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In this paper we study the homogeneous tensor products
of simple modules over symmetric and alternating groups.

1. Introduction.

Kronecker or inner tensor products of representations of symmetric groups
(and many other groups) have been studied for a long time. But even for the
symmetric groups no reasonable formula for decomposing Kronecker prod-
ucts of two irreducible complex representations into irreducible components
is available (cf. [7, 5]). An equivalent problem is to decompose the inner
product of the corresponding Schur functions into a linear combination of
Schur functions.

In recent years, a number of partial results have been obtained. For ex-
ample, the products of characters labelled by hook partitions or by two-row
partitions [3, 8] have been computed, and special constituents, in particular
of tensor squares, have been considered [10, 11, 12]. For general products,
Dvir [2] and Clausen-Meier [1] determined the largest part and the maximal
number of parts in a constituent of a product (this result is crucial in this
paper).

In general, Kronecker products of irreducible representations have very
many irreducible constituents (see e.g. [4, 2.9]). In this paper, we first con-
sider the simple question: ‘when is the Kronecker product of two irreducible
Sn-characters again irreducible?’ We prove that in fact such a product is
always reducible, and even inhomogeneous, except for the obvious excep-
tion where one of the characters is of degree 1. Then we turn to the same
question for the representations of the alternating group An. Here one can
easily construct examples of non-trivial irreducible tensor products (actu-
ally, we observed this first using calculations with the MAPLE packages SF
(by Stembridge) and ACE (by Veigneau et al.)). It turns out that the prob-
lem for An reduces to the classification of certain products of Sn-characters
with 2 constituents. So we classify in general the Kronecker products of
Sn-characters with 2 constituents, and even more generally, with two homo-
geneous components. We also obtain some partial results for products with
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4 homogeneous components and conjecture a complete classification of the
pairs (L1, L2) of irreducible complex Sn-representations such that L1 ⊗ L2

has at most 4 homogeneous components.

2. Preliminaries.

We denote by N the set {1, 2, . . . } of the natural numbers.
If G and H are two groups, L is a CG-module and M is a CH-module we

write L � M for the outer tensor product of L and M (which is a module
over G×H). If N is another CG-module we write L⊗N for the inner tensor
(or Kronecker) product of L and N (which is a G-module).

A CG-module is called homogeneous if it is isomorphic to a direct sum
of copies of one simple module. Every CG-module can be (uniquely) de-
composed into a direct sum of its homogeneous components. Similarly we
speak of the homogeneous characters and the homogeneous components of
the characters.

We use the notions and notation of the representation theory of Sn and
An and refer the reader to [4] for the most basic ones. In particular, we
write λ = (λ1, . . . , λk) ` n if λ is a partition of n; in this case we also write
|λ| for n. We often gather together equal parts of a partition and write, for
example, (52, 33) for (5, 5, 3, 3, 3). The partition conjugate to λ is denoted
by λ′. If λ = λ′ we say that λ is symmetric. We do not distinguish between
a partition λ and its Young diagram λ = {(i, j) ∈ N×N | j ≤ λi}. Elements
(i, j) ∈ N× N are called nodes. If λ = (λ1, λ2, . . . ) and µ = (µ1, µ2, . . . ) are
two partitions we write λ∩µ for the partition (min(λ1, µ1),min(λ2, µ2), . . . )
whose Young diagram is just the intersection of those for λ and µ. A node
(i, λi) ∈ λ is called removable (for λ) if λi > λi+1. A node (i, λi +1) is called
addable (for λ) if i = 1 or i > 1 and λi < λi−1. We denote by

λA = λ \ {A} = (λ1, . . . , λi−1, λi − 1, λi+1, . . . )

a partition of n−1 obtained by removing a removable node A = (i, λi) from
λ. Similarly

λB = λ ∪ {B} = (λ1, . . . , λi−1, λi + 1, λi+1, . . . )

is a partition of n + 1 obtained by adding an addable node B = (i, λi + 1)
to λ.

We denote by
hij = hλ

ij = λi − j + λ′j − i+ 1

the (i, j)-hook length. If a partition λ has r nodes on the main diagonal and
there are αi (resp., βi) nodes to the right of (resp., below) the node (i, i)
then we may write λ in the Frobenius notation (cf. [6]):

F (λ) =
(
α1 · · · αr

β1 · · · βr

)
.
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If Hλ
∼= Sλ1 × Sλ2 × · · · < Sn is a Young subgroup we write Mλ for

the permutation module CSn ⊗CHλ
1Hλ

. The Specht module Sλ is explicitly
defined as a submodule of Mλ (cf. [4]). The set {Sλ | λ ` n} is a com-
plete set of irreducible CSn-modules (up to isomorphism). We write [λ] (or
[λ1, λ2, . . . ]) for the character of Sλ. Thus, {[λ] | λ ` n} is a complete set of
the irreducible characters of Sn. It is well known that Sλ is self-dual. An-
other fact (to be used without comment) is that S(1n) is the 1-dimensional
sign representation and Sλ ⊗ S(1n) ∼= Sλ′ . The standard inner product on
the class functions on a group (symmetric or alternating, depending on the
context) is denoted by 〈·, ·〉. If χ and ψ are two class functions we write χ ·ψ
for the function [g 7→ χ(g)ψ(g)]. The character of Sλ ⊗ Sµ is [λ] · [µ]. For
λ, µ, ν ` n we define the numbers d(µ, ν;λ) via

[µ] · [ν] =
∑

λ

d(µ, ν;λ)[λ].

If α = (α1, α2, . . . ) and β = (β1, β2, . . . ) are two partitions then we write
β ⊆ α if βi ≤ αi for all i. In this case we also consider the skew partition
α/β. We do not distinguish between α/β and its Young diagram, which is
the set of nodes α \ β.

If α/β is a skew Young diagram and A = (i, j) is some node we say A is
connected with α/β if at least one of the nodes (i ± 1, j), (i, j ± 1) belongs
to α/β. Otherwise A is disconnected from α/β.

If β ` m, γ ` n, α ` m+ n we write cαβγ for the corresponding Littlewood-
Richardson coefficient, which may be defined as the multiplicity of Sα in the
induced module

Sβ⊗̂Sγ := (Sβ � Sγ) ↑Sm+n

Sm×Sn
.

The character of this module will be denoted [β]⊗̂[γ]. The Littlewood-
Richardson rule [4, 6] gives a combinatorial description of the coefficients
cαβγ and will be repeatedly used in this paper. It says that cαβγ is the number
of semistandard tableaux of skew shape α/β and content γ, which give a
lattice permutation when the entries are read from right to left along the
rows starting from the top row.

Let α and β be two partitions. Then the skew character [α/β] is defined
to be the sum

[α/β] =
∑

γ

cαβγ [γ].

Note that [α/β] = 0 unless β ⊆ α.
The following four results will be used repeatedly.

Theorem 2.1 ([2, 1.6], [1, 1.1]). Let µ, ν be partitions of n. Then

max{λ1 | d(µ, ν;λ) 6= 0 for some λ = (λ1, λ2, . . . )} = |µ ∩ ν|
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and

max{m | d(µ, ν;λ) 6= 0 for some λ = (λ1 ≥ · · · ≥ λm > 0)} = |µ ∩ ν ′|.
Since the skew characters can in principle be decomposed into the irre-

ducible characters, the following theorem provides a recursive formula for
the coefficients d(µ, ν;λ).

Theorem 2.2 ([2, 2.3]). Let µ, ν and λ = (λ1, λ2, . . . ) be partitions of n,
and set λ̂ = (λ2, λ3, . . . ). Define

Y (λ) = {η | η ` n, ηi ≥ λi+1 ≥ ηi+1 for all i ≥ 1}.
Then

d(µ, ν;λ) =
∑
α`λ1

α⊆µ∩ν

〈[µ/α] · [ν/α], [λ̂]〉 −
∑

η∈Y (λ)
η 6=λ

η1≤|µ∩ν|

d(µ, ν; η).

Corollary 2.3 ([2, 2.4], [1, 2.1(d)]). Let µ, ν and λ = (λ1, λ2, . . . ) be par-
titions of n, and set λ̂ = (λ2, λ3, . . . ), γ = µ ∩ ν. Assume that λ1 = |µ ∩ ν|.
Then

d(µ, ν;λ) = 〈[µ/γ] · [ν/γ], [λ̂]〉.
Corollary 2.4 ([2, 2.4′]). Let µ and ν be partitions of n, and m = |µ∩ ν ′|.
Let λ be a partition of n with m non-zero parts. Define λ̄ = (λ1 − 1, λ2 −
1, . . . , λm − 1). Then

d(µ, ν;λ) = 〈[µ/(µ ∩ ν ′)] · [ν/(µ′ ∩ ν)], [λ̄]〉.

3. Homogenous Sn-products.

Lemma 3.1. Let α, β, a, b be positive integers. Then

min(α+ β + 1, a+ b+ 1) < min(α, a) + min(β, b) + min(α, b) + min(β, a).
(1)

Proof. We may assume that α ≤ β, a ≤ b and α + β ≤ a + b. So the left
hand side in (1) is α+ β + 1.

If β ≤ b, then the right hand side of (1) equals

min(α, a) + β + α+ min(β, a)

which is greater than α + β + 1 since all numbers in this expression are
positive integers.

If b < β, then the right hand side of (1) is

min(α, a) + b+ min(α, b) + a ≥ min(α, a) + min(α, b) + α+ β > α+ β + 1,

as claimed. �

Lemma 3.2. Let µ, ν be partitions of n, both different from (n) and (1n).
Then

min(hµ
11, h

ν
11) < |µ ∩ ν|+ |µ ∩ ν ′| − 2.
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Proof. We write µ and ν in the Frobenius notation:

F (µ) =
(
α1 · · · αr

β1 · · · βr

)
, F (ν) =

(
a1 · · · as

b1 · · · bs

)
.

We may assume that r ≤ s. Then

hµ
11 = α1 + β1 + 1, hν

11 = a1 + b1 + 1,

|µ ∩ ν| = r +
r∑

i=1

(min(αi, ai) + min(βi, bi)),

|µ ∩ ν ′| = r +
r∑

i=1

(min(αi, bi) + min(βi, ai)).

Since r ≥ 1, it suffices to prove that

min(α1 + β1 + 1, a1 + b1 + 1)

< min(α1, a1) + min(β1, b1) + min(α1, b1) + min(β1, a1).

But this follows from Lemma 3.1 since our assumption on the partitions
ensures that α1, β1, a1, b1 > 0. �

Theorem 3.3. Let µ, ν be partitions of n, both different from (n) and (1n).
If [λ] is a constituent of [µ] · [ν], then hλ

11 < |µ ∩ ν|+ |µ ∩ ν ′| − 1.

Proof. Put ` = |µ ∩ ν| + |µ ∩ ν ′| − 1. Take π to be an `-cycle in Sn. By
Lemma 3.2, either µ or ν does not have a hook of length `. Hence, by the
Murnaghan-Nakayama Rule [4, 2.4.7], either [µ](π) = 0 or [ν](π) = 0. So

([µ] · [ν])(π) = 0.(2)

By Theorem 2.1, any constituent [λ] of [µ] · [ν] satisfies

λ1 ≤ |µ ∩ ν| and λ′1 ≤ |µ ∩ ν ′|

where λ = (λ1, . . . ), λ′ = (λ′1, . . . ). So the maximal possible hook length in
λ is `. Moreover, λ contains a hook of length ` if and only if λ1 = |µ ∩ ν|
and λ′1 = |µ ∩ ν ′|, in which case this is the (1, 1)-hook whose leg length is
|µ ∩ ν ′| − 1. In this case, using the Murnaghan-Nakayama Rule again, we
get

[λ](π) = (−1)|µ∩ν′|−1[λ \H11](1) 6= 0
where λ \ H11 is the partition obtained from λ by removing the (1, 1)-
hook H11. Hence for every constituent [λ] of [µ] · [ν] containing an `-hook we
get a contribution on π of the same sign, and so no cancellation can occur.
But this contradicts Equation (2). �

Theorem 3.4. Let µ, ν be partitions of n, both different from (n) and (1n).
Then [µ] · [ν] is not homogenous.



206 C. BESSENRODT AND A. KLESHCHEV

Proof. By Theorem 2.1, [µ] · [ν] has a constituent [λ] with λ1 = |µ∩ν| and a
constituent [κ] with κ′1 = |µ∩ ν ′|. If λ = κ, then hλ

11 = |µ∩ ν|+ |µ∩ ν ′| − 1,
which is impossible by Theorem 3.3. �

Corollary 3.5. A product [µ] · [ν] is irreducible if and only if at least one
of the two characters [µ], [ν] is of degree 1.

4. Kronecker products of Sn-representations with few
components.

The main result of this section is a description of the products of Sn-
representations with two homogeneous components. First we need to know
the product of any character with the character [n− 1, 1]:

Lemma 4.1. Let n ≥ 3 and µ be a partition of n. Then

[µ] · [n− 1, 1] =
∑
A

∑
B

[
(µA)B

]
− [µ]

where the first sum is over all removable nodes A for µ, and the second sum
runs over all addable nodes B for µA.

Proof. This follows from the isomorphisms M (n−1,1) ∼= S(n−1,1) ⊕ S(n) and
Sµ ⊗M (n−1,1) ∼= (Sµ ↓Sn−1) ↑Sn . �

Corollary 4.2. Let n ≥ 3 and µ be a partition of n. Then:
(i) [µ] · [n− 1, 1] has exactly one homogeneous component if and only if µ

is (n) or (1n).
(ii) [µ] · [n − 1, 1] has exactly two homogeneous components if and only if

µ is a rectangle (ab) for some a, b > 1. In this case we have

[ab] · [n− 1, 1] = [a+ 1, ab−2, a− 1] + [ab−1, a− 1, 1].

(iii) [µ] · [n− 1, 1] has exactly three homogeneous components if and only if
n = 3 and µ = (2, 1). In this case we have

[2, 1] · [2, 1] = [3] + [2, 1] + [13].

(iv) [µ] · [n− 1, 1] has exactly four homogeneous components if and only if
one of the following happens:

(a) n ≥ 4 and µ = (n− 1, 1) or (2, 1n−2);
(b) µ = (k + 1, k) or (2k, 1) for k ≥ 2.

We then have:
[n− 1, 1] · [n− 1, 1] = [n] + [n− 1, 1] + [n− 2, 2] + [n− 2, 12],

[k + 1, k] · [2k, 1] = [k + 2, k − 1] + [k + 1, k]

+[k + 1, k − 1, 1] + [k2, 1],

and the remaining products are obtained by conjugation.
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Proof. The “if” parts and the decompositions of the products follow from
Lemma 4.1.

We now prove the “only if” directions. We are going to use Lemma 4.1
again. First, observe that [µ] appears as a constituent in the product [µ]⊗
[n − 1, 1] unless µ is a rectangle. Also note that (µA)B = (µA′)B′

for two
different pairs (A,B), (A′, B′) if and only if A = B and A′ = B′, in which
case (µA)B = (µA′)B′

= µ.
A partition with r removable nodes has exactly r+1 addable nodes. So if

µ has at least 2 removable nodes, say A1 and A2, then µA1 and µA2 both have
at least 2 addable nodes, which gives 4 composition factors in the product
with the only common constituent [µ]. This proves the “only if” part of
(i) and (ii). If µ has at least 3 removable nodes, then a similar argument
shows that [µ] · [n − 1, 1] has at least 5 non-isomorphic constituents. So
we may assume that µ has exactly two removable nodes: A1 and A2. For
[µ] · [n− 1, 1] to have exactly 3 components, both µA1 and µA2 should have
only one removable node. This is only possible if n = 3 and µ = (2, 1).
Finally, for [µ] · [n− 1, 1] to have exactly 4 components, one of µA1 and µA2

should have only one removable node and the other one should have two.
This occurs exactly if µ or µ′ is (n− 1, 1), n ≥ 4, or (k + 1, k), k ≥ 2. �

Lemma 4.3. Let λ be a partition of n. Then the square [λ]2 has at most 4
homogeneous components if and only if one of the following holds:

(i) λ = (n) or (1n), when [λ]2 = [n];
(ii) n ≥ 4, λ = (n − 1, 1) or (2, 1n−2), when [λ]2 = [n] + [n − 1, 1] + [n −

2, 2] + [n− 2, 12];
(iii) n = 3, λ = (2, 1), when [λ]2 = [3] + [2, 1] + [13];
(iv) n = 4, λ = (22), when [λ]2 = [4] + [22] + [14];
(v) n = 6, λ = (32) or (23), when [λ]2 = [6] + [4, 2] + [3, 13] + [23].

Proof. The “if” part follows from Corollary 4.2 and [4, Tables I.I].
In the other direction, let [λ]2 have at most 4 homogeneous components.

We may assume that λ is not one of (n), (1n), (n− 1, 1), (2, 1n−2), and that
n > 8 since for n ≤ 8 the results hold by [4, Tables I.I].

Clearly [λ]2 always contains [n]. Furthermore, by [10, Lemmas 1-3] and
[12, 4.3] or by [11, 6.3], [λ]2 contains [n−2, 2], and unless λ is a rectangle, it
also contains [n−1, 1], [n−2, 12] and [n−3, 3]. So we only have to deal with
the case where λ = (ab) is a rectangle. We already know that [λ]2 has the
constituents [n] and [n − 2, 2]. If b > 2, then [λ]2 also has the constituent
[n − 3, 3] by [10, Lemma 3] or [11, 6.3]. If n > 12, then also [n − 4, 4]
occurs, see [10, Lemma 4]. Furthermore, by [11, 6.3], [n − 3, 13] appears
as a constituent. Hence we can restrict ourselves to the cases λ = (k, k) or
λ = (43).

Suppose λ = (k, k) (k ≥ 5). By Corollary 2.4, the components [µ] of
[k, k]2 with µ′1 = 4 = |λ ∩ λ′| are of the form (ρ1 + 1, ρ2 + 1, ρ3 + 1, ρ4 + 1),
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where [(ρ1, ρ2, ρ3, ρ4)], is a constituent of [k − 2, k − 2]2. By what we have
already proved, there are at least 3 such constituents. Thus [k, k]2 has at
least 5 components.

Now, let λ = (43). We already know that [λ]2 contains [12], [10, 2], [9, 3]
and [9, 13]. But it also contains some [µ] with µ′1 = 9 = |λ ∩ λ′|, thanks to
Theorem 2.1. Alternatively, one may calculate [43]2 on a computer and find
52 (!) homogeneous components. �

Lemma 4.4. Let µ, γ be partitions, γ ⊂ µ. Set I = {i | γi < µi}. Then the
following assertions are equivalent:

(i) [µ/γ] is homogeneous;
(ii) [µ/γ] is irreducible;
(iii) I = {j, j + 1, . . . , k} for some j ≤ k, and one of the following holds:

(a) γj = γj+1 = · · · = γk;
(b) µj = µj+1 = · · · = µk.
Moreover, in this case [µ/γ] = [α], where α is the partition with the
parts µi − γi, i ∈ I, sorted in the weakly decreasing order.

Proof. This follows from the Littlewood-Richardson Rule. �

Remark. The situations described in (iii)(a) and (iii)(b) above correspond
respectively to the pictures

γ
µ/γ

γ

µ/γ

Lemma 4.5. In the notation of Lemma 4.4 (and under the same assump-
tions), let A be a removable node of γ.

(1) If A is disconnected from µ/γ then

[µ/γA] =
∑
B

[
αB
]

where B runs over the addable nodes of α.
(2) Let A be connected with µ/γ.

In the case (iii)(a) we have

[µ/γA] =
∑

B 6=B0

[
αB
]



KRONECKER PRODUCTS OF REPRESENTATIONS 209

where B runs over the addable nodes of α, except for the bottom addable
node B0.

In the case (iii)(b) we have

[µ/γA] =
[
αB
]

where B is an addable node of α.

Proof. Again, this follows by the Littlewood-Richardson Rule. �

The following two lemmas will be used in the proof of the main theorem
of this section.

Lemma 4.6. Let µ 6= ν be partitions of n, both different from (n), (1n),
(n− 1, 1) and (2, 1n−2). Put γ = µ ∩ ν, m = |γ|. Assume that ν/γ is a row
and that [µ/γ] is an irreducible character [α1, α2, . . . ]. Then [m,α1, α2, . . . ]
appears in [µ] · [ν]. Moreover if an Sn−m+1-character [θ1, θ2, . . . ] appears in∑

A removable for γ

[µ/γA] · [ν/γA]−
∑

B addable for α

[
αB
]

(3)

with a positive coefficient then [m− 1, θ1, θ2, . . . ] appears in [µ] · [ν].

Proof. We have [ν/γ] = [n−m]. So Theorem 2.1 and Corollary 2.3 yield:

〈[µ] · [ν], [m,α1, α2, . . . ]〉 = 1,(4)

and

if λ 6= (m,α1, α2, . . . ) and 〈[µ] · [ν], [λ]〉 6= 0 then λ1 < m.(5)

If λ is a partition of n with λ1 = m−1, then in the notation of Theorem 2.2,
we may write

{η ∈ Y (λ) | η 6= λ, η1 ≤ m}
= {(m,λ2, . . . , λi−1, λi − 1, λi+1, . . . ) | i ≥ 1, λi > λi+1}.

So (4) and (5) imply
∑

η∈Y (λ)
η 6=λ

η1≤m

d(µ, ν; η) = ε, where

ε =
{

1 if λ̂ = αB for some addable node B of α
0 otherwise.

(6)

Now, by Theorem 2.2, for a partition λ of n with λ1 = m− 1 we have

〈[µ] · [ν], [λ]〉 =
∑
A

〈[µ/γA] · [ν/γA], [λ̂]〉 − ε(7)

where the sum is over all removable nodes A of γ.
Let [θ] be a constituent of [µ/γA] · [ν/γA]. Then [θ] is a constituent of

[β] · [δ] with [β] a constituent of [µ/γA] and [δ] a constituent of [ν/γA]. It
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follows from the definition of skew characters that β ⊆ µ, δ ⊆ ν. Hence
β ∩ δ ⊆ µ ∩ ν = γ. In view of Theorem 2.1, this implies

θ1 ≤ |β ∩ δ| ≤ |µ ∩ ν| = m .

If θ1 = m, then β ∩ δ = γ, therefore β ⊇ γ and δ ⊇ γ. However, ν/γA is a
union of a row and a node, so either δ = (n −m + 1) or δ = (n −m, 1). If
δ = (n−m+1), then µ∩ν ⊆ δ implies µ∩ν = (m). But then either µ or ν is
(n), which contradicts the assumptions of the lemma. If δ = (n−m, 1), then
we conclude similarly that µ∩ ν = (m− 1, 1). Since neither µ nor ν is equal
to (n − 1, 1) or its conjugate and µ/γ should be connected by Lemma 4.4,
then the only possibilities are: ν = (m− 1, n−m+ 1), µ = (m− 1, 1n−m+1)
or ν = (n − 2, 12), µ = (n − 2, 2) (in the latter case n −m = 1). In both
cases m− 1 ≥ n−m+ 1, so θ1 ≤ m− 1 since θ is a partition of n−m+ 1.
This contradiction shows that we may assume that θ1 ≤ m − 1 for any [θ]
appearing in [µ/γA] · [ν/γA].

This, together with (7), shows that any Sn−m+1-character [θ1, θ2, . . . ] ap-
pearing in (3) gives rise to the character [m − 1, θ1, θ2, . . . ] appearing in
[µ] · [ν]. �

Lemma 4.7. Let µ 6= ν be partitions of n, both different from (n), (1n), (n−
1, 1), and (2, 1n−2). Put γ = µ ∩ ν. Assume that ν/γ is a row, [µ/γ] is
irreducible, and [µ] · [ν] has 2 homogeneous components.

If there exists a removable node A0 of γ, disconnected from ν/γ, then the
following condition holds:

(*) [µ/γA0 ] is 1-dimensional, µ/γ is connected with all removable nodes
of γ, ν/γ is connected with all removable nodes of γ except A0.

Proof. Let A0 be a removable node of γ disconnected from ν/γ, and put
m = |γ|. Since µ 6= ν, we have n−m > 0. Let α be the partition of n−m
defined by [µ/γ] = [α]. Note that [ν/γ] = [n−m].

By Lemma 4.6, it suffices to show that the expression (3) contains at least
two distinct irreducible characters unless the conditions (*) hold.

Since A0 is disconnected from ν/γ, we have by Lemma 4.5(1):

[ν/γA0 ] = [n−m+ 1] + [n−m, 1].(8)

In view of Lemmas 4.4 and 4.5, we have three cases to consider: (a) When
A0 is disconnected from µ/γ; (b) when A0 is connected with µ/γ and we are
in the case (iii)(a) of Lemma 4.4; (c) when A0 is connected with µ/γ and
we are in the case (iii)(b) of Lemma 4.4 (the cases (b) and (c) overlap when
µ/γ is a rectangle).

(a) In this case A0 is disconnected from µ/γ. Then, by Lemma 4.5(1), we
get

[µ/γA0 ] =
∑
B

[
αB
]
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where the sum runs over all addable nodes B of α. So (3) contains

([n−m+ 1] + [n−m, 1]) ·

(∑
B

[
αB
])

−
∑
B

[αB]

= [n−m, 1] ·

(∑
B

[
αB
])

.

If there is a non-linear character among the [αB], we are done by Corol-
lary 4.2(i). Otherwise α = (1), but even in this case the expression above
contains two different characters: [2] and [12]. This completes the case (a).

In particular, we now may assume that every removable node A of γ
disconnected from ν/γ is connected with µ/γ.

Note that [µ/γA0 ] contains [αB1 ] for some addable node B1, see Lem-
ma 4.5. So, in view of (8) and Lemma 4.1, [µ/γA0 ]·[ν/γA0 ] contains

∑
B[αB].

Hence any removable node A1 6= A0 of γ yields a positive contribution of
[µ/γA1 ] · [ν/γA1 ] to the expression (3). If A1 is disconnected from ν/γ then
[ν/γA1 ] = [n − m, 1] + [n − m + 1], and the product [µ/γA1 ] · [ν/γA1 ] is
not homogeneous. If A1 is connected with ν/γ but disconnected from µ/γ
then, by Lemma 4.5, [µ/γA1 ] is not irreducible and [ν/γA1 ] is [n −m, 1] or
[n − m + 1]. So the product [µ/γA1 ] · [ν/γA1 ] is not homogeneous again,
thanks to Lemmas 4.1 and 4.5. Thus we may always assume that:

(**) µ/γ is connected with all removable nodes of γ, and ν/γ is connected
with all removable nodes of γ different from A0.

(b) In this case Lemma 4.5 yields

[µ/γA0 ] =
∑

B 6=B0

[
αB
]

where the sum runs over all addable nodes B of α except for the bottom
one B0. Consider the constituent [µ/γA0 ] · [ν/γA0 ]−

∑
B[αB] of (3). By (8),

it is equal to

([n−m+ 1] + [n−m, 1]) ·

 ∑
B 6=B0

[
αB
]−

∑
B

[
αB
]

(9)

= [n−m, 1] ·

 ∑
B 6=B0

[
αB
]−

[
αB0

]
.

Since α 6= ∅, it has at least 2 addable nodes. Let B1 be an addable node of
α, different from B0, and let r be the number of removable nodes of αB1 .
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Then, using Lemma 4.1, we can rewrite (9) as follows:

[n−m, 1] ·

[αB1
]
+

∑
B 6=B0,B1

[
αB
]−

[
αB0

]
= (r − 1)

[
αB1

]
+
[
αB0

]
+

∑
B 6=B0,B1

[
αB
]
+
∑
C,D

[(
αB1

)
C

D
]

+ [n−m, 1] ·

 ∑
B 6=B0,B1

[
αB
]−

[
αB0

]

= (r − 1)
[
αB1

]
+ ([n−m+ 1] + [n−m, 1]) ·

 ∑
B 6=B0,B1

[
αB
]

+
∑
C,D

[(
αB1

)
C

D
]

where the sum
∑
C,D

is over all removable nodes C of αB1 , different from B1,

and over all addable nodes D of (αB1)C , different from C.
If α is not a rectangle, then

∑
B 6=B0,B1

is non-empty, so our expression
involves at least two different irreducible characters. Let α be a rectangle.
If [α] is not of degree 1, then αB1 is not a rectangle, so r > 1, and thus our
expression involves [αB1 ]. Moreover, αB1 has a removable node C 6= B1, so
for an addable node D 6= C of (αB1)C we get the contribution [(αB1)C

D] 6=
[αB1 ]. Finally, let [α] = [µ/γ] be of degree 1. If [αB1 ] is not of degree 1,
then it is [2, 1(n−m−1)]. So for n −m ≥ 2, we have r = 2, and so [2, 1n−2]
and [3, 1n−3] appear in our expression. However, if n−m = 1, then [µ/γA0 ]
is of degree 1. So, in view of (**), all the conditions in (*) hold.

(c) In this case by Lemma 4.5 we have

[µ/γA0 ] =
[
αB1

]
for some addable node B1 of α. Then the constituent [µ/γA0 ] · [ν/γA0 ] −∑

B[αB] of (3) is

([n−m+ 1] + [n−m, 1]) ·
[
αB1

]
−
∑
B

[
αB
]

(10)

=
∑
C,D

[(
αB1

)
C

D
]
−
∑
B

[
αB
]

=
∑
B

[
αB
]
+

∑
C,D; C 6=B1

[(
αB1

)
C

D
]
−
∑
B

[
αB
]
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=
∑

C,D; C 6=B1

[(
αB1

)
C

D
]
.

In the last sum C runs through the removable nodes of αB1 , different from
B1, and D runs through the addable nodes of (αB1)C . So (10) has at least
two different irreducible constituents, unless it is empty. Hence we may
assume that αB1 is a rectangle. If [α] is of degree 1 then [αB1 ] = [µ/γA0 ]
is also of degree 1, and, in view of (**), we are in the exceptional case (*).
So we may assume that α = (ab−1, a − 1) for some a > 1, b > 1, and
αB1 = (ab). This together with Lemma 4.4 implies that γ has a removable
node A1, different from A0. We know that it must be connected with ν/γ
and µ/γ, thanks to (**). If there was a third removable node of γ, A2

say, then again by (**), both A1 and A2 would be connected with both
ν/γ and µ/γ. But this is impossible since γ = µ ∩ ν. So we may assume
that γ has exactly two removable nodes. Now, by Lemma 4.5(2), we have
[µ/γA1 ] = [αB2 ] with B2 the top or the bottom, but not the middle, addable
node of α, and [ν/γA1 ] is either [n−m, 1] or [n−m+1]. The corresponding
pictures are:

ν/γ

µ/γ

A1

A0

ν/γ

µ/γ

A1

A0

In the first case, [αB2 ] · [n−m, 1] contributes at least two constituents by
Theorem 3.4. In the second case ν = (n− 1, 1). �

Theorem 4.8. Let µ, ν be partitions of n. Then [µ] · [ν] has exactly two
homogenous components if and only if one of the partitions µ, ν is a rectangle
(ab) with a, b > 1, and the other is (n− 1, 1) or (2, 1n−2). In these cases we
have:

[n− 1, 1] · [ab] = [a+ 1, ab−2, a− 1] + [ab−1, a− 1, 1],

[2, 1n−2] · [ab] = [b+ 1, ba−2, b− 1] + [ba−1, b− 1, 1].

Proof. The “if” part is proved in Corollary 4.2 (note that S(2,1n−2) ∼=
S(n−1,1) ⊗ sign). To prove the “only if” part, assume that

[µ] · [ν] = x[κ] + y[λ] for some x, y ∈ N ,

with κ > λ in the lexicographic order. Clearly, µ, ν 6∈ {(n), (1n)}. If µ or
ν is (n − 1, 1) or (2, 1n−2) the result follows from Corollary 4.2. Assume
µ, ν 6∈ {(n− 1, 1), (2, 1n−2)}. By Theorems 2.1 and 3.3, we have

κ1 = |µ ∩ ν|, λ′1 = |µ ∩ ν ′| and λ1 < |µ ∩ ν| = κ1.
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By Lemma 4.3, µ 6= ν, and hence κ1 < n. Put γ = µ ∩ ν, m = |γ|. By
Corollary 2.3, we must have

[µ/γ] · [ν/γ] = x[κ̂]

where κ̂ = (κ2, κ3, . . . ). So, in view of Theorem 3.4, one of the following
happens:

(i) x = 1 and one of the characters [µ/γ], [ν/γ] is of degree 1, while the
other is irreducible;

(ii) one of the characters [µ/γ], [ν/γ] is equal to [κ̂], the other is of the
form z[n−m]+w[1n−m] with some z, w ∈ N, and κ̂ = κ̂′. By the Littlewood-
Richardson rule, a skew character contains both [n − m] and [1n−m] only
if its diagram is a set of disconnected nodes. So we must have n −m = 2,
since otherwise such a skew character has more than 2 constituents. But
there is no symmetric partition of 2, i.e. κ̂ 6= κ̂′. This contradiction allows
us to assume that we are in the case (i).

Without loss of generality, suppose that [ν/γ] is of degree 1 and [µ/γ] =
[α] is irreducible. Then the shape of ν/γ is a row or a column. Passing, if
necessary, from µ, ν to µ′, ν ′, we may assume that ν/γ is a row. Now, by
Lemma 4.7 we may assume that one of the following holds:

(a) ν/γ is connected with every removable node of γ.
(b) There exists a removable node A0 of γ disconnected from ν/γ, [µ/γ]

and [µ/γA0 ] are of degree 1, µ/γ is connected with every removable
node of γ, and ν/γ is connected with every removable node of γ dif-
ferent from A0.

Case (a). In this case ν must be a rectangle, and γ must have a removable
node A0 such that [ν/γA0 ] = (n−m, 1) for otherwise ν = (n).

ν/γ

γ

A0

Let us first assume that µ/γ is disconnected from A0. Then, in view of
Lemmas 4.5(1) and 4.1, the expression (3) contains

[ν/γA0 ] · [µ/γA0 ]−
∑
B

[
αB
]

(11)

= [n−m, 1] ·

(∑
B

[
αB
])

−
∑
B

[
αB
]

=
∑
B

∑
C

∑
D

[(
αB
)
C

D
]
− 2

∑
B

[
αB
]



KRONECKER PRODUCTS OF REPRESENTATIONS 215

=
∑
B

(rB − 2)
[
αB
]
+
∑
B

∑
C

∑
D 6=C

[(
αB
)
C

D
]

where B runs over the addable nodes of α, C runs over the removable nodes
of αB (for the respective node B), D runs over the addable nodes of (αB)C

and rB denotes the number of removable nodes of αB.
If α has at least 3 addable nodes, say B0, B1, B2, then we have the

following contribution to the expression above:

(rB0 − 2)
[
αB0

]
+
[
αB1

]
+
[
αB2

]
+ (rB1 − 2)

[
αB1

]
+
[
αB0

]
+
[
αB2

]
+(rB2 − 2)

[
αB2

]
+
[
αB0

]
+
[
αB1

]
= rB0

[
αB0

]
+ rB1

[
αB1

]
+ rB2

[
αB2

]
.

By Lemma 4.6, this yields 3 irreducible components in [µ] · [ν].
So α has exactly two addable nodes, say B0, B1, i.e. α is a rectangle.

Then we have the following contribution to the expression (11):

(rB0 − 2)
[
αB0

]
+
[
αB1

]
+ (rB1 − 2)

[
αB1

]
+
[
αB0

]
.

If α is not a row or a column then both rB0 , rB1 are at least 2, and in view
of Lemma 4.6, we get two irreducible constituents for [µ] · [ν], both different
from [κ]. Let α be a row or a column. Assume that α is a row, the column
case being similar. Then (11) equals [n−m, 1]+[n−m−1, 2]+[n−m−1, 12]
if n −m > 2, and [2, 1] + [13] if n −m = 2. By Lemma 4.6, this yields at
least two constituents in [µ] · [ν] different from [κ]. Finally, let n −m = 1.
Then (11) equals 0. Note that γ must have a removable node A1 6= A0, since
otherwise ν = (1n). If µ/γ is disconnected from A1, then

[µ/γA1 ] · [ν/γA1 ] = [2] + [12],

and we are done by Lemma 4.6. If µ/γ is connected with A1, then µ =
(2k, 12), ν = (2k+1) (and k > 1 since µ is not of the form (2, 1n−2)). Then
the expression (3) equals [12]. So, by Lemma 4.6, [n−1, 1] and [n−2, 12] are
constituents of [µ] · [ν]. But |µ∩ ν ′| = 4, so there also must be a constituent
with 4 non-zero rows, thanks to Theorem 2.1.

This completes the consideration of the case where [µ/γ] is disconnected
from A0.

Let µ/γ be connected with A0. Then, in view of Lemmas 4.4 and 4.5(2),
we have

[µ/γA0 ] =
∑

B 6=B0

[
αB
]

where B0 is the bottom addable node of α. Let B1 be the top addable node
of α. Then we get a contribution to (3) from the following expression:

[ν/γA0 ] · [µ/γA0 ]−
∑
B

[
αB
]

(12)
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= [n−m, 1] ·
∑

B 6=B0

[
αB
]
−
∑
B

[
αB
]

=
∑

B 6=B0

∑
C

∑
D

[(
αB
)
C

D
]
−
∑

B 6=B0

[
αB
]
−
∑
B

[
αB
]

=
∑

C 6=B1

∑
D

[(
αB1

)
C

D
]

+
∑

B 6=B0,B1

∑
C

∑
D

[(
αB
)
C

D
]
−
∑

B 6=B0

[
αB
]

where B runs through the addable nodes of α, C runs through the removable
nodes of αB (for the respective node B) and D runs through the addable
nodes of (αB)C .

If α has a third addable node, say B2, then αB1 is not a rectangle, and
hence there exists a node C1 6= B1 which is removable from αB1 . This shows
that the first sum in (12) contains [αB1 ]. Moreover, the second sum in (12)
contains

∑
D[αD], and so both [αB0 ] and [αB1 ] are constituents of (12). Now

we can apply Lemma 4.6.
If B0 and B1 are the only addable nodes of α, then α is a rectangle. Let

C1 be the corner node of α.
If α is not a row, then αB1 also has the removable node C1. In this case,

(12) is ∑
D

[(
αB1

)
C1

D
]
−
[
αB1

]
which gives at least two contributions, except in the case where α = (12)
when (12) equals [3]. If γ has a further removable node A1, then this leads
to a further contribution [2, 1] to (3). But if γ is a rectangle, then µ = (23)
and ν = (32), and we can apply Lemma 4.3.

If α is a row then γ must have a removable node A1 6= A0, since otherwise
µ = (n). Note that (12) equals −[n−m+1]. Also [ν/γA1 ]·[µ/γA1 ] = [n−m+
1] + [n−m, 1]. By Lemma 4.6, the product [µ] · [ν] contains [m,n−m] and
[m−1, n−m, 1]. Note that our assumptions yield µ = (k+n−m, k−n+m),
ν = (k, k) with k−n+m ≥ 2. But in this case |µ∩ ν ′| ≥ 4. So Theorem 2.1
implies that [µ] · [ν] has a constituent with 4 rows.
Case (b). Since [µ] is not of degree 1, the assumption [µ/γ] and [µ/γA0 ]
are of degree 1 implies that γ must have a removable node A1 6= A0. By
assumption, A1 is connected with both µ/γ and ν/γ, and since [µ/γ] is of
degree 1, A1 and A0 are the only removable nodes of γ.

Since [µ/γA0 ] is 1-dimensional, we conclude from Lemmas 4.4 and 4.5 that
[µ/γA1 ] = [n−m, 1] or the conjugate. So if n−m > 1 and [ν/γA1 ] = [n−m, 1]
then (3) equals [n − m, 1] · [n − m, 1] or the conjugate. Now we apply
Corollary 4.2 and Lemma 4.6. Otherwise µ = (k, k), ν = (k + n − m, k −
n + m) or µ = (2k), ν = (2k−1, 12). But these cases have already been
considered. �
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Thus we have classified all pairs µ, ν such that [µ] · [ν] has at most 2
homogeneous components. The “if-parts” of the following conjecture are
proved in Corollary 4.2 and Lemma 4.3.

Conjecture.

(i) [µ] · [ν] has 3 homogeneous components if and only if n = 3 and µ =
ν = (2, 1) or n = 4 and µ = ν = (2, 2).

(ii) [µ]·[ν] has 4 homogeneous components if and only if one of the following
happens:

(a) n ≥ 4 and µ, ν ∈ {(n− 1, 1), (2, 1n−2)};
(b) n = 2k+1 for some k ≥ 2, and one of µ, ν is in {(2k, 1), (2, 12k−1)}

while the other one is in {(k + 1, k), (2k, 1)};
(c) n = 6 and µ, ν ∈ {(23), (32)}.

The following theorem proves the conjecture in the special case when both
µ and ν are symmetric.

Theorem 4.9. Let µ and ν be symmetric partitions of n. Then [µ] · [ν] has
at most 4 homogeneous components if and only if one of the following holds:

(i) n = 1;
(ii) n = 3, µ = ν = (2, 1), when [µ]2 = [3] + [2, 1] + [13];
(iii) n = 4, µ = ν = (22), when [µ]2 = [4] + [22] + [14].

Proof. Let γ = µ∩ν, m = |γ|. Then γ is a symmetric partition, and at least
one of the skew diagrams µ/γ, ν/γ has no box on the main diagonal. Say it
is µ/γ. Because of the symmetry, we can then write µ/γ as a disjoint union
α ∪ α′, where α and α′ are some skew shapes which are conjugate to each
other. In particular, n−m is even. By [6, (5.7)],

[µ/γ] = [α]⊗̂[α′].

If every constituent of [α]⊗̂[α′] belongs to M = {[n − m], [1n−m], [n −
m − 1, 1], [2, 1n−m−2]} then by the Littlewood-Richardson Rule, every con-
stituent of [α] and [α′] would have to belong to {[(n−m)/2], [1(n−m)/2], [(n−
m)/2− 1, 1], [2, 1(n−m)/2−2]} . But even then, if n−m ≥ 6, the Littlewood-
Richardson Rule implies that there are components of [α]⊗̂[α′] not in M .

Assume first that n −m ≥ 6. Then, by the Littlewood-Richardson Rule
again, [ν/γ] contains a constituent not in M . Now Theorems 3.4 and 4.8 im-
ply that [µ/γ]·[ν/γ] contains at least three different irreducible constituents,
say [ρ̂1], [ρ̂2], [ρ̂3]. Then [µ] · [ν] contains the corresponding constituents [ρ1],
[ρ2], [ρ3], thanks to Corollary 2.3. Since µ and ν are symmetric, [µ] · [ν] also
contains the conjugate constituents [ρ′1], [ρ′2], [ρ′3]. Now, by Theorem 3.3
no constituent can have at the same time the maximal length and width
among all the constituents. Hence [ρi] 6= [ρ′j ] for all i, j. Thus we have
found 6 different irreducible constituents.
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The case n − m = 0 follows from Lemma 4.3. So we may now assume
that n−m = 2 or 4. Note that in the first case n > 7 since for n ≤ 7 there
is only one symmetric partition, and in the second case n > 8, since the
intersection of the two different symmetric partitions for n = 8 is a partition
of 6. Then by the Littlewood-Richardson Rule and Corollary 2.3, we know
that [µ] · [ν] has the constituents [n − 2, 2], [n − 2, 12] and their conjugates
if n −m = 2, and it has the constituents [n − 4, 3, 1] and [n − 4, 2, 12] and
their conjugates if n −m = 4. By the remark above, n is sufficiently large
in both cases so that the four constituents are all different.

Assume that these are all the constituents of [µ] · [ν]. Consider the case
n−m = 4. We compute the character values on (n− 1)-cycles and (n− 2)-
cycles. Since |γ| = n − 4, we know that min(hµ

11, h
ν
11) < n − 2. Hence

on an (n − 1)-cycle zn−1 and an (n − 2)-cycle zn−2 in Sn we have by the
Murnaghan-Nakayama rule:

[µ](zn−1) · [ν](zn−1) = 0 = [µ](zn−2) · [ν](zn−2).

On the other hand, if n is even, then

[n− 4, 2, 12](zn−1) = −1 = [4, 2, 1n−6](zn−1)

and

[n− 4, 3, 1](zn−1) = 0 = [3, 22, 1n−7](zn−1)

gives a contradiction. If n is odd, then similarly

[n− 4, 2, 12](zn−2) = 0 = [4, 2, 1n−6](zn−2)

and

[n− 4, 3, 1](zn−2) = 1 = [3, 22, 1n−7](zn−2)

gives a contradiction. The case n −m = 2 is considered similarly using zn
and zn−1. �

5. Homogeneous Kronecker products of An-representations.

We first recall the classification of the complex irreducibleAn-representations
(cf. [4, 2.5]). If µ is a non-symmetric partition of n then the restrictions
Sµ ↓An and Sµ′ ↓An are irreducible and isomorphic to each other. We denote
the corresponding irreducible An-module by Tµ or Tµ′ . Thus Tµ ∼= Tµ′ for
µ 6= µ′. On the other hand, if µ = µ′ then Sµ ↓An splits into a direct sum
of two non-isomorphic An-modules, say Tµ

+ and Tµ
−. Moreover, the modules

Tµ
+ and Tµ

−, as µ runs over all symmetric partitions of n, together with the
modules Tµ, as µ runs over a system of representatives of the pairs {µ, µ′}
for the non-symmetric partitions µ of n, form a complete system of the non-
isomorphic irreducible An-modules. It is well known that Tµ

± is obtained
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from Tµ
∓ by twisting with an automorphism of An, which comes from a con-

jugation by an element g ∈ Sn \ An. The character of Tµ
(±) will be denoted

by {µ}(±).

Lemma 5.1. Let µ, ν be non-symmetric partitions of n, both different from
(n) and (1n). Then Tµ ⊗ T ν is homogeneous if and only if Sµ ⊗ Sν ∼=
xSλ ⊕ y Sλ′ for some λ 6= λ′, x, y ∈ N.

Proof. This follows from the definition of the modules Tµ and Theorem 3.4.
�

Lemma 5.2. Let µ, ν be partitions of n, both different from (n), (1n). As-
sume that µ 6= µ′, ν = ν ′. Then Tµ ⊗ T ν

± is homogeneous if and only if
Sµ ⊗ Sν ∼= xSλ ⊕ y Sλ′ for some λ 6= λ′, x, y ∈ N.

Proof. The “if-part” is clear.
If Tµ ⊗ T ν

+
∼= xT λ

± for some λ = λ′, then, conjugating by g ∈ Sn \An, we
get Tµ ⊗ T ν

−
∼= xT λ

∓. So

Tµ ⊗ (T ν
+ ⊕ T ν

−) ∼= x(T λ
+ ⊕ T λ

−).

The lift to Sn gives Sµ ⊗ Sν ∼= xSλ, which is impossible by Theorem 3.4.
If Tµ⊗T ν

+
∼= xT λ for some λ 6= λ′, then as above we have Tµ⊗T ν

−
∼= xT λ,

so the lift to Sn gives Sµ ⊗ Sν ∼= y Sλ ⊕ z Sλ′ (with y + z = x). �

Lemma 5.3. Let ν be a symmetric partition of n, and let φ, ψ be irreducible
An-characters both different from {ν}+ and {ν}−. Then

〈ψ · {ν}+, φ〉 = 〈ψ · {ν}−, φ〉.

Proof. By [4, 2.5.13], we have

〈ψ · {ν}±, φ〉 =
1

|An|
∑

g∈An

ψ(g){ν}±(g)φ(g)

=
1

|An|

 ∑
g∈An\(C+

ν ∪C−
ν )

ψ(g){ν}±(g)φ(g)

+
∑

g∈C+
ν

ψ(g)
1
2

εν ±√εν ∏
i

hν
ii

φ(g)

+
∑

g∈C−
ν

ψ(g)
1
2

εν ∓√εν ∏
i

hν
ii

φ(g)


where εν = (−1)(n−k)/2 and C±

ν denote the two conjugacy classes in An

which consist of elements of cycle type (hν
11, . . . , h

ν
kk). Since ψ, φ correspond
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to partitions different from ν, each of them takes the same value on C+
ν and

C−
ν , so the last expression is the same for {ν}+ and {ν}−. �

Lemma 5.4. Let ν be a symmetric partition of n and let ψ be an irreducible
An-character different from {ν}+ and {ν}−. Then

〈ψ · {ν}+, {ν}+〉 = 〈ψ · {ν}−, {ν}−〉 and

〈ψ · {ν}+, {ν}−〉 = 〈ψ · {ν}−, {ν}+〉.

Proof. We compute the scalar products using [4, 2.5.13] as in the previous
proof, and use the facts that {ν}+(g) = {ν}−(g) for any g ∈ An \ (C+

ν ∪C−
ν )

and ψ(g) = ψ(h) for any g, h ∈ C+
ν ∪ C−

ν . �

From the previous two results we deduce:

Proposition 5.5. Let µ, ν be symmetric partitions of n, µ 6= ν. Then
{µ}+ · {ν}+ is homogeneous if and only if {µ}+ · {ν}− is homogeneous.

Now we can classify the homogeneous Kronecker products of irreducible
An-characters. Note that if n > 4 then the only 1-dimensional character is
the trivial one. For n = 3 and 4 there are two more 1-dimensional characters
in each case: {2, 1}± and {22}±.

Theorem 5.6. Let φ, ψ be irreducible An-characters both of degrees greater
than 1. Then φ ·ψ is homogeneous if and only if n = a2 for some a > 2 and
one of the characters is {n − 1, 1}, while the other is {aa}+ or {aa}−. In
the exceptional case:

{n− 1, 1} · {aa}± = {a+ 1, aa−2, a− 1}.

Proof. The “if-part” follows from Corollary 4.2(ii).
Let φ and ψ correspond to partitions µ and ν, respectively. If µ and ν

are both non-symmetric, then by Lemma 5.1 and Theorem 4.8 the tensor
product Tµ ⊗ T ν is not homogeneous. If one of the partitions µ, ν is sym-
metric and the other is not, use Lemma 5.2 and Theorem 4.8. So we may
assume that µ and ν are both symmetric. If µ 6= ν, then by Lemmas 5.3,
5.4 and 5.5, if one of the four products {µ}± · {ν}± is homogeneous then
the product [µ] · [ν] has at most two homogeneous components, contradict-
ing Theorems 3.4 and 4.8. Indeed, consider for example the case where
{µ}− · {ν}− is homogeneous. Since {λ}± is obtained from {λ}∓ by conju-
gating with an element g ∈ Sn \ An, we conclude that {µ}+ · {ν}+ is also
homogeneous. Moreover, if {µ}− · {ν}− = x{λ} then {µ}+ · {ν}+ = x{λ},
and if {µ}− · {ν}− = x{κ}± then {µ}+ · {ν}+ = x{κ}∓. By Proposition 5.5,
we also have that {µ}± · {ν}∓ are homogeneous. Moreover, Lemmas 5.3, 5.4
imply {µ}± · {ν}∓ = {λ} or {κ}± or∓. Thus [µ] · [ν] is x[λ] + y[λ′] or x[κ].

Now let µ = ν be symmetric. We have to consider three cases: {µ}± ·{µ}±
and {µ}+ · {µ}−. Using conjugation with g ∈ Sn \An, we can eliminate one
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of them, and work only with {µ}+ · {µ}+ and {µ}+ · {µ}−. Let us consider
the first case (the second one is similar). So let {µ}+ · {µ}+ = xψ for some
irreducible An-character ψ.

If the dual character {µ}∗+ is equal to {µ}+, then

〈{n}, {µ}+ · {µ}+〉 = 〈{µ}+, {µ}+〉 = 1,

so we deduce {µ}+·{µ}+ = {n}, which is impossible as {µ} is not of degree 1.
If {µ}∗+ = {µ}−, then

〈{n}, {µ}+ · {µ}+〉 = 〈{µ}−, {µ}+〉 = 0

and
〈{n− 1, 1}, {µ}+ · {µ}+〉 = 〈{n}+ {n− 1, 1}, {µ}+ · {µ}+〉

= 〈{n− 1} ↑An , {µ}+ · {µ}+〉
= 〈{µ}− ↓An−1 , {µ}+ ↓An−1〉.

Consider the case where µ is not a square. Then, by the Branching Rule,
both restrictions in the last expression contain some {λ} where λ is a non-
symmetric partition of n−1. So the scalar product above is non-zero, whence
{µ}+ · {µ}+ = x{n− 1, 1}. Take z ∈ An of cycle type (n− 2, 2), if n is even
and of cycle type (n−2, 1, 1), if n is odd. As µ is symmetric it does not have
a hook of length n− 2. Hence by [4, 2.5.13] and the Murnaghan-Nakayama
Rule we have

{µ}+(z){µ}+(z) = 0 .
On the other hand, x{n − 1, 1}(z) = ±x 6= 0, when n is odd or even,
respectively. This is a contradiction.

It remains to deal with the case where {µ}∗+ = {µ}− and µ is a square.
Consider

〈{n− 2} ↑An , {µ}+ · {µ}+〉 = 〈{µ}− ↓An−2 , {µ}+ ↓An−2〉.
By the Branching Rule, the last scalar product is non-zero. But

{n− 2} ↑An= {n}+ 2{n− 1, 1}+ {n− 2, 2}+ {n− 2, 12},
and the product {µ}+ · {µ}+ can not be of the form x{n} or x{n− 1, 1} by
the same arguments as before. So we may assume that

{µ}+ · {µ}+ = x{n− 2, 2} or {µ}+ · {µ}+ = x{n− 2, 12}.
In the first case, we evaluate both sides on an element of cycle type

(n− 2, 12) if n is odd, and on an element of cycle type (n− 1, 1) if n is even.
Then the left hand side gives zero whereas the right hand side is ±x, giving
a contradiction.

In the second case, we evaluate both sides on an element of cycle type
(n) if n is odd, and on an element of cycle type (n− 3, 13) if n is even. This
gives zero on the left hand side and ±x on the right hand side. �
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Note added in proof.
After this paper had been accepted we learned of the paper of I. Zisser

“Irreducible products of characters in An”, Israel J. Math., 84 (1993), 147-
151. The main result of the Zisser’s paper is that An has a pair of non-linear
characters, whose product is irreducible, if and only if n is a perfect square.
Even though Zisser does not classify all such pairs (which is done in our pa-
per), he does prove that one of the characters must correspond to the square
diagram. Moreover, he also proves that the product of two non-linear Sn-
characters is never irreducible, using his previous results on decomposing the
squares of irreducible characters. However, we believe that the short direct
proof of the more general fact that such a product is never homogeneous
given in Section 3 of our paper (Theorem 3.4) might be useful. Generally,
our approach allows us to consider more general questions concerning few
homogeneous components rather than few irreducible components.

References

[1] M. Clausen and H. Meier, Extreme irreduzible Konstituenten in Tensordarstellungen
symmetrischer Gruppen, Bayreuther Math. Schriften, 45 (1993), 1-17.

[2] Y. Dvir, On the Kronecker product of Sn characters, J. Algebra, 154 (1993), 125-140.

[3] A.M. Garsia and J. Remmel, Shuffles of permutations and the Kronecker product,
Graphs and Combin., 1 (1985), 217-263.

[4] G. James and A. Kerber, The representation theory of the symmetric group, Addison-
Wesley, London, 1981.

[5] D.E. Littlewood, The Kronecker product of symmetric group representations, J. Lon-
don Math. Soc., 31 (1956), 89-93.

[6] I.G. Macdonald, Symmetric functions and Hall polynomials, 2nd edition, Oxford
Univ. Press, Oxford, 1995.

[7] F.D. Murnaghan, The analysis of the Kronecker product of irreducible representations
of the symmetric group, Amer. J. Math., 60 (1938), 761-784.

[8] J. Remmel, A formula for the Kronecker products of Schur functions of hook shapes,
J. Algebra, 120 (1989), 100-118.

[9] J. Remmel and T. Whitehead, On the Kronecker product of Schur functions of two
row shapes, Bull. Belg. Math. Soc., 1 (1994), 649-683.

[10] J. Saxl, The complex characters of the symmetric groups that remain irreducible in
subgroups, J. Algebra, 111 (1987), 210-219.

[11] E. Vallejo, On the Kronecker product of irreducible characters of the symmetric group,
preprint, 1997.



KRONECKER PRODUCTS OF REPRESENTATIONS 223

[12] I. Zisser, The character covering numbers of the alternating groups, J. Algebra, 153
(1992), 357-372.

Received December 15, 1997 and revised July 1, 1998.

Otto-von-Guericke-Universität Magdeburg
D-39016 Magdeburg
Germany
E-mail address: bessen@mathematik.uni-magdeburg.de

University of Oregon
Eugene, Oregon, 97403
E-mail address: klesh@darkwing.uoregon.edu

mailto:bessen@mathematik.uni-magdeburg.de
mailto:klesh@darkwing.uoregon.edu

