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Let {Si}n
i=1 be generators of the Cuntz algebra On and let Φ

be the *-endomorphism of On defined by Φ(x) =
∑n

i=1 SixS∗
i .

Then both of Connes–Narnhofer–Thirring’s entropy hφ(Φ)
and Voiculescu’s topological entropy ht(Φ) are log n, where
φ is the unique log n-KMS state of On. Also Longo’s canon-
ical endomorphism for N ⊂ M have the same entropy log n,
where the inclusion N ⊂ M comes from On .

1. Introduction.

Connes-Stφrmer entropy H(·) extended the entropy invariant of Kolmogo-
rov-Sinai to trace preserving automorphisms of finite von Neumann algebras
([CS]). Replacing a finite trace to an invariant state φ, Connes-Narnhofer-
Thirring entropy hφ(·) is defined for automorphisms of C∗-algebras as a
generalization of H(·) ([CNT]). These entropies depend on an invariant
state under a given automorphism.

The first typical interesting example to compute the entropy is the Berno-
ulli shift βn on the infinite product space of n-point sets.

In the context of operator algebras (von Neumann algebras or C∗-alge-
bras), the non-commutative Bernoulli shift αn takes the place of the the
Bernoulli shift βn. It is the shift automorphism on the infinite tensor product
A =

⊗∞
i=−∞Ai (where Ai is the n×n-matrix algebra) and H(αn) = log n =

hτ (αn) ([CS], [CNT]), where τ is the unique tracial state of A.
Ler γ be an aperiodic automorphism of an algebra B. Then there exists an

implimenting unitary operator u for γ in the crossed product M = B oγ Z .
The inner automorphism Adu, (Adu(x) = uxu∗) of M is an extension of γ
to M. In general, the entropy of γ is less than the entropy of Adu. Stφrmer
[S] asked if the equality between the entropies of γ and Adu holds.

Voiculescu [V] defined topological entropy ht(·) for automorphisms of
nuclear C∗-algebras (cf. [Hu], [T]), which does not depend on any state
but is based on approximations. As an application, he showed that his
topological entropy satisfies the equality for the Bernoulli shift βn, so that
Connes-Narnhofer-Thirring entropy does too.

In this paper, we show the equality for both of the automorphism αn and
the unital *-endomorphism of the type of the non-commutative Bernoulli
shift.
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236 MARIE CHODA

In §3, we denote only the fact that

H(Adu) = hτ (Adu) = ht(Adu) = log n,

where τ is the unique tracial state of the reduced crossed product Aoαn Z .
These are proved by similar method as in §4 and §5.

The definition of Connes-Stφrmer entropy is available to trace preserving
*-endomorphisms on finite von Neumann algebras. Similarly, we can apply
the definition of Connes-Narnhofer-Thirring entropy to unital and state pre-
serving *-endomorphisms of C∗-algebras, and also Voiculescu’s topological
entropy to unital *-endomorphisms of nuclear C∗-algebras. We apply here,
in particular, to the unital *-endomorphism which is an extension of the
*-endomorphism coming from the non-commutative Bernoulli shift αn as
follows.

If we restrict our algebra A to the half side infinite C∗-tensor product (or
von Neumann tensor product) B =

⊗∞
i=0Ai of matrix algebras, then the

restriction of αn to B defines a unit preserving *-endomorphism σn of B,
which is canonical in the sense of [Ch2, Ch3]. Then we have the extension
algebra 〈B, σn〉 of B by σn ([Ch2, Ch3]). In the case of C∗ algebras,
〈B, σn〉 is the crossed product B oρ N of B by the corner endomorphism
ρ in [R, I2], which is defined by σn using the canonical property of σn.
Further, the canonical extension σ̂n (in the sense of [Ch2, Ch3]) of σn

to 〈B, σn〉 is obtained. The *-endomorphism σ̂n of 〈B, σn〉 is defined by a
modification of the automorphism Adu of A oαn Z and has the property
like the canonical extension in the sense of [I1, HS]. In the case of C∗-
algebras, the extension algebra 〈B, σn〉 is the Cuntz algebra On and σ̂n

is nothing but Cuntz’s canonical inner endomorphism Φ of On defined by
Φ(x) =

∑n
i=1 SixS

∗
i , (x ∈ On) for generators {S1, . . . , Sn} of On. In the case

of von Neumann algebras, 〈B, σn〉 is the unique injective type III1/n factor
and σ̂n is Longo’s canonical endomorphism for the subfactor of 〈B, σn〉,
which appears naturally in the construction of the extension algebra 〈B, σn〉
by the canonical *-endomorphism σn ([Ch3]).

In §4, we show that

ht(Φ) = log n = ht(σn).

Applying to Connes-Narnhofer-Thirring’s entropy hφ(·) relative to the uni-
que log n-KMS state φ of On, we have

hφ(Φ) = log n = hφ(σn).

This relation implies the same relation for Longo’s canonical endomorphism.
Thus the canonical extension of the non-commutative Bernoulli shift has the
same entropy with the original one in the case of *-endomorphisms too.

The author thanks F. Hiai for his interest in this work and encouragement
during the preparation.
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2. Preliminaries.

2.1. Let H0 be a Hilbert space of dimension n <∞. Put Hi = H0, i ∈ Z .
For two integers i and j with i < j, we put

H[i,j] = Hi ⊗Hi+1 ⊗ · · · ⊗Hj .

Let {δ(i) : i = 1, ..., n} be an orthonormal basis of H0. The emmbedding
H[i,j] ↪→ H[i−1,j+1] is given by ξ ∈ H[i,j] → δ(1) ⊗ ξ ⊗ δ(1) ∈ H[i−1,j+1]. We
denote by Hi the inductive limit of {H[i,i+j] : j = 0, 1, ...} and by H the
inductive limit of the incleasing sequence {Hi : i = 0,−1, ...}.

Given k, l ∈ Z k < l, let

Wn
[k,l] = {µ = (µk, . . . , µl) : µi ∈ {1, . . . , n}, (k ≤ i ≤ l)}.

Let µ ∈Wn
[k,l] and ν ∈Wn

[l+1,m]. We put

µ · ν = (µk, . . . , µl, νl+1, . . . , νm).

Further, let

Wn
0 = {0}, Wn

[0,∞] = ∪∞k=0W
n
[0,k] and Wn

∞ = ∪∞k=0W
n
[−k,k].

The shift α : i ∈ Z → i+1 induces the mapping on Wn
∞, which we denote

by the same notation α.
For µ ∈Wn

[k,l], we put

δ(µ) = δ(µk)⊗ · · · ⊗ δ(µl) ∈ H[k,l].

Then {δ(µ) : µ ∈Wn
[k,l]} is an orthonormal basis in H[k,l].

Let A0 = B(H0) and {e(i, j) : i, j = 1, ..., n} be the matrix unit of A0

with respect to the orthonormal basis {δ(i) : i = 1, ..., n}. We denote the
trace (1/n)Tr of A0 by τ0. Put Ai = A0, (i ∈ Z) and τi = τ0. For two integers
i < j, let

A[i,j] = Ai ⊗Ai+1 ⊗ · · · ⊗Aj .

For µ, ν ∈Wn
[k,l], we put

e(µ, ν) = e(µk, νk)⊗ · · · ⊗ e(µl, νl) ∈ A[k,l].

Then {e(µ, ν) : µ, ν ∈Wn
[k,l]} is a matrix units of A[k,l].

2.2. We apply the entropy of Connes-Narnhofer-Thirring and Voiculescu’s
topological entropy to both of automorphisms and unital *-endomorphisms
on C∗-algebras. To fix notations, we recall the definition of the topological
entropy. Let B be a nuclear C∗-algebra with unity. Let CAP (B) be triples
(ρ, η, C), where C is a finite dimensional C∗-algebra, and ρ : B → C and
η : C → B are unital completely positive maps. Let Ω be the set of finite
subsets of B. For an ω ∈ Ω, put

rcp(ω; δ) = inf{rank C : (ρ, η, C) ∈ CAP (B), ‖η · ρ(a)− a‖ < δ, a ∈ B},
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where rank C means the dimension of a maximal abelian self-adjoint subal-
gebra of C. For a unital *-endomorphism β of B, put

ht(β, ω ; δ) = lim N→∞
1
N

log rcp
(
ω ∪ β(ω) ∪ · · · ∪ βN−1(ω); δ

)
and

ht(β, ω) = sup
δ>0

ht(β, ω; δ).

Then the topological entropy ht(β) of β is defined by

ht(β) = sup
ω∈Ω

ht(β, ω).

Assume that there exists an increasing sequence (ωj)j∈N of finite subsets of
B such that the linear span of ∪j∈N ωj is dense in B. Even in the case of
*-endomorphisms which are not automorphisms, by the obvious analogoues
of [V, Proposition 4.3], ht(·) is obtained as the following form which we use
later:

ht(β) = sup
j∈N

ht(β, ωj).

Let φ be a state of B with φ · β = φ. The essential relation between ht(β)
and Connes-Narnhofer-Thirring entropy hφ(β) is by [V, Proposition 4.6]

hφ(β) ≤ ht(β).

3. Entropy of Adu for non-commutative Bernoulli shift.

In this section, we only state results without proof. We remark that these
are proved by similar methods as in §4 and §5.

3.1. Let n(2 ≤ n < ∞) be an integer. Let Ai, τi(i ∈ Z) be as in §2.1
and let A be the infinite C∗-tensor product A =

⊗
i∈ZAi. We denote the

unique tracial state of A by τ. The non-commutative Bernoulli shift αn is
the automorphism of the C∗-algebra A induced by the shift α : i(∈ Z) →
i+ 1. Let u be the implimenting unitary in the reduced C∗-crossed product
A oαn Z for αn. Let E be the conditional expectation of A oαn Z onto A
with E(uj) = 0, (j 6= 0). Then τ · E is a tracial state of A oαn Z which is
invariant under Adu. We denote by the same notation αn the extension of
αn to the hyperfinite II1 factor

⊗
i∈Z(Ai, τi) oαn Z .

Theorem 3.2. Under the above notations,

ht(αn) = ht(Adu) = hτ ·E(Adu) = hτ (αn) = log n = H(αn) = H(Adu).
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4. Entropy of Cuntz’s canonical endomorphism.

In this section, we apply the definition of Connes-Narnhofer-Thirring en-
tropy and Voiculescu’s topological entropy for unital *-endomorphisms of
nuclear C∗-algebras. All facts for automorphisms, which we need here, work
for unital *-endomorphisms by the analogues of definitions and proofs in
[CNT] and [V].

Let n (2 ≤ n < ∞) be an integer. Given n isometries {Si} on a Hilbert
space such that

∑n
i=1 SiS

∗
i = 1, Cuntz defined the Cuntz algebra On as

the C∗-algebra generated by {Si}i ([Cu1]). So called Cuntz’s canonical
endomorphism Φ of On is defined by

Φ(x) =
n∑

i=1

SixS
∗
i , (x ∈ On).

The On has exactly one log n-KMS state φ ([OP]). In this section we com-
pute Voiculescu’s topological entropy of Φ and Connes-Narnhofer-Thiring’s
entropy hφ(Φ). Applying to the factor generated by πφ(On), we get the
entropy of Longo’s canonical endomorphism.

4.1. To compute the entropy of Φ, we recall some of the representation for
the Cuntz algebra On as a crossed product in [Cu1], (cf., [Ch2, I2, P, R]).
Let Ai, τi, (i ∈ Z) and e(i, j), (i, j ∈ N) be the same as in §2.1. For a j ∈ Z,
Aj is given as the infinite tensor product:

Aj =
∞⊗
i=j

Ai.

Define embeddings

Aj ↪→ Aj−1 ↪→ Aj−2 ↪→ · · ·
by x ∈ Aj → ej−1(1, 1)⊗x ∈ Aj−1, where ej−1(i, l) is a copy of e(i, l) inAj−1.
The inductive limit of this sequence is denoted by A. Since the embedding
Aj ↪→ Aj−1 and the embedding Hi ↪→ Hi−1 in §2.1 are compatible, we can
consider A acting faithfully on H.

The automorphism σ of A is induced by the shift α : i(∈ Z) → i+ 1.
Then the crossed product Aoσ Z acts faithfully on the Hilbert space

K =
∑
i∈Z

⊕
uiH,

where u is the implimenting unitary in A oσ Z for the automorphism σ of
A. Let p be the unit of A0 ⊂ Aoσ Z and put

w = up.

We remark ujp = wj .
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Then Cuntz algebra On is reresented as p(A oσ Z)p, which is the C∗

subalgebra C∗(A0, w) of (A oσ Z) generated by {A0, w}. There exists a
conditional expectation E of C∗(A0, w) onto A0 with E(wj) = 0 for all
j = 1, 2, . . . . The unique tracial state τ of A0 is extended to the state φ of
C∗(A0, w) by φ = τ ·E. Then φ is the unique log n-KMS state of C∗(A0, w)
([OP]).

4.2. Since
σj(p)(H) = Hj , j ∈ Z,

the algebra p(Aoσ Z)p is acting faithfully on

pK =
∑
i∈Z

⊕
uiH−i.

The restriction σ|A0 of σ to A0 is the one sided non commutative Bernoulli
shift. Cuntz’s canonical inner endomorphism Φ of On is nothing but the
extension of σ|A0 to the Cuntz algebra C∗(A0, w) which maps

a→ σ(a), (a ∈ A0), and w → vw,

where

v =
n∑

j=1

e((j, 1), (1, j)) ∈ A[0,1],

([Cu2], cf. [Ch2]).

4.3. Let k,m ∈ N . We define

K(k,m) =
k∑

l=−k

⊕
ulH[−l,−l+m]

and we denote the orthogonal projection of K onto K(k,m) by Q(k,m).
The set {ujδ(µ) : −k ≤ j ≤ k, µ ∈ Wn

[−j,−j+m]} is an orthonomal basis of
K(k,m). We denote by E((j, µ), (l, ν)) the partial isometry in B(K(k,m))
such that

E((j, µ), (l, ν)) : ulδ(ν) → ujδ(µ),
(
µ ∈Wn

[−j,−j+m], ν ∈W
n
[−l,−l+m]

)
.

Then the set

E(k,m)

=
{
E((j, µ), (l, ν)) : −k ≤ j, l ≤ k, µ ∈Wn

[−j,−j+m], ν ∈W
n
[−l,−l+m]

}
is a matrix units of B(K(k,m)).
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4.4. Let k,m ∈ N . We define the completely positive unital linear map

ϕk,m : p(Aoσ Z)p→ B(K(k,m))

by
ϕk,m(x) = Q(k,m)xQ(k,m)|K(k,m), x ∈ p(Aoσ Z)p.

We remark that if e(µ, ν)wj 6= 0 for ν in Wn
[0,b], (b ≥ j), then

ν = (1, . . . , 1, νj , . . . , νb) and δ(ν) ∈ H[j,b].

For two integers a and b with a < b, we let

ωa,b =
{
e(µ, ν)wj : 0 ≤ j ≤ a and µ, ν ∈Wn

[0,b]

}
.

Let e(µ, ν)wj ∈ ωa,b for a, b ∈ N, (a < b) and e(µ, ν)wj 6= 0. Since
σ−l(p)δ(µ) = δ(µ) for ulδ(µ) ∈K(k,m), we have that if k ≥ a and m ≥ b
then

ϕk,m(e(µ, ν)wj) =
k−j∑

l=−k

E((j + l, α−(j+l)(µ) · βl), (l, α−(j+l)(ν) · γl)),

where

βl = (1, . . . , 1) ∈Wn
[−(j+l)+b+1,−(j+l)+m],

γl = (1, . . . , 1) ∈Wn
[−l+b+1,−l+m].

We remark that
δ(α−(j+l)(ν)) ∈ H[−l,−l+b+1],

so that E((j + l, α−(j+l)(µ) · βl), (l, α−(j+l)(ν) · γl)) ∈ E(k,m).

4.5. We define the linear map

ψk,m : B(K(k,m)) → p(Aoσ Z)p

by

ψk,m(E((j, µ), (l, ν))) =
1

2k + 1
puje(µ, ν)u∗lp,

for E((j, µ), (l, ν)) ∈ E(k,m).
Let Tj , (j ∈ Z) be the unitary operator on K defined by

Tj(uiδ(µ)) = ui+jδ(α−j(µ)), i ∈ Z, µ ∈Wn
∞.

Then we have

w − lim
r→ω

r∑
i=−r

TiE((j, µ), (l, ν))T ∗i = uje(µ, ν)u∗l
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for any E((j, µ), (l, ν)) ∈ B(K(k,m)). Here ω is a nontrivial ultrafilter on
N . Hence ψk,m is a unital completely positive map from B(K(k,m)) to
p(Aoσ Z)p. Since ujp = wj , we have

ψk,m · ϕk,m(e(µ, ν)wj) =
2k − j + 1

2k + 1
e(µ, ν)wj ,

for all e(µ, ν)wj ∈ ωa,b, a ≤ k and b ≤ m.

Theorem 4.6. Let Φ be Cuntz’s canonical inner endomorphism of On.
Then

ht(Φ) = log n.

Proof. Let e(µ, ν)wj ∈ ωa,b. Then we have, for a ≤ k and b ≤ m, by §4.5

‖ψk,m · ϕk,m(e(µ, ν)wj)− e(µ, ν)wj‖ =
j

2k + 1
‖e(µ, ν)wj‖ ≤ a

2k + 1
and we have for an i ∈ N

Φi(e(µ, ν)wj) = σi(e(µ, ν))
n∑

s=1

e(βs, γs)wj

=
n∑

s=1

e(β̄s · αi(µ), γs · νj)wj .

Here

βs = (1, . . . , 1, s
i−1
, 1, . . . , 1) ∈Wn

[0,j+i−1],

γs = (1, . . . , 1, s) ∈Wn
[0,j+i−1]

and

β̄s = (1, . . . , 1, s
i−1

) ∈Wn
[0,i−1], νj = (νj+i, . . . , νb) ∈Wn

[j+i,b+i].

Hence for k ≥ a and m ≥ b+ i we have

‖ψk,m · ϕk,m(Φi(e(µ, ν)wj))− Φi(e(µ, ν)wj)‖ ≤ an

2k + 1
.

Therefore, we have for N ∈ N

rcp

(
N⋃

i=0

Φi

(
ωa,b ∪ (ωa,b)∗ :

an

2k + 1

))
≤ rank B(K(k,N + b+ 1))

= (2k + 1)nN+b+1,

where (ωa,b)∗ = {x∗;x ∈ ωa,b}. This implies that for all integers a, b with
a < b,

ht

(
Φ, ωa,b ∪ (ωa,b)∗;

an

2k + 1

)
≤ lim N→∞

1
N

log
(
(2k + 1)nN+b+1

)
= log n.
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Increasing k, we have ht(Φ, ωa,b ∪ (ωa,b)∗) ≤ log n, for all a, b ∈ N with
a < b. Put ωa = ωa,2a ∪ (ωa,2a)∗, for a ∈ N . Then the set {ωa : a ∈ N} is
an increasing sequence of finite subsets of p(A oσ Z)p and the linear span
of
⋃
{ωa : a ∈ N} is dense in p(Aoσ Z)p. Hence

ht(Φ) = sup
a∈N

ht(Φ, ωa) ≤ log n.

On the other hand, the restriction Φ|A0 of Φ to A0 is σ|A0 = αn|A0 and
hτ (αn|A0) = hτ (αn) = log n. Since there exists a conditional expectation of
On onto A0 and τ · αn|A0 = τ,

log n = hτ (αn|A0) ≤ ht(Φ|A0) ≤ ht(Φ) ≤ log n

by the version for unital *-endomorphisms of [V, Proposition 4.4]. There-
fore, ht(Φ) = log n. �

Corollary 4.7. Let φ be the unique log n-KMS state of On. Then

hφ(Φ) = log n.

Proof. Let τ be the unique tracial state of A0 and E be the conditional
expectation of p(A oσ Z)p onto A0, then φ = τ · E. Hence φ · Φ = φ. This
relation implies, by the endomorphism version of [V, Proppsition 4.6],

log n = hτ (σ|A0) ≤ hφ(Φ) ≤ ht(Φ) = log n.

Therefore hφ(Φ) = log n. �

5. Entropy of Longo’s canonical endomorphism.

In this section we apply the result in §4 to Longo’s canonical endomorphism.
We use the same notations as in §4.

5.1. Let τi be the tracial state of Ai, for i ∈ N and let

Ã =
∞⊗

i=0,

(Ai, τi).

The Ã has the canonical trace
⊗∞

i=0, τi, which we denote by τ. The shift σ|A0

is extended to the *-endomorphism γ of the hyperfinite II1 factor Ã. The
γ is canonical in the sense of [Ch3]. Hence we have the extension algebra
M̃ = 〈Ã, σ〉, which is the injective type III1/n factor generated by Ã and an
isometry W. Then γ is extended to the canonical *-endomorphism Γ of M̃
and

Γ(a) = γ(a), a ∈ Ã, and Γ(W ) = πφ(vW ).

The Γ is Longo’s canonical endomorphism for the inclusion Ñ ⊂ M̃ [Ch3,
Theorem 6.10]. Here the subfactor Ñ is obtained naturally in the step of
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constructing M̃. The factor M̃ is the von Neumann algebra generated by
πφ(〈A0, σ|A0〉) and the C∗-algebra 〈A0, σ|A0〉 is On. Hence Γ is the extension
of Φ to M̃. Since Φ is φ-preserving, as an application of 4.7 Corollary, we
have the following by [CNT, Theorem VII.2]:

Corollary 5.2. Let M be the von Neumann algera generated by πφ(On)
and let Γ be the extension of Cuntz’s canonical endomorphism Φ of On to
M. Then Γ is Longo’s canonical endomorphism and

hφ(Γ) = log n.
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