Pacific Journal of Mathematics

ENTROPY OF CUNTZ'S CANONICAL ENDOMORPHISM

MARIE CHODA

Volume 190 No. 2

October 1999

ENTROPY OF CUNTZ'S CANONICAL ENDOMORPHISM

MARIE CHODA

Let $\{S_i\}_{i=1}^n$ be generators of the Cuntz algebra \mathcal{O}_n and let Φ be the *-endomorphism of \mathcal{O}_n defined by $\Phi(x) = \sum_{i=1}^n S_i x S_i^*$. Then both of Connes–Narnhofer–Thirring's entropy $h_{\phi}(\Phi)$ and Voiculescu's topological entropy $ht(\Phi)$ are $\log n$, where ϕ is the unique $\log n$ -KMS state of \mathcal{O}_n . Also Longo's canonical endomorphism for $N \subset M$ have the same entropy $\log n$, where the inclusion $N \subset M$ comes from \mathcal{O}_n .

1. Introduction.

Connes-St ϕ rmer entropy $H(\cdot)$ extended the entropy invariant of Kolmogorov-Sinai to trace preserving automorphisms of finite von Neumann algebras ([**CS**]). Replacing a finite trace to an invariant state ϕ , Connes-Narnhofer-Thirring entropy $h_{\phi}(\cdot)$ is defined for automorphisms of C^* -algebras as a generalization of $H(\cdot)$ ([**CNT**]). These entropies depend on an invariant state under a given automorphism.

The first typical interesting example to compute the entropy is the Bernoulli shift β_n on the infinite product space of *n*-point sets.

In the context of operator algebras (von Neumann algebras or C^* -algebras), the non-commutative Bernoulli shift α_n takes the place of the the Bernoulli shift β_n . It is the shift automorphism on the infinite tensor product $A = \bigotimes_{i=-\infty}^{\infty} A_i$ (where A_i is the $n \times n$ -matrix algebra) and $H(\alpha_n) = \log n = h_{\tau}(\alpha_n)$ ([**CS**], [**CNT**]), where τ is the unique tracial state of A.

Let γ be an aperiodic automorphism of an algebra B. Then there exists an implimenting unitary operator u for γ in the crossed product $M = B \rtimes_{\gamma} \mathbb{Z}$. The inner automorphism Ad_u , $(Ad_u(x) = uxu^*)$ of M is an extension of γ to M. In general, the entropy of γ is less than the entropy of Ad_u . Størmer [S] asked if the equality between the entropies of γ and Ad_u holds.

Voiculescu $[\mathbf{V}]$ defined topological entropy $ht(\cdot)$ for automorphisms of nuclear C^* -algebras (cf. $[\mathbf{Hu}], [\mathbf{T}]$), which does not depend on any state but is based on approximations. As an application, he showed that his topological entropy satisfies the equality for the Bernoulli shift β_n , so that Connes-Narnhofer-Thirring entropy does too.

In this paper, we show the equality for both of the automorphism α_n and the unital *-endomorphism of the type of the non-commutative Bernoulli shift.

In $\S3$, we denote only the fact that

$$H(Ad_u) = h_\tau(Ad_u) = ht(Ad_u) = \log n,$$

where τ is the unique tracial state of the reduced crossed product $A \rtimes_{\alpha_n} \mathbb{Z}$. These are proved by similar method as in §4 and §5.

The definition of Connes-St ϕ rmer entropy is available to trace preserving *-endomorphisms on finite von Neumann algebras. Similarly, we can apply the definition of Connes-Narnhofer-Thirring entropy to unital and state preserving *-endomorphisms of C*-algebras, and also Voiculescu's topological entropy to unital *-endomorphisms of nuclear C*-algebras. We apply here, in particular, to the unital *-endomorphism which is an extension of the *-endomorphism coming from the non-commutative Bernoulli shift α_n as follows.

If we restrict our algebra A to the half side infinite C^* -tensor product (or von Neumann tensor product) $B = \bigotimes_{i=0}^{\infty} A_i$ of matrix algebras, then the restriction of α_n to B defines a unit preserving *-endomorphism σ_n of B, which is canonical in the sense of [Ch2, Ch3]. Then we have the extension algebra $\langle B, \sigma_n \rangle$ of B by σ_n ([Ch2, Ch3]). In the case of C^* algebras, $\langle B, \sigma_n \rangle$ is the crossed product $B \rtimes_{\rho} \mathbb{N}$ of B by the corner endomorphism ρ in [**R**, **I2**], which is defined by σ_n using the canonical property of σ_n . Further, the canonical extension $\hat{\sigma}_n$ (in the sense of [Ch2, Ch3]) of σ_n to $\langle B, \sigma_n \rangle$ is obtained. The *-endomorphism $\hat{\sigma}_n$ of $\langle B, \sigma_n \rangle$ is defined by a modification of the automorphism Ad_u of $A \rtimes_{\alpha_n} \mathbb{Z}$ and has the property like the canonical extension in the sense of [I1, HS]. In the case of C^* algebras, the extension algebra $\langle B, \sigma_n \rangle$ is the Cuntz algebra \mathcal{O}_n and $\hat{\sigma}_n$ is nothing but Cuntz's canonical inner endomorphism Φ of \mathcal{O}_n defined by $\Phi(x) = \sum_{i=1}^{n} S_i x S_i^*, (x \in \mathcal{O}_n)$ for generators $\{S_1, \ldots, S_n\}$ of \mathcal{O}_n . In the case of von Neumann algebras, $\langle B, \sigma_n \rangle$ is the unique injective type $III_{1/n}$ factor and $\hat{\sigma}_n$ is Longo's canonical endomorphism for the subfactor of $\langle B, \sigma_n \rangle$, which appears naturally in the construction of the extension algebra $\langle B, \sigma_n \rangle$ by the canonical *-endomorphism σ_n ([Ch3]).

In $\S4$, we show that

$$ht(\Phi) = \log n = ht(\sigma_n).$$

Applying to Connes-Narnhofer-Thirring's entropy $h_{\phi}(\cdot)$ relative to the unique log *n*-KMS state ϕ of \mathcal{O}_n , we have

$$h_{\phi}(\Phi) = \log n = h_{\phi}(\sigma_n).$$

This relation implies the same relation for Longo's canonical endomorphism. Thus the canonical extension of the non-commutative Bernoulli shift has the same entropy with the original one in the case of *-endomorphisms too.

The author thanks F. Hiai for his interest in this work and encouragement during the preparation.

2. Preliminaries.

2.1. Let H_0 be a Hilbert space of dimension $n < \infty$. Put $H_i = H_0$, $i \in \mathbb{Z}$. For two integers i and j with i < j, we put

$$H_{[i,j]} = H_i \otimes H_{i+1} \otimes \cdots \otimes H_j$$

Let $\{\delta(i) : i = 1, ..., n\}$ be an orthonormal basis of H_0 . The emmbedding $H_{[i,j]} \hookrightarrow H_{[i-1,j+1]}$ is given by $\xi \in H_{[i,j]} \to \delta(1) \otimes \xi \otimes \delta(1) \in H_{[i-1,j+1]}$. We denote by \mathcal{H}_i the inductive limit of $\{H_{[i,i+j]} : j = 0, 1, ...\}$ and by \mathcal{H} the inductive limit of the incleasing sequence $\{\mathcal{H}_i : i = 0, -1, ...\}$.

Given $k, l \in \mathbb{Z}$ k < l, let

$$W_{[k,l]}^n = \{ \mu = (\mu_k, \dots, \mu_l) : \mu_i \in \{1, \dots, n\}, \ (k \le i \le l) \}.$$

Let $\mu \in W_{[k,l]}^n$ and $\nu \in W_{[l+1,m]}^n$. We put

$$\mu \cdot \nu = (\mu_k, \ldots, \mu_l, \nu_{l+1}, \ldots, \nu_m).$$

Further, let

$$W_0^n = \{0\}, \quad W_{[0,\infty]}^n = \cup_{k=0}^{\infty} W_{[0,k]}^n \text{ and } W_{\infty}^n = \cup_{k=0}^{\infty} W_{[-k,k]}^n$$

The shift $\alpha : i \in \mathbb{Z} \to i+1$ induces the mapping on W_{∞}^n , which we denote by the same notation α .

For $\mu \in W_{[k,l]}^n$, we put

$$\delta(\mu) = \delta(\mu_k) \otimes \cdots \otimes \delta(\mu_l) \in H_{[k,l]}.$$

Then $\{\delta(\mu) : \mu \in W_{[k,l]}^n\}$ is an orthonormal basis in $H_{[k,l]}$.

Let $A_0 = B(H_0)$ and $\{e(i, j) : i, j = 1, ..., n\}$ be the matrix unit of A_0 with respect to the orthonormal basis $\{\delta(i) : i = 1, ..., n\}$. We denote the trace (1/n)Tr of A_0 by τ_0 . Put $A_i = A_0$, $(i \in \mathbb{Z})$ and $\tau_i = \tau_0$. For two integers i < j, let

$$A_{[i,j]} = A_i \otimes A_{i+1} \otimes \cdots \otimes A_j.$$

For $\mu, \nu \in W^n_{[k,l]}$, we put

$$e(\mu,\nu) = e(\mu_k,\nu_k) \otimes \cdots \otimes e(\mu_l,\nu_l) \in A_{[k,l]}$$

Then $\{e(\mu,\nu): \mu, \nu \in W_{[k,l]}^n\}$ is a matrix units of $A_{[k,l]}$.

2.2. We apply the entropy of Connes-Narnhofer-Thirring and Voiculescu's topological entropy to both of automorphisms and unital *-endomorphisms on C^* -algebras. To fix notations, we recall the definition of the topological entropy. Let B be a nuclear C^* -algebra with unity. Let CAP(B) be triples (ρ, η, C) , where C is a finite dimensional C^* -algebra, and $\rho : B \to C$ and $\eta : C \to B$ are unital completely positive maps. Let Ω be the set of finite subsets of B. For an $\omega \in \Omega$, put

$$rcp(\omega; \delta) = \inf\{ \operatorname{rank} C : (\rho, \eta, C) \in CAP(B), \|\eta \cdot \rho(a) - a\| < \delta, a \in B \},\$$

where rank C means the dimension of a maximal abelian self-adjoint subalgebra of C. For a unital *-endomorphism β of B, put

$$ht(\beta,\omega;\delta) = \overline{\lim}_{N\to\infty} \frac{1}{N} \log rcp \left(\omega \cup \beta(\omega) \cup \cdots \cup \beta^{N-1}(\omega);\delta\right)$$

and

$$ht(\beta,\omega) = \sup_{\delta>0} ht(\beta,\omega;\delta)$$

Then the topological entropy $ht(\beta)$ of β is defined by

$$ht(\beta) = \sup_{\omega \in \Omega} ht(\beta, \omega).$$

Assume that there exists an increasing sequence $(\omega_j)_{j\in\mathbb{N}}$ of finite subsets of B such that the linear span of $\cup_{j\in\mathbb{N}} \omega_j$ is dense in B. Even in the case of *-endomorphisms which are not automorphisms, by the obvious analogoues of [**V**, Proposition 4.3], $ht(\cdot)$ is obtained as the following form which we use later:

$$ht(\beta) = \sup_{j \in \mathbb{N}} ht(\beta, \omega_j).$$

Let ϕ be a state of B with $\phi \cdot \beta = \phi$. The essential relation between $ht(\beta)$ and Connes-Narnhofer-Thirring entropy $h_{\phi}(\beta)$ is by [V, Proposition 4.6]

$$h_{\phi}(\beta) \le ht(\beta).$$

3. Entropy of Ad_u for non-commutative Bernoulli shift.

In this section, we only state results without proof. We remark that these are proved by similar methods as in $\S4$ and $\S5$.

3.1. Let $n(2 \leq n < \infty)$ be an integer. Let $A_i, \tau_i (i \in \mathbb{Z})$ be as in §2.1 and let A be the infinite C^* -tensor product $A = \bigotimes_{i \in \mathbb{Z}} A_i$. We denote the unique tracial state of A by τ . The non-commutative Bernoulli shift α_n is the automorphism of the C^* -algebra A induced by the shift $\alpha : i(\in \mathbb{Z}) \rightarrow$ i+1. Let u be the implimenting unitary in the reduced C^* -crossed product $A \rtimes_{\alpha_n} \mathbb{Z}$ for α_n . Let E be the conditional expectation of $A \rtimes_{\alpha_n} \mathbb{Z}$ onto Awith $E(u^j) = 0, (j \neq 0)$. Then $\tau \cdot E$ is a tracial state of $A \rtimes_{\alpha_n} \mathbb{Z}$ which is invariant under Ad_u . We denote by the same notation α_n the extension of α_n to the hyperfinite II_1 factor $\bigotimes_{i \in \mathbb{Z}} (A_i, \tau_i) \rtimes_{\alpha_n} \mathbb{Z}$.

Theorem 3.2. Under the above notations,

$$ht(\alpha_n) = ht(Ad_u) = h_{\tau \cdot E}(Ad_u) = h_{\tau}(\alpha_n) = \log n = H(\alpha_n) = H(Ad_u).$$

4. Entropy of Cuntz's canonical endomorphism.

In this section, we apply the definition of Connes-Narnhofer-Thirring entropy and Voiculescu's topological entropy for unital *-endomorphisms of nuclear C^* -algebras. All facts for automorphisms, which we need here, work for unital *-endomorphisms by the analogues of definitions and proofs in [**CNT**] and [**V**].

Let $n \ (2 \le n < \infty)$ be an integer. Given n isometries $\{S_i\}$ on a Hilbert space such that $\sum_{i=1}^n S_i S_i^* = 1$, Cuntz defined the Cuntz algebra \mathcal{O}_n as the C^* -algebra generated by $\{S_i\}_i$ ([**Cu1**]). So called Cuntz's canonical endomorphism Φ of \mathcal{O}_n is defined by

$$\Phi(x) = \sum_{i=1}^{n} S_i x S_i^*, \quad (x \in \mathcal{O}_n).$$

The \mathcal{O}_n has exactly one log *n*-KMS state ϕ ([**OP**]). In this section we compute Voiculescu's topological entropy of Φ and Connes-Narnhofer-Thiring's entropy $h_{\phi}(\Phi)$. Applying to the factor generated by $\pi_{\phi}(\mathcal{O}_n)$, we get the entropy of Longo's canonical endomorphism.

4.1. To compute the entropy of Φ , we recall some of the representation for the Cuntz algebra \mathcal{O}_n as a crossed product in [**Cu1**], (cf., [**Ch2**, **I2**, **P**, **R**]). Let $A_i, \tau_i, (i \in \mathbb{Z})$ and $e(i, j), (i, j \in \mathbb{N})$ be the same as in §2.1. For a $j \in \mathbb{Z}$, \mathcal{A}_j is given as the infinite tensor product:

$$\mathcal{A}_j = \bigotimes_{i=j}^{\infty} A_i.$$

Define embeddings

$$\mathcal{A}_j \hookrightarrow \mathcal{A}_{j-1} \hookrightarrow \mathcal{A}_{j-2} \hookrightarrow \cdots$$

by $x \in \mathcal{A}_j \to e_{j-1}(1,1) \otimes x \in \mathcal{A}_{j-1}$, where $e_{j-1}(i,l)$ is a copy of e(i,l) in \mathcal{A}_{j-1} . The inductive limit of this sequence is denoted by \mathcal{A} . Since the embedding $\mathcal{A}_j \hookrightarrow \mathcal{A}_{j-1}$ and the embedding $\mathcal{H}_i \hookrightarrow \mathcal{H}_{i-1}$ in §2.1 are compatible, we can consider \mathcal{A} acting faithfully on \mathcal{H} .

The automorphism σ of \mathcal{A} is induced by the shift $\alpha : i \in \mathbb{Z} \to i + 1$.

Then the crossed product $\mathcal{A} \rtimes_{\sigma} \mathbb{Z}$ acts faithfully on the Hilbert space

$$K = \sum_{i \in \mathbb{Z}} \bigoplus u^i \mathcal{H},$$

where u is the implimenting unitary in $\mathcal{A} \rtimes_{\sigma} \mathbb{Z}$ for the automorphism σ of \mathcal{A} . Let p be the unit of $\mathcal{A}_0 \subset \mathcal{A} \rtimes_{\sigma} \mathbb{Z}$ and put

$$w = up.$$

We remark $u^j p = w^j$.

MARIE CHODA

Then Cuntz algebra \mathcal{O}_n is reresented as $p(\mathcal{A} \rtimes_{\sigma} \mathbb{Z})p$, which is the C^* subalgebra $C^*(\mathcal{A}_0, w)$ of $(\mathcal{A} \rtimes_{\sigma} \mathbb{Z})$ generated by $\{\mathcal{A}_0, w\}$. There exists a conditional expectation E of $C^*(\mathcal{A}_0, w)$ onto \mathcal{A}_0 with $E(w^j) = 0$ for all $j = 1, 2, \ldots$. The unique tracial state τ of \mathcal{A}_0 is extended to the state ϕ of $C^*(\mathcal{A}_0, w)$ by $\phi = \tau \cdot E$. Then ϕ is the unique log *n*-KMS state of $C^*(\mathcal{A}_0, w)$ ([**OP**]).

4.2. Since

$$\sigma^{j}(p)(\mathcal{H}) = \mathcal{H}_{j}, \quad j \in \mathbb{Z},$$

the algebra $p(\mathcal{A} \rtimes_{\sigma} \mathbb{Z})p$ is acting faithfully on

$$pK = \sum_{i \in \mathbb{Z}} \bigoplus u^i \mathcal{H}_{-i}.$$

The restriction $\sigma|_{\mathcal{A}_0}$ of σ to \mathcal{A}_0 is the one sided non commutative Bernoulli shift. Cuntz's canonical inner endomorphism Φ of \mathcal{O}_n is nothing but the extension of $\sigma|_{\mathcal{A}_0}$ to the Cuntz algebra $C^*(\mathcal{A}_0, w)$ which maps

$$a \to \sigma(a), \ (a \in \mathcal{A}_0), \quad \text{and} \quad w \to vw,$$

where

$$v = \sum_{j=1}^{n} e((j,1), (1,j)) \in A_{[0,1]},$$

([**Cu2**], cf. [**Ch2**]).

4.3. Let $k, m \in \mathbb{N}$. We define

$$K(k,m) = \sum_{l=-k}^{k} \bigoplus u^{l} H_{[-l,-l+m]}$$

and we denote the orthogonal projection of K onto K(k,m) by Q(k,m). The set $\{u^j\delta(\mu): -k \leq j \leq k, \ \mu \in W^n_{[-j,-j+m]}\}$ is an orthonomal basis of K(k,m). We denote by $E((j,\mu),(l,\nu))$ the partial isometry in B(K(k,m)) such that

$$E((j,\mu),(l,\nu)): u^{l}\delta(\nu) \to u^{j}\delta(\mu), \quad \left(\mu \in W^{n}_{[-j,-j+m]}, \ \nu \in W^{n}_{[-l,-l+m]}\right).$$

Then the set

$$\mathcal{E}(k,m) = \left\{ E((j,\mu),(l,\nu)) : -k \le j, l \le k, \ \mu \in W^n_{[-j,-j+m]}, \ \nu \in W^n_{[-l,-l+m]} \right\}$$

is a matrix units of B(K(k,m)).

4.4. Let $k, m \in \mathbb{N}$. We define the completely positive unital linear map

 $\varphi_{k,m}: p(\mathcal{A} \rtimes_{\sigma} \mathbb{Z})p \to B(K(k,m))$

by

$$\varphi_{k,m}(x) = Q(k,m)xQ(k,m)|_{K(k,m)}, \quad x \in p(\mathcal{A} \rtimes_{\sigma} \mathbb{Z})p$$

We remark that if $e(\mu,\nu)w^j \neq 0$ for ν in $W^n_{[0,b]}$, $(b \geq j)$, then

$$\nu = (1, \dots, 1, \nu_j, \dots, \nu_b)$$
 and $\delta(\nu) \in H_{[j,b]}$

For two integers a and b with a < b, we let

$$\omega_{a,b} = \left\{ e(\mu,\nu)w^j : 0 \le j \le a \quad \text{and} \quad \mu,\nu \in W^n_{[0,b]} \right\}.$$

Let $e(\mu,\nu)w^j \in \omega_{a,b}$ for $a, b \in \mathbb{N}$, (a < b) and $e(\mu,\nu)w^j \neq 0$. Since $\sigma^{-l}(p)\delta(\mu) = \delta(\mu)$ for $u^l\delta(\mu) \in K(k,m)$, we have that if $k \ge a$ and $m \ge b$ then

$$\varphi_{k,m}(e(\mu,\nu)w^{j}) = \sum_{l=-k}^{k-j} E((j+l, \ \alpha^{-(j+l)}(\mu) \cdot \beta_{l}), \ (l, \ \alpha^{-(j+l)}(\nu) \cdot \gamma_{l})),$$

where

$$\beta_l = (1, \dots, 1) \in W^n_{[-(j+l)+b+1, -(j+l)+m]},$$

$$\gamma_l = (1, \dots, 1) \in W^n_{[-l+b+1, -l+m]}.$$

We remark that

$$\delta(\alpha^{-(j+l)}(\nu)) \in H_{[-l,-l+b+1]},$$

so that $E((j+l, \alpha^{-(j+l)}(\mu) \cdot \beta_l), (l, \alpha^{-(j+l)}(\nu) \cdot \gamma_l)) \in \mathcal{E}(k,m).$

4.5. We define the linear map

$$\psi_{k,m}: B(K(k,m)) \to p(\mathcal{A} \rtimes_{\sigma} \mathbb{Z})p$$

by

$$\psi_{k,m}(E((j,\mu),(l,\nu))) = \frac{1}{2k+1}pu^{j}e(\mu,\nu)u^{*l}p,$$

for $E((j,\mu),(l,\nu)) \in \mathcal{E}(k,m)$.

Let $T_j, (j \in \mathbb{Z})$ be the unitary operator on K defined by

$$T_j(u^i\delta(\mu)) = u^{i+j}\delta(\alpha^{-j}(\mu)), \quad i \in \mathbb{Z}, \ \mu \in W^n_{\infty}.$$

Then we have

$$w - \lim_{r \to \omega} \sum_{i=-r}^{r} T_i E((j,\mu), (l,\nu)) T_i^* = u^j e(\mu,\nu) u^{*l}$$

MARIE CHODA

for any $E((j,\mu),(l,\nu)) \in B(K(k,m))$. Here ω is a nontrivial ultrafilter on \mathbb{N} . Hence $\psi_{k,m}$ is a unital completely positive map from B(K(k,m)) to $p(\mathcal{A} \rtimes_{\sigma} \mathbb{Z})p$. Since $u^{j}p = w^{j}$, we have

$$\psi_{k,m} \cdot \varphi_{k,m}(e(\mu,\nu)w^j) = \frac{2k-j+1}{2k+1}e(\mu,\nu)w^j,$$

for all $e(\mu,\nu)w^j \in \omega_{a,b}$, $a \leq k$ and $b \leq m$.

Theorem 4.6. Let Φ be Cuntz's canonical inner endomorphism of \mathcal{O}_n . Then

$$ht(\Phi) = \log n.$$

Proof. Let $e(\mu, \nu)w^j \in \omega_{a,b}$. Then we have, for $a \leq k$ and $b \leq m$, by §4.5

$$\|\psi_{k,m} \cdot \varphi_{k,m}(e(\mu,\nu)w^j) - e(\mu,\nu)w^j\| = \frac{j}{2k+1} \|e(\mu,\nu)w^j\| \le \frac{a}{2k+1}$$

and we have for an $i \in \mathbb{N}$

$$\Phi^{i}(e(\mu,\nu)w^{j}) = \sigma^{i}(e(\mu,\nu))\sum_{s=1}^{n} e(\beta_{s},\gamma_{s})w^{j}$$
$$= \sum_{s=1}^{n} e(\bar{\beta}_{s}\cdot\alpha^{i}(\mu),\gamma_{s}\cdot\nu_{j})w^{j}.$$

Here

$$\beta_s = (1, \dots, 1, \underset{i-1}{s}, 1, \dots, 1) \in W^n_{[0,j+i-1]},$$

$$\gamma_s = (1, \dots, 1, s) \in W^n_{[0,j+i-1]}$$

and

$$\bar{\beta}_s = (1, \dots, 1, \underset{i-1}{s}) \in W^n_{[0,i-1]}, \quad \nu_j = (\nu_{j+i}, \dots, \nu_b) \in W^n_{[j+i,b+i]}.$$

Hence for $k \ge a$ and $m \ge b + i$ we have

$$\|\psi_{k,m}\cdot\varphi_{k,m}(\Phi^i(e(\mu,\nu)w^j))-\Phi^i(e(\mu,\nu)w^j)\|\leq \frac{an}{2k+1}.$$

Therefore, we have for $N \in \mathbb{N}$

$$rcp\left(\bigcup_{i=0}^{N} \Phi^{i}\left(\omega_{a,b} \cup (\omega_{a,b})^{*} : \frac{an}{2k+1}\right)\right) \leq \operatorname{rank} B(K(k, N+b+1))$$
$$= (2k+1)n^{N+b+1},$$

where $(\omega_{a,b})^* = \{x^*; x \in \omega_{a,b}\}$. This implies that for all integers a, b with a < b,

$$ht\left(\Phi,\omega_{a,b}\cup(\omega_{a,b})^*;\frac{an}{2k+1}\right)\leq\overline{\lim}_{N\to\infty}\frac{1}{N}\log\left((2k+1)n^{N+b+1}\right)=\log n.$$

Increasing k, we have $ht(\Phi, \omega_{a,b} \cup (\omega_{a,b})^*) \leq \log n$, for all $a, b \in \mathbb{N}$ with a < b. Put $\omega_a = \omega_{a,2a} \cup (\omega_{a,2a})^*$, for $a \in \mathbb{N}$. Then the set $\{\omega_a : a \in \mathbb{N}\}$ is an increasing sequence of finite subsets of $p(\mathcal{A} \rtimes_{\sigma} \mathbb{Z})p$ and the linear span of $\bigcup \{\omega_a : a \in \mathbb{N}\}$ is dense in $p(\mathcal{A} \rtimes_{\sigma} \mathbb{Z})p$. Hence

$$ht(\Phi) = \sup_{a \in \mathbb{N}} ht(\Phi, \omega_a) \le \log n.$$

On the other hand, the restriction $\Phi|\mathcal{A}_0$ of Φ to \mathcal{A}_0 is $\sigma|_{\mathcal{A}_0} = \alpha_n|_{\mathcal{A}_0}$ and $h_{\tau}(\alpha_n|_{\mathcal{A}_0}) = h_{\tau}(\alpha_n) = \log n$. Since there exists a conditional expectation of \mathcal{O}_n onto \mathcal{A}_0 and $\tau \cdot \alpha_n|_{\mathcal{A}_0} = \tau$,

$$\log n = h_{\tau}(\alpha_n|_{\mathcal{A}_0}) \le ht(\Phi|_{\mathcal{A}_0}) \le ht(\Phi) \le \log n$$

by the version for unital *-endomorphisms of [V, Proposition 4.4]. Therefore, $ht(\Phi) = \log n$.

Corollary 4.7. Let ϕ be the unique log *n*-KMS state of \mathcal{O}_n . Then

$$h_{\phi}(\Phi) = \log n$$

Proof. Let τ be the unique tracial state of \mathcal{A}_0 and E be the conditional expectation of $p(\mathcal{A} \rtimes_{\sigma} \mathbb{Z})p$ onto \mathcal{A}_0 , then $\phi = \tau \cdot E$. Hence $\phi \cdot \Phi = \phi$. This relation implies, by the endomorphism version of [**V**, Proppsition 4.6],

$$\log n = h_{\tau}(\sigma | \mathcal{A}_0) \le h_{\phi}(\Phi) \le ht(\Phi) = \log n.$$

Therefore $h_{\phi}(\Phi) = \log n$.

5. Entropy of Longo's canonical endomorphism.

In this section we apply the result in §4 to Longo's canonical endomorphism. We use the same notations as in §4.

5.1. Let τ_i be the tracial state of A_i , for $i \in \mathbb{N}$ and let

$$\tilde{A} = \bigotimes_{i=0,}^{\infty} (A_i, \tau_i).$$

The \tilde{A} has the canonical trace $\bigotimes_{i=0}^{\infty} \tau_i$, which we denote by τ . The shift $\sigma | \mathcal{A}_0$ is extended to the *-endomorphism γ of the hyperfinite II₁ factor \tilde{A} . The γ is canonical in the sense of [**Ch3**]. Hence we have the extension algebra $\tilde{M} = \langle \tilde{A}, \sigma \rangle$, which is the injective type III_{1/n} factor generated by \tilde{A} and an isometry W. Then γ is extended to the canonical *-endomorphism Γ of \tilde{M} and

 $\Gamma(a) = \gamma(a), a \in \tilde{A}, \text{ and } \Gamma(W) = \pi_{\phi}(vW).$

The Γ is Longo's canonical endomorphism for the inclusion $N \subset M$ [Ch3, Theorem 6.10]. Here the subfactor \tilde{N} is obtained naturally in the step of

MARIE CHODA

constructing \tilde{M} . The factor \tilde{M} is the von Neumann algebra generated by $\pi_{\phi}(\langle \mathcal{A}_0, \sigma |_{\mathcal{A}_0} \rangle)$ and the C^* -algebra $\langle \mathcal{A}_0, \sigma |_{\mathcal{A}_0} \rangle$ is \mathcal{O}_n . Hence Γ is the extension of Φ to \tilde{M} . Since Φ is ϕ -preserving, as an application of 4.7 Corollary, we have the following by **[CNT**, Theorem VII.2]:

Corollary 5.2. Let M be the von Neumann algera generated by $\pi_{\phi}(\mathcal{O}_n)$ and let Γ be the extension of Cuntz's canonical endomorphism Φ of \mathcal{O}_n to M. Then Γ is Longo's canonical endomorphism and

$$h_{\phi}(\Gamma) = \log n.$$

References

- [Ch1] M. Choda, Entropy for *-endomorphisms and relative entropy for subalgebras, J. Operator Theory, 25 (1991), 125-140.
- [Ch2] _____, Canonical *-endomorphisms and simple C*-algebras, J. Operator Theory, 33 (1995), 235-248.
- [Ch3] _____, Extension algebras of II_1 factors via *-endomorphisms, Int. J. Math., 5 (1994), 635-655.
- [CNT] A. Connes, H. Narnhofer and W. Thirring, Dynamical entropy of C^{*} algebras and von Neumann algebras, Commun. Math. Phys., **112** (1987), 691-719.
- [CS] A. Connes and E. Størmer, Entropy of II₁ von Neumann algebras, Acta Math., 134 (1975), 289-306.
- [Cu1] J. Cuntz, Simple C*-algebras generated by isometries, Commun. Math. Phys., 57 (1977), 173-185.
- [Cu2] _____, Regular actions of Hopf algebras on the C*-algebra generated by a Hilbert space, in 'Operator algebras, mathematical physics, and low dimensional topology' (Istanbul, 1991), 87-100, Res, Notes Math., 5, Wellesley, MA, (1993).
- [HS] U. Haagerup and E. Størmer, Equivalence of normal states on von Neumann algebras and flow of weights, Adv. Math., 83 (1990), 180-262.
- [Hu] T. Hudetz, Topological entropy for appropriately approximated C^{*}-algebras, J. Math. Phys., 35 (1994), 4303-4333.
- M. Izumi, Canonical extension on factors, in Subfactors, H. Araki et al. (eds.), World Scientific, Singapore, (1994), 129-138.
- [I2] _____, Subalgebras of infinite C^* -algebras with finite indices, II, Cuntz-Krieger algebras, preprint.
- [L1] R. Longo, Index of subfactors and statistics of quantum fields, I, Commun. Math. Phys., 126 (1989), 145-155.
- [L2] _____, Duality for Hopf algebras and for subfactors, Commun. Math. Phys., 159 (1994), 133-150.
- [LR] R. Longo and J.E. Roberts, A theory of dimension, preprint.
- [OP] D. Olesen and G.K. Pedersen, Some C^{*}-dynamical systems with a single KMS state, Math. Scand., 42 (1978), 111-118.

- [P] W. Paschke, The crossed product of a C*-algebra by an endomorphism, Proc. Amer. Math. Soc., 80 (1980), 113-118.
- [R] M. Rørdam, Classification of certain infinite simple C*-algebras, J. Funct. Anal., 131 (1995), 415-458.
- [S] E. Størmer, *Entropy in operator algebras*, preprint in University of Oslo, (1994).
- [T] K. Thomsen, Topological entropy for endomorphisms of local C^{*}-algebras, Comm. Math. Phys., 164 (1994), 181-193.
- [V] D. Voiculescu, Dynamical approximation entropies and topological entropy in operator algebras, Comm. Math. Phys., 170 (1995), 249-281.

Received July 1, 1997 and revised October 2, 1998.

OSAKA KYOIKU UNIVERSITY KASHIWARA 582-8582 JAPAN *E-mail address*: marie@cc.osaka-kyoiku.ac.jp