ϕ and ν was
studied by P.L. Lions, N. Trudinger and J. Urbas [9]. They applied the
method of continuity plus a priori estimates to study the problem. The key
and hard analysis in their argument is to obtain a priori estimates on the
convex solution u up to C2,α(Ω) for some α > 0. By a result obtained by
P.L. Lions and N. Trudinger [8], the problem can be reduced to prove the
C1,1(Ω) a priori estimate on u. The C1(Ω) a priori estimate of u for a general
oblique boundary condition was obtained in [9]. A very elegent argument
was applied in [9] to obtain an a priori estimate on the second derivatives
of u when β = ν. Therefore, they solved the existence and uniqueness of the
classical convex solution u for Neumann boundary problems (1.1) and (1.2)
(with β = ν) under the condition (1.3) and some constructive condition on
f . Their technique is highly dependent on the assumption that β is normal.
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For the case n = 2, the oblique boundary value was solved by J. Urbas [10]
and later by X-J. Wang [12] with the condition:

(1.4)
[
−2δi

(
βj

ν · β

)
(x) +

ϕz(x, z)
ν · β(x)

δij

]
τiτj ≤ −γ < 0, x ∈ ∂Ω

for all τ(x) ∈ Tx(∂Ω) ∩ Sn−1, where δi = (δij − νiνj)∂j . However, the exis-
tence of the classical convex solution of oblique boundary problem remains
open when dimension n > 2. Since det(uij) becomes much more compli-
cated, there are essential difficulties to be overcome. In fact, V. Pogorelov
gave a counterexample indicating that, in general, the oblique boundary
value has no smooth solution even if β is strictly oblique and smooth. It is
natural to search for a condition on β so that the oblique boundary value
has a classical convex solution. It was shown in [9] that the oblique bound-
ary value problems (1.1) and (1.2) has classical convex solution under the
condition (1.4) when Ω is the unit ball B ⊂ Rn. This suggests us to transfer
the problem on Ω to a related problem on the unit ball B by using a change
of variables. Unfortunately, the Monge-Ampère equation is not invariant
under a change of variables. However, this observation is still helpful. In
this paper we shall isolate the difficulty and formulate a suitable condition
to avoid it in order to obtain our main results (we solve the general oblique
boundary value problem when γ0 is big enough).

Let Ω be a bounded strictly convex domain in Rn with smooth boundary.
Let ρ be a convex defining function for Ω so that ν(y) = ∇ρ(y) for y ∈ ∂Ω.
Let ρ attain its minimum at y0 ∈ Ω. Without loss of generality, we may
assume that y0 = 0. Then we define

(1.5) t0(x) = max{λ > 0 : λx ∈ Ω}, x ∈ ∂B.

It is easy to show that t0 ∈ C∞(∂B) when ∂Ω is C∞. We let (for x 6= 0)

(1.6) t(x) = |x|4[t0(x/|x|)−m] + m, m = min{t0(x) : x ∈ ∂B}.
Let

(1.7) dij(x) =
1

t + x · ∇t
[2t−1∂it ∂jt− ∂ijt].

Let λ(x, ξ) be the smallest eigenvalue of the matrix T = [Tij(x, ξ)] with

Tij(x, ξ) =
n∑

k=1

ξk|x|∂kdij(x), ξ ∈ Sn−1.

Then we define

(1.8) Λ(x) = min{λ(x, ξ) : ξ ∈ Sn−1}.
It is clear that Λ(x) ≤ 0. In particular, Λ(x) ≡ 0 when Ω is the unit ball
and y0 = 0. Let λ0(x) and Λ0 be the smallest and largest eigenvalues of the
matrix [dij ] at x, and let λ(x) = max{|λ0(x)|, |Λ0(x)|}. Let φ(x) = t(x)x
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which is a C2,1-map from B to Ω. Let b1(x) be the smallest eigenvalue of
φ′(x)tφ′(x) at x ∈ B and let b0 be the maximum of the largest eigenvalue of
φ′(x)tφ′(x) for all x over ∂B. We let b(x) = b1(x)/b0.

Let r(x) = ρ(φ(x)) for x ∈ B. It is easy to see from the chain rule that
∇r(x) = φ′(x)∇ρ ◦ φ(x), and we let η(x) = φ′(x)−1β ◦ φ(x). Then

(1.9) γ1(x) := ∇r(x) · η(x) = ∇ρ · β ◦ φ(x).

It is easy to see that ∇r(x) = |∇r(x)|x for all x ∈ ∂B. Let

(1.10) φ′(x)tH(ρ) ◦ φ(x)φ′(x) = [hij(x)]

where H(ρ) denotes real Hessian matrix of ρ. We let h(x) be the smallest
eigenvalue of [hij ] at x. Since [hij ] is positive definite, we have h(x)b(x) > 0
on B. We let

(1.11) K = max
{

2λ(x)− Λ(x)− Λ(x)(1− |x|2)2

h(x)b(x)
: x ∈ B

}
.

Finally, for x ∈ ∂B we let

(1.12) c(x) = min
{

∂

∂xk

[
ηp

x · η

]
(x)ξkξp : ξ ∈ Sn−1 ∩ Tx(∂B)

}
,

and for each x ∈ ∂B we assume

(1.13) γ(x) := (x · η(x))2γ0(φ(x)) + 2(x · η)3c(x)−Kγ1(x)|η(x)|2 > 0.

We are ready to state our theorems, for simplicity, we state them only for
f(x, u, p) = f(x, u), as follows.

Theorem 1.1. Let Ω be a bounded strictly convex domain in Rn with smooth
boundary. Let f(x, u) ∈ C∞(Ω × R) be positive and non-decreasing in u.
Let β ∈ C∞(Ω) be a unit vector field and let ϕ ∈ C∞(∂Ω×R) satisfy (1.3),
and (1.13). Then the oblique boundary value problem of the Monge-Ampère
equations (1.1) and (1.2) has a unique convex solution u ∈ C∞(Ω).

Theorem 1.2. Let Ω be a bounded strictly convex domain in Rn with C4

boundary. Let f be a nonnegative function on Ω such that f1/n ∈ C1,1(Ω)
and ϕ ∈ C3(∂Ω×R) satisfying (1.3), and (1.13). Then the oblique boundary
value problem of the Monge-Ampère equations (1.1) and (1.2) has a unique
convex solution u ∈ C1,1(Ω).

The paper is organized as follows. In Section 2, we collect some known
results and formulate the problems for later sections. We will translate
the problems from a convex domain to other problems in the unit ball in
Section 3. The main theorems will be proved in Section 4. The statements
and proofs of the results for more general equations are also given there.

This work was partially done when the author was visiting MSRI, Berke-
ley in June, 1996. He would like to the institute for their hospitality. The
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author would like to thank X. Huang, S. Krantz, Peter Li, L. Nirenberg, B.
Russo, and J. Wang for some useful conversations.

Added to proof: The referee pointed out that the related work was also
carried out by J. Urbas [11] independently using a completely different
method.

2. Preliminary.

In this section, we shall outline how to prove our main results, and formulate
the problems for later sections.

We consider a more general equation by replacing (1.1) by

(2.1) det(H(u)− σ(x)u) = f(x, u) > 0

where σ(x) is n× n symmetric non-negative matrix with smooth entries on
Ω with σ0 ≥ 0. Here σ0(x) be the smallest eigenvalue of σ(x) at x ∈ Ω.

By a standard argument, one can prove the uniqueness of the solution
of (2.1) and (1.2) under the assumption that f is non-decreasing in u. For
convenience of the readers, we recall a theorem in [8] concerned with the
existence of a convex solution. By the method of continuity and a priori
estimate, the following theorem is proved by P. L. Lions and N. S. Trudinger
[8].

Theorem 2.1. Let Ω be a bounded strictly convex domain in Rn with C4

boundary. Let ϕ ∈ C3(∂Ω×R) and β ∈ C4(Ω) be unit vector fields satisfying

(2.2) γ0(x) ≥ 0, γ0(x) + σ0(x) > 0, and β(x) · ν(x) > 0.

Let f(x, t) ∈ C2(Ω×R) be positive and non-decreasing in t. Then (2.1) and
(1.2) has a strictly convex solution u ∈ C3,α(Ω) so that

(2.3) |u|C3,α(Ω) ≤ C(α, |u|C1,1(Ω))

for all 0 < α < 1 provided ‖u‖C1,1(Ω) is finite, where C is a constant de-
pending only on |f |2,Ω, Ω, γ0, γ0 +σ0, α, |ϕ|3,∂Ω, min{γ1(z) : x ⊂ ∂B} and
‖u‖C1,1(Ω). Here |u|k,X denotes the Ck norm on X.

Combining Theorem 2.1 and uniqueness, the proofs of Theorems 1.1 and
1.2 are reduced to proving a priori estimates on the convex solution u up to
the second order derivatives on Ω. We first need the following result.

Lemma 2.2. Let Ω be a bounded strictly convex domain in Rn with C3

boundary. Let β be a smooth unit vector field on ∂Ω, let ϕ ∈ C2(∂Ω × R)
satisfy (2.2), and let f(x, t) ∈ C1(Ω × R) be positive and non-decreasing in
t. If u ∈ C3(Ω) is a strictly convex solution of (2.1) and (1.2), then

(2.4) |u|1,Ω ≤ C,
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where C is a constant depending only on |f |1,Ω,Ω, γ0, |ϕ|0,∂Ω and min{γ1(z) :
x ⊂ ∂B}.

Proof. Lemma 2.2 is a special case of Theorems 2.1 and 2.2 in [9]. In fact,
one can easily estimate the upper bound of u, say, N . Then g(x) = f(x,N)
and h(p) = 1 satisfy the conditions (2.3) and (2.4) in [9]. Thus, Lemma 2.2
follows as a special case of their theorems. �

The main result of this paper is now the following theorem, which will be
proved in Section 4.

Theorem 2.3. Let Ω be a bounded strictly convex domain in Rn with C4

boundary. Let β be a smooth vector field on ∂Ω and let ϕ ∈ C3(∂Ω × R)
satisfy (2.2) and (1.13). Let f(x, t) ∈ C1,1(Ω × R) be positive and non-
decreasing in t. If u ∈ C4(Ω) is a convex solution of (2.1) and (1.2), then

(2.5) |D2u(x)| ≤ C, for all x ∈ Ω,

where C is a constant depending only on |f |2,Ω, Ω, γ0, min{β · ν(x) : x ∈
∂Ω}, |ϕ|3,∂Ω and min{γ1(z) : x ⊂ ∂B}.

In order to prove Theorem 2.3, we need the following result, also proved
in [9]. Let M0 = |u|0,Ω and M1 = |u|1,Ω. Then:

Lemma 2.4. With the assumptions of Theorem 2.3, we have
|DβDku| ≤ C on ∂Ω, where C is the constant depending only on |u|C1(Ω),
‖f‖2,Ω×[−M0,M0] and |ϕ|2,∂Ω×[−M0,−M0] and Ω.

For convenience of the reader, we sketch their proof here. Let

z(x) = Dβu(x)− ϕ(x, u) + K1ρ(x).

Then we can choose a suitiable K1 depending on M1 and given data so
that z(x) attains its maximum on ∂Ω, but z ≡ 0 on ∂Ω. Then we have
Dββu(x) ≤ C on ∂Ω. Moreover, for ek = (0, . . . , 1, . . . , 0) = akτ

k + bkβ

with τk ∈ Sn−1 and 〈τk, ν〉 = 0. Thus

|DβDku| = |Dβ(akDτku + bkDβu)|
= |Dβ(ak)Dτku + akDβDτku + (Dβbk)Dβu + bkDββu|
≤ CM1 + |ak(Dβτk

j )Dju|+ |akDτkDβu|+ C(M1)

≤ C(M1) + |akDτkϕ(x, u)|
≤ C(M1)

where C(M1) is a constant depending only on M1 and the smallest eigenvalue
of H(ρ) over Ω. Therefore, the proof of Lemma 2.4 is complete. �
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3. A translation of the Problem.

In this section, we shall translate our problem from a general convex domain
to a more complicated problem in the unit ball Bn ⊂ Rn.

Let Ω be a bounded strictly convex domain in Rn with C∞ boundary ∂Ω.
Let t0, t and φ be given as in Section 1 (see (1.5), (1.6), etc.) From the
definition of φ, one can see that φ is a (C2,1) homeomorphism from Bn onto
Ω and also from Bn onto Ω. We shall use the following notation.

(3.1) φ(x) = (φ1(x), . . . , φn(x)) = (x1t(x), . . . , xnt(x)),

and

(3.2) φ′(x) = [φij ]n×n =
[

∂φi

∂xj

]
n×n

, [φij ] = φ′(x)−1.

It is easy to see that

φki =
∂φk

∂xi
= t(x)δki + xk∂it(x)

and
∂φk

∂xi∂xj
= δki∂jt(x) + δkj∂it(x) + xk∂ijt(x).

Therefore

(3.3) φ′(x) = t(x)In + x⊗∇t(x)

and

(3.4) H(φk) = ek ⊗∇t(x) +∇t(x)⊗ ek + xkH(t),

where ek = (0, . . . , 0, 1, 0, . . . , 0).
Let

(3.5) a(x) = t(x)(t(x) + x · ∇t(x))−1.

Then we have

(3.6) φ′(x)−1 =
1

t(x)
In −

a(x)
t(x)2

(x⊗∇t(x)).

In fact, if we let B(x) = t(x)−1In − a(x)t(x)−2(x ⊗ ∇t(x)), we shall prove
Bφ′(x) ≡ 1. From

(x⊗∇t)(x⊗∇t) = (x · ∇t(x))(x⊗∇t(x))

and
∇t(x) = |x|4∇t0 + 4|x|2(t0 −m)x,

it follows that

(3.7) x · ∇t(x) = |x|4x · ∇t0 + 4|x|4(t0 −m) = 4(t−m) > 0.
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Thus

a(x) =
t(x)

5t(x)− 4m
∈ C3,1(Bn)

and

B(x) φ′(x) = In +
1

t(x)
x⊗∇t(x)

−a(x)
t(x)

x⊗∇t(x)− a(x)
t(x)2

(x⊗∇t(x))(x⊗∇t(x))

= In +
1

t(x)
x⊗∇t(x)− a(x)(t(x) + x · ∇t(x))

t(x)2
x⊗∇t(x)

= In.

Therefore, φ′(x)−1 = B(x), the proof of (3.6) is complete.

Let Ak be smooth symmetric matrix-valued function defined as follows:
A1

·
·
·

An

 = −φ′(x)−1


H(φ1)
·
·
·

H(φn)

 .

Then we have the following proposition:

Proposition 3.1. If ρ0 ∈ C2(Ω) and r0(x) = ρ0(φ(x)), then

(3.8) H(r0)(x) +
n∑

k=1

∂r0

∂xk
Ak = φ′(x)tH(ρ0) ◦ φ(x)φ′(x).

Proof. A simple calculation shows that

(3.9) H(r0)(x) = φ′(x)tH(ρ0) ◦ φ(x)φ′(x) +
∑

k

∂ρ0

∂yk
◦ φ(x)H(φk).

By the definition of Ak, we have

(3.10)
∑

k

r0
k(x)Ak(x) = −

∑
k

ρ0
k(φ(x))H(φk)(x).

Combining (3.9) and (3.10), we have

H(r0)(x) = φ′(x)tH(ρ0) ◦ φ(x)φ′(x)−
∑

k

r0
k(x)Ak(x)

which completes the proof of the proposition. �

Let u be a solution of (2.1) and (1.2) with H(u) ≥ σ(x)u. We define

(3.11) v(x) = u(φ(x)), x ∈ B,
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and

(3.12) η(x) = φ′(x)−1β(φ(x)).

Then we have following proposition.

Proposition 3.2. For any x ∈ ∂Bn, we have

(3.13) Dηv(x) = ϕ(φ(x), v(x)), γ1(x) := η(x)·∇r(x) = (β ·∇ρ)◦φ(x) > 0.

Proof. The first identity of (3.13) follows from the chain rule. Since

∇r(x) = φ′(x)t∇ρ ◦ φ(x)

we have

η(x) · ∇r(x) = (φ′(x)−1β ◦ φ(x)) · (φ′(x)t∇ρ ◦ φ(x))
= (φ′(x)φ′(x)−1β ◦ φ(x)) · (∇ρ ◦ φ(x))
= (β · ∇ρ) ◦ φ(x) > 0.

Therefore, the second identity follows, and the proof of the proposition is
complete. �

It is easy to see that (2.1) is equivalent to

(3.14) det

(
H(v) +

n∑
k=1

vkAk − σ̃(x)v

)
= f0(x, v),

where

(3.15) σ̃(x) = φ′(x)tσ(φ(x))φ′(x)

f0(x, v) = f(φ(x), v) det(φ′(x))2.

If u is a solution of (2.1) and (1.2) with H(u) ≥ σ(x)u then v is a solution
of (3.14) and (3.13) with H(v) +

∑n
k=1 vkAk − σ̃(x)v positive definite.

For use later, we shall compute Ak(x) explicitly. By (3.4)–(3.6), we have
A1

·
·
·

An

 = −t(x)−1


H(φ1)
·
·
·

H(φn)

+
a(x)
t(x)2

(x⊗∇t(x))


H(φ1)
·
·
·

H(φn)



= −t(x)−1


H(φ1)
·
·
·

H(φn)

+
a(x)
t(x)2


x1
∑

j tjH(φj)
·
·
·

xn
∑

j tjH(φj)

 .
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Therefore

(3.16) Ak = −t(x)−1H(φk) + a(x)t(x)−2xk

n∑
j=1

∂t

∂xj
H(φj).

By (3.4), we have∑
j

∂t

∂xj
H(φj) =

∑
j

∂t

∂xj
ej ⊗∇t(x) +

n∑
j=1

∂t

∂xj
∇t⊗ ej +

∑
j

xj
∂t

∂xj
H(t)

= 2∇t(x)⊗∇t(x) + (x · ∇t)H(t).

Thus

−t−1xkH(t) + a(x)t−2xk(x · ∇t)H(t)
= xkt

−2(−t + a(x)(x · ∇t))H(t)

= xkt
−1

[
−1 +

x · ∇t

t + x · ∇t

]
H(t)

= − xk

t + x · ∇t
H(t).

Therefore

Ak(x) = − 1
t(x)

H(φk) + a(x)t(x)−2xk[2∇t(x)⊗∇t(x) + (x · ∇t)H(t)]

= − 1
t(x)

[ek ⊗∇t(x) +∇t(x)⊗ ek]

+
2xka(x)

t2
∇t⊗∇t− xk

t
H(t) +

a(x)xk

t2
(x · ∇t)H(t)

= −t(x)−1[ek ⊗∇t(x) +∇t(x)⊗ ek]

+
xk

t + x · ∇t
[2t−1∇t(x)⊗∇t−H(t)].

Thus if we let

(3.17) cp
ij = −t(x)−1[δpi∂jt + δpj∂it]

and

(3.18) dij =
2t−1∂it ∂jt− ∂ijt

t + x · ∇t
=

2t−1∂it ∂jt− ∂ijt

5t− 4m

then

(3.19) ap
ij = cp

ij + xpdij .

As a corollary of Lemmas 2.2 and 2.4, we have:

Proposition 3.3. With the assumptions of Theorem 2.3, we have
(i) |v|1,B ≤ CM1 ≤ C;
(ii) |DηDkv| ≤ C on ∂B.



164 SONG-YING LI

Here C is the constant depending only on |u|C1(Ω), ‖f‖1,Ω×[−M0,M0] and
|ϕ|2,∂Ω×[−M0,−M0] and Ω.

4. The proof of Theorem 2.3.

In this section, we shall complete the proof of Theorem 2.3. Let u ∈ C4(Ω)
be a solution of (2.1) and (1.2) so that H(u) ≥ σ(x)u.

Let W = [wij ] = H(v) + Apvp − σ̃(x)v and [F ij ] = W−1. Then we have
the following identity (see [9] and [7]).

(4.1) F ij∂ξξwij = ∂ξξg(x, v) + F i`F jk∂ξwij∂ξwk`

for all ξ ∈ ∂Bn, where ∂ξ =
∑

i ξi∂i and g(x) = log f0(x).

Theorem 4.1. Under the assumptions of Theorem 2.3, let u ∈ C4(Ω) is a
solution of (2.1) and (1.2) with H(u) ≥ σu. Then v = u ◦ φ satisfies (3.14),
(3.13) and

(4.2)
∑
k,`

(δk` − xkx`)∂k`v(x) ≤ C x ∈ ∂B,

where C is a constant depending only on given data.

In order to prove Theorem 4.1, we need some lemmas.

Lemma 4.2. If v = u ◦ φ(x) is a solution of (3.14) and (3.13) with H(v) +
Apvp − σ̃(x)v positive definite on B then

(4.3) tr(vk`)(x) ≤ C(M1) + b(x)−1M2,∂B

where

(4.4) M2,∂B = max{tr(vk`)(x) : x ∈ ∂B}.

Here b(x)−1 the ratio of the maximum largest eigenvalue of φ′(x)tφ′(x) on
B and the minimum eigenvalue of φ′(y)tφ′(y) for y ∈ ∂B.

Proof. Notice that

W (x) = H(v) +
n∑

k=1

ak
ijvk = φ′(x)tH(u) ◦ φ(x)φ′(x).

It is easy to verify there is a constant K3 = C depending only on M1, f, σ
and their first and second derivatives on Ω so that tr(uk`) ◦ φ(x) + K3r(x)
attains its maximum over B at some point x1 ∈ ∂B. Since

tr(uk`) ◦ φ(x) + K3r(x) = tr
(
(φ′(x)−1)tWφ′(x)−1) + K3r(x)

attains its maximum over B at the point x1 ∈ ∂B, we have, with the notation
of b1 being minimum of the smallest eigenvalue of φ′(x)tφ′(x) over B,

tr
(
W )(x) + K3b1(x)−1r(x) ≤ b(x)−1tr(W )(x1)
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and so
tr
(
W )(x) ≤ b(x)−1tr

(
W )(x1)−K3b1(x)−1r(x).

Therefore (4.3) holds, and the proof of the lemma is complete. �

Lemma 4.3. If v = u ◦ φ(x) is a solution of (3.14) and (3.13) with H(v) +
Apvp − σ(x)v positive definite on B then

(4.5) M2,∂B ≤ C(M1) + sup
x∈∂B

|η|2

(x · η)2


n∑

k,`=1

(δk` − xkx`)vk`(x)

 .

Proof. We write
η = a1x + a2τ(x)

where τ(x) ∈ Tx(∂B) ∩ Sn−1, and a2
1 + a2

2 = |η|2 with aj ≥ 0. Let

(4.6) N [v](x) =
n∑

k`=1

xkx`vk`(x).

Then for any x ∈ ∂B we have

N [v](x) ≤ a−1
1 DνDηv(x)− a−1

1 a2DνDτv(x) + C

≤ C(M1)− a−1
1 a2DνDτv(x)

≤ C(M1) +
1
2
N [v] +

1
2

a2
2

a2
1

Dττv(x),

and hence

(4.7) N [v](x) ≤ 2C +
a2

2

a2
1

Dττv(x).

Therefore for x ∈ ∂B, we have

tr(vk`) ≤ C(M1) +
(

1 +
a2

2

a2
1

) n∑
k,`=1

[δk` − xkx`]vk`(x).

Notices that 1+ a2
2a
−2
1 = |η(x)|2(x · η)−2. We have (4.5) hold, and the proof

of the lemma is complete. �

We now are ready to prove Theorem 4.1.

Proof of Theorem 4.1. Let

(4.8) M(x) =
∑
k`

(
δk` − xkx`

)
vk` + K1|∇v|2 + K0r(x)

and let

(4.9) V (x) = M(x) + K2M2,∂Br(x) x ∈ B

where

K2 = K +
1
2

min{γ(x)|η(x)|−2γ1(x)(x · η(x))−3 : x ∈ ∂B}.
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Let

(4.10) L = F ij∂ij + F ijap
ij∂p.

We shall compute LV (x). For convenience, we shall use the following nota-
tion: vj = ∂jv, vij = ∂ijv and vijk = ∂ijkv, etc.. First, note that

(4.11) F ij∂ij [δk` − xkx`]vk` = −4xkF
ijvijk − 2F ijvij + F ij [δk` − xkx`]vk`ij .

The first term of RHS of (4.11) satisfies the following estimate:

−4xkF
ijvijk = −4xkF

ij∂kwij + 4xkF
ij∂k[a

p
ijvp − σ̃ijv]

= −4xkF
ij∂kg + 4xkF

ijap
ijvpk + 4xkvp∂ka

p
ij − 4F ijxk∂k [σ̃ijv]

≥ −C(M1)tr(F ij) + 4xkvpkF
ijap

ij ,

the second term of RHS of (4.11) satisfies the following estimate:

−2F ijvij = −2F ijwij + 2F ij [ap
ijvp − σ̃ijv] ≥ −C[M1]tr(F ij).

Notice that ap
ij ∈ C2(B), we have F ij∂k`aij ≥ −Ctr(F ij). Thus the third

term of RHS of (4.11) satisfies that

F ij [δk` − xkx`]vk`ij

= F ij [δk` − xkx`]∂k`wij − F ij [δk` − xkx`]∂k`(a
p
ijvp − σ̃ijv)

≥ [δk` − xkx`]∂k`g − F ij [δk` − xkx`]∂k`(a
p
ijvp − σ̃ijv)

≥ −C(M1)(tr(F ij) + tr(vk`)) + F ij σ̃ijM(x)− F ijap
ij∂p[(δk` − xkx`)vk`]

−F ij [δk` − xkx`][∂ka
p
ijv`p + ∂`a

p
ijvkp]− 2F ijxkvkpa

p
ij .

Moreover, we have the following two inequalities:

F ij∂ij |∇v|2 = 2vkF
ijvijk + 2F ijvkivjk

= 2vkF
ij∂kwij − 2vkF

ij∂k[a
p
ijvp − σ̃ijv] + 2F ijvkivjk

≥ 2vk∂kg − F ijap
ij∂p|∇v|2 − C(M1)tr(F ij) + 2F ijvkivjk,

and
Lr(x) = F ijhij + F ijap

ij∂pr ≥ h(x)tr(F ij)− Ctr(F ij).

By combining the above five estimates and (4.11), we have

LM(x)

≥ −C(M1)[(1 + K1)tr(F ij) + tr(vk`)] + F ij σ̃ijM(x)

− 2F ij [δk` − xkx`]∂ka
p
ijv`p + 2xkvkpF

ijap
ij + K1F

ijvikvjk + K0h(x)tr(F ij)

≥ [K0h(x)− C(M1)(K1 + 1)]tr(F ij) + [K1 − C(M1)]tr(vk`) + F ij σ̃ijM(x)

− 2F ij [δk` − xkx`]∂ka
p
ijv`p + 2xkvkpF

ijap
ij .
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We write

(4.12) I[v] = −2F ij [δk` − xkx`]∂kc
p
ij v`p + 2xkvkpF

ijcp
ij

and

(4.13) J [v] = −2F ij [δk` − xkx`]∂k(xpdij)v`p + 2xkxpvkpF
ijdij .

We claim that

(4.14) I[v] ≥ −C[M1]tr(F ij).

In fact,

I[v]

= 2t(x)−1F ij [δk` − xkx`](∂ktjv`i + ∂ktivj`)

− 2t(x)−2[δk` − xkx`]∂ktF
ij(∂jt vi` + ∂it vj`)− 2t−1xkF

ij(vkitj + vkjti)

=
4
t
[δk` − xkx`]F ijtkjv`i −

4
t2

[δk` − xkx`]∂ktF
ij∂jt vi` −

4
t
xkF

ijvkitj

≥ −C(M1)tr(F ij) +
4
t

(
[δk` − xkx`]F ijw`i(tkj − t(x)−1tktj)− xkF

ijwkitj
)

≥ −C(M1)tr(F ij)

and the proof of (4.14) is complete.
Next we consider J [v]. It is obvious that

J [v] = −2F ij [δk` − xkx`]∂k(xpdij)vp` + 2xkvpkxpF
ijdij

= −2F ij [δk` − xkx`][xpvp`∂kdij + δpkdijvp`] + 2xkvpkxpF
ijdij

= 2F ijdij(−tr(vk`) + 2N [v])− 2F ij [δk` − xkx`]xpvp`∂kdij .

Now we consider

|x|2N1[v]2 :=
n∑

k=1

 n∑
p,`=1

[δk` − xkx`]xpvp`

2

=
n∑

k=1

 n∑
p=1

xpvpk − xkN [v]

2

=
n∑

k=1

 n∑
p=1

xpvpk

2

− 2
n∑

k=1

xkN [v]
n∑

p=1

xpvpk +
n∑

k=1

x2
kN [v]2

=
n∑

k=1

 n∑
p=1

xpvpk

2

− 2N [v]2 + |x|2N [v]2.



168 SONG-YING LI

Without loss of generality, by rotation, we may assume that x = (|x|, 0, . . . ,
0) as a vector. Since H(v) − Apvp − σ̃v is positive definite and we may
assume tr(vij) ≥ C, we have

n∑
k=1

 n∑
p=1

xpvpk

2

=
n∑

k=1

|x|2v2
1k ≤ |x|2(v11 + C)(tr(vk`))

= (N [v] + C|x|2)(tr(vk`)).

Thus

|x|2N1[v]2 ≤ (N [v] + C|x|2)tr(vk`)− 2N [v]2 + |x|2N [v]2

= N [v](tr(vk`)− 2N [v] + |x|2N [v]) + C|x|2tr(vk`).

Thus

N1[v]2 ≤ N [v]
|x|2

(tr(vk`)− 2N [v] + |x|2N [v] + C) + Ctr(vk`).

Therefore, by Cauchy-Schwarz’s inequality, we have

N1[v] ≤ (1/2)
(
tr(vk`)− 2N [v] + |x|2N [v] + |x|−2N [v] + C

√
tr(vk`)

)
= (1/2)[tr(vk`)− (1− |x|2)N [v] + |x|−2N [v](1− |x|2)] + C

√
tr(vk`)

= (1/2)[tr(vk`) + |x|−2N [v](1− |x|2)2] + C
√

tr(vk`)

≤ (1/2)[1 + (1− |x|2)2]tr(vk`) + C
√

tr(vk`).

Therefore (since Λ ≤ 0)

−2F ij [δk` − xkx`]xpvp`∂kdij

≥ 2ΛN1[v]

≥ Λtr(F ij)[1 + (1− |x|2)2]tr(vk`) + 2CΛtr(F ij)
√

tr(vij).

It is obvious that

−2F ijdij [tr(vk`)− 2N [v]) ≥ −2λ(x)tr(F ij)tr(vk`).

Thus

(4.15) J [v] ≥ [Λ(x)(1+(1−|x|2)2)−2λ]tr(F ij)tr(vk`)+2CΛtr(F ij)
√

tr(vij).

Now we assume that V (x) attains its maximum over B at x0 ∈ B. By
Lemmas 4.2 and 4.3, we have (at x = x0)

M(x0) ≥ −C −K2r(x0)M2,∂B + max{M(x) : x ∈ ∂B}

≥ −C(M1) +
[
−K2r(x0) +

a1(x1)2

|η(x1)|2

]
M2,∂B

≥ −C(M1) + γ2b(x0)tr(vk`(x0))
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where

(4.16) γ2 := min
{
a1(x)2|η(x)|−2 : x ∈ ∂B

}
.

Therefore, by choosing K1 ≥ 4C(M1)(1 + h(x) + b(x)−1) and K0 ≥ (K1 +
1)C(M1)h(x)−1 for all x ∈ B, and (4.3), we have

LM(x)

≥ K1

2
tr(F ij) + σ0tr(F ij)M(x) + I[v] + J [v] + 2C(M1)(h(x) + b−1)tr(F ij)

> σ0tr(F ij)γ2b(x)tr(vk`)(x) + 2C(M1)(h(x) + b−1(x))tr(F ij)

+ [Λ(x)(1 + (1− |x|2)2)− 2λ]tr(F ij)tr(vk`) + 2CΛtr(F ij)
√

tr(vij)

= [σ0γ2b(x) + Λ(x)(1 + (1− |x|2)2)− 2λ]tr(F ij)tr(vk`)

+ 2C(M1)(h(x) + b−1(x))tr(F ij) + 2CΛtr(F ij)
√

tr(vij)

≥ −Kb(x)h(x)tr(F ij)tr(vk`) + 2CΛtr(F ij)
√

tr(vij)

≥ −Kh(x)tr(F ij)M2,∂B + 2CΛtr(F ij)
√

M2,∂Bb(x)−1

where K = max{K0, 0} and

(4.17) K0 = min
{
−σ0(x)γ2

h(x)
+

2λ− Λ− Λ(x)(1− |x|2)2

h(x)b(x)
: x ∈ B

}
.

Therefore, we have either

LV (x0) > h(x0)tr(F ij)M2,∂B(−K + K2) + 2CΛtr(F ij)
√

M2,∂Bb(x)−1 > 0

or M2,∂B ≤ C(K2 − K)−2. In other words, we have either x0 ∈ ∂B or
M2,∂B ≤ C(K2−K)−2. If M2,∂B ≤ C(K2−K)−2 then the proof of Theorem
4.1 is complete. Without loss of generality, we may assume x0 ∈ ∂B. Let

η0 = (η · x)−1η, γ3 = γ1(x · η)−1(x0).
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Now applying Proposition 3.3, at x = x0 with δk =
∑n

j=1(δkj − x0
kx

0
j )∂j , we

have

0 ≤ Dη0V (x0)

≤ Dη0M(x0) + 2K1vk(x0)Dη0∂kv(x0) + K0γ3 + K2γ3M2,∂B

≤ C(M1) + Dη0M(x0) + K2γ3M2,∂B

= C(M1) + Dη0

∑
k,`

(δk` − x0
kx

0
`)vk`(x0) + K2γ3M2,∂B

= C(M1) + Dη0

n∑
k=1

(
∂k − x0

k

∑
`

x0
`∂`

)(
∂k − x0

k

n∑
`=1

x0
`∂`

)
v(x0)

+ K2γ3 M2,∂B

≤ C(M1) +
n∑

k=1

(
∂k − x0

k

∑
`

x0
`∂`

)(
∂k − x0

k

n∑
`=1

x0
`∂`

)
Dη0v(x0)

− 2
n∑

k=1

∑
p

δkη
0
pδkvp(x0) + K2γ3M2,∂B

≤ C(M1) + (x0 · η)(x0)−1ϕv(φ(x0), v(x0))M(x0)− 2(δkη
0
p)δk∂pv(x0)

+ K2γ3M2,∂B

≤ −[(x0 · η)(x0)−1γ0(φ(x0))−K2γ3|η(x0)|2(x0 · η(x0))−2]M(x0)

+ C(M1)− 2(δkη
0
p)δk∂kv(x0).

Now we consider −2(δkη
0
p)δk∂pv(x0). Without loss of generality, we may

assume that x0 = (0, . . . , 1). Thus δj = ∂j for 1 ≤ j < n and δn = 0. Let

(4.18) c(x0) = min


n−1∑

k,p=1

∂η0
p

∂xk
(x0)ξ0

kξ0
p : ξ ∈ Sn−1

 .

Notice that η0
n(x0) = 1, we have

−2(δkη
0
p)δk∂kv(x0) = −2

n∑
p=1

n−1∑
k=1

∂kη
0
p vpk(x0)

= −2
n−1∑

p,k=1

∂kη
0
p vpk(x0)− 2

n−1∑
k=1

∂η0
n

∂xk
vnk(x0)

≤ −2c(x0)M(x0) + C(M1).
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Therefore

0 ≤ C(M1)−
[

γ0(x0)
(x · η)(x0)

− 2c(x0)−K2γ3|η(x0)|2(x0 · η(x0))−2

]
M(x0)

≤ C(M1)−
[

γ0(x0)
(x · η)(x0)

− 2c(x0)−Kγ3|η(x0)|2(x0 · η(x0))−2

]
M(x0)

+
1
2
γ(x0)(x0 · η(x0))−3M(x0)

= C(M1)−
1
2
γ(x0)(x · η)(x0)−3M(x0).

Since γ(x) > 0 for all x ∈ ∂B. We have M(x0) ≤ C(M1)/γ(x0) ≤ C(M1),
and so

(4.19) M2,∂B ≤ C(M1).

Therefore, by combining Lemma 4.2 and (4.19), the proof of Theorem 4.1 is
complete, and so is that of Theorem 2.3. �

Combining Theorem 2.1 and Theorem 2.3, we have the following theorem.

Theorem 4.4. Let Ω be a bounded strictly convex domain in Rn with C∞

boundary. Let f(x, t) ∈ C∞(Ω×R) be positive and non-decreasing in t. Let
β be a smooth vector field on ∂Ω and let ϕ ∈ C∞(∂Ω × R) satisfy (2.2). If
K is given by (4.17) and satisfies

(4.20) (x ·η)(x)2γ0(φ(x))+2(x ·η)(x)3c(x)−Kγ1(x)|η(x)|2 > 0, x ∈ ∂B,

then there is a unique solution u ∈ C∞(Ω) of (2.1) and (1.2) with H(u) ≥
σ(x)u(x) on Ω. In paricular, when σ(x) = 0, Theorem 1.1 holds.

Proof of Theorem 1.2. The proof of Theorem 1.2 can be obtained by com-
bining Theorem 1.1 and the argument of proof of Theorem 4.4 as well as
some treatments in [7] and [9]. We omit the details here. �
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