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Valentin Deaconu

We present the continuous graph approach for some gener-
alizations of the Cuntz-Krieger algebras. These algebras are
simple, nuclear, and purely infinite, with rich K-theory. They
are tied with the dynamics of a shift on an infinite path space.
Interesting examples occur when the vertex spaces are unions
of tori, and the shift is not necessarily expansive. We also
show how the algebra of a continuous graph could be thought
as a Pimsner algebra.

Introduction.

Recent papers are dealing with different generalizations of the Cuntz-Krieger
algebras OA (see [Pi], [P1], [D2], [AR], etc). The exact relationship be-
tween these approaches remains to be explored, but certainly there are over-
laps. In [Pi], the author considers a Hilbert bimodule H over a C*-algebra,
and creation operators on a corresponding Fock space. These operators
generate the Toeplitz algebra TH and, taking a quotient of this, one obtains
the algebra OH . If the Hilbert bimodule is projective and finitely gener-
ated over an abelian, finite dimensional C*-algebra, then one recovers the
algebras OA.

In [P1], the starting point is a Smale space (a compact metric space
endowed with an expansive homeomorphism with canonical coordinates),
on which one defines the stable and unstable equivalence relations. The
associated C*-algebras have natural shift automorphisms, and the crossed
products are the so called Ruelle algebras. These are strongly Morita equiv-
alent to particular Cuntz-Krieger algebras if the Smale space is a topological
Markov shift.

Our point of view is to start with a continuous oriented graph (or di-
agram) E, to consider the space of one-sided infinite paths (obtained by
concatenation of edges in E), and to associate a groupoid (à la Renault) us-
ing the unilateral shift on this path space. The C*-algebra of this groupoid
plays the role of a continuous version of the Cuntz-Krieger algebras, since
these could be obtained by the same construction from a finite graph de-
fined by a 0-1 matrix. In many cases, this groupoid algebra is simple, purely
infinite, with computable K-theory. This approach offers more freedom for
constructing easy, concrete examples, with prescribed K-theory. It should
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be mentioned that C*-algebras associated with discrete graphs were studied
in [KPRR], [KPR], [KP]. See also the survey [K2].

The continuous graph approach is very similar to the point of view of
polymorphisms or correspondences, introduced earlier in a measure theoret-
ical context by Vershik and Arzumanian (see [AR] for a precise definition
and references).

Even though our groupoid algebras could be obtained also by using the
Pimsner approach, with a right choice of the Hilbert bimodule, we feel that
the present point of view has certain advantages, beeing tied with the dy-
namics of a shift. For example, even in a case where this shift is not ex-
pansive, so the space of two-sided infinite paths has no obvious Smale space
structure, we will prove that the corresponding algebra is simple and purely
infinite.

In the particular case when the vertex space is a disjoint union of tori, we
call the corresponding space of paths a generalized solenoid, and we obtain
results similar to those of Brenken (see [B]). It is interesting to notice how
these fairly complicated dynamical systems appear in a natural way from
embeddings of toral algebras.

Acknowledgements. Thanks are due to several people who helped me
while this paper was growing, especially Paul Muhly, Alex Kumjian, Jean
Renault, Jack Spielberg, Berndt Brenken, Ian Putnam.

1. Continuous graphs and dynamical systems.

Definition 1.1. By a continuous graph we mean a closed subset

E ⊂ V × {1, 2, ...,m} × V,

where V is a compact metric space. The elements of V are called vertices,
and the elements of E are called edges. The set {1, 2, ...,m} is used to label
different edges between the same pair of vertices. The graph is oriented
when for each edge e = (v, k, w) we specify the origin o(e) = v and the
terminus t(e) = w.

In this paper we consider dynamical systems (X+, σ+), (X, σ) built from
a continuous oriented graph E. The space X+ is the space of one-sided
infinite paths,

X+ = {(xi, ki)∞i=0 | (xi, ki, xi+1) ∈ E, i ≥ 0},
and σ+ : X+ → X+ is the unilateral shift,

σ+(xi, ki)p = (xp+1, kp+1).

The space X is the space of two-sided infinite paths, and σ is the bilateral
shift. The dynamical system (X+, σ+) unifies in a natural way the notion of
a continuous map T : V → V , a (finitely-generated) semigroup or group of
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continuous transformations S : V → V and the (unilateral) Markov shifts
(when V is a finite set and E is defined by a 0-1 matrix)(see [F]). For
example, if T : V → V is a continuous map, we can take E = Γ(T ), the
graph of T (in this case m = 1, and we omit it). Then X+ is homeomorphic
to V , and σ+ is conjugated to T .

Proposition 1.2. The dynamical system (X, σ) could be obtained from
(X+, σ+) by the usual inverse limit process by which one associates a homeo-
morphism to a continuous onto map.

Proof. Indeed, let

X̃ =

{
(ξn) ∈

∞∏
1

X+ | σ+(ξn+1) = ξn

}
.

We have π : X̃ → X+, π(ξ1ξ2...) = ξ1, and σ̃+ : X̃ → X̃, σ̃+(ξ1ξ2...) =
(σ+(ξ1)ξ1ξ2...), such that σ+π = πσ̃+. Since

X+ =

{
(en) ∈

∞∏
1

E | t(en) = o(en+1)

}
,

X̃ ⊂
∞∏
1

∞∏
1

E could be identified with X, the space of two-sided infinite

paths, and σ̃+ with the bilateral shift σ. �

Definition 1.3. For each continuous oriented graph E we define its dual
(or opposite) graph Ê by

Ê = {(x, k, y) | (y, k, x) ∈ E}.

This way we get dynamical systems (X̂+, σ̂+), (X̂, σ̂), where X̂+, X̂ are
constructed from Ê, and σ̂+, σ̂ are the unilateral and bilateral shift, re-
spectively. Of course, the systems (X, σ) and (X̂, σ̂−1) are conjugated. But
(X+, σ+) and (X̂+, σ̂+) could be very different.

Example 1.4. Take V = T, the unit circle, and E the graph of the map
z 7→ z2,

E = {(z, z2) | z ∈ T}.

Then X+ = T, σ+(z) = z2, and X̂+ is a solenoid,

X̂+ = {(z1, z2, ..., ) | zn ∈ T, z2
n+1 = zn, n ≥ 1},

σ̂+(z1, z2, ...) = (z2, z3, ...).

Note that if V has a group structure and E ⊂ V × V is a subgroup,
then X+ and X have also natural group structures, with componentwise
multiplication.
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2. The C*-algebra of a continuous graph.

In the case the two projections o, t : E → V, o(x, k, y) = x and t(x, k, y) = y
are onto local homeomorphisms, we can associate to the graph E a C*-
algebra C∗(E), using the Renault groupoid of the dynamical system (X+,
σ+). The space X+ is endowed with a metric defining the product topology.
If δ denotes the metric on V , then one can take

d((xi, ki), (x′i, k
′
i)) =

∑
i≥0

δ(xi, x
′
i)+ | ki − k′i |

2i

as a metric on X+. Similarly, we obtain a metric on X.
The unilateral shift σ+ is a local homeomorphism, and we consider the

following locally compact r-discrete groupoid:

Γ = Γ(X+, σ+)

= {(x, n, y) ∈ X+ × Z×X+ | ∃k, l ≥ 0, n = k − l, σk
+(x) = σl

+(y)}.
The range map, the source map, and the operations are given as follows:

r(x, n, y) = x, s(x, n, y) = y,

(x, n, y)(y, p, z) = (x, n + p, z), (x, n, y)−1 = (y,−n, x).

The unit space of Γ is X+, if we identify (x, 0, x) with x. A basis of open
sets for Γ is given by

Z(U, V, k, l) = {(x, k − l, (σl
+ |V )−1 ◦ σk

+(x)), x ∈ U},
where U and V are open subsets of X+, and k, l are such that σk

+ |U and
σl

+ |V are homeomorphisms with the same open range.

Definition 2.1. Given a continuous oriented graph E with the maps o, t
onto local homeomorphisms, we define its C*-algebra C∗(E) to be C∗(Γ), the
C*-algebra of the Renault groupoid associated with the dynamical system
(X+, σ+).

To understand the structure of C∗(E), consider the homomorphism c :
Γ → Z, c(x, n, y) = n, and let’s denote by R∞ the subgroupoid c−1(0). If
we denote by B the C∗-algebra of the equivalence relation R∞, the local
homeomorphism σ+ induces a *-endomorphism α of B by the formula

α(f)(x, y) =
1√

p(σ+(x))p(σ+(y))
f(σ+(x), σ+(y)), f ∈ Cc(R∞),

where for x ∈ X+, p(x) is the number of paths z such that σ+(z) = x.
Moreover, assuming that σ+ is not one-to-one, α is induced by a non unitary
isometry v, in the sense that α(f) = vfv∗, where

v(x, n, y) =

{
(p(σ+(x)))−1/2, if n = 1 and y = σ+(x)
0, otherwise.



GENERALIZED SOLENOIDS AND C*-ALGEBRAS 251

Indeed, v∗v = 1, and

vv∗(x, n, y) =

{
p(σ+(x))−1 if σ+(x) = σ+(y)
0, otherwise.

Thus, α is a proper corner endomorphism of B, and C∗(E) is isomorphic to
the crossed product B ×α N (see [R1]).

In order to compute the K-theory of C∗(E), we can use the exact sequence

K0(C∗(R∞)) id−α0−−−→ K0(C∗(R∞)) i0−−−→ K0(C∗(E))

∂1

x y∂0

K1(C∗(E)) i1←−−− K1(C∗(R∞)) id−α1←−−− K1(C∗(R∞))

where i : C∗(R∞)→ C∗(E) is the inclusion map.
If on E we consider the equivalence relation R defined by t: two edges

(x, k, y) and (x′, k′, y′) are equivalent iff y = y′, then the C*-algebra C∗(R)
is a continuous trace algebra with spectrum V , and there is a canonical
embedding

Φ : C(V )→ C∗(R),

Φ(f)((x, k, y), (x′, k′, y)) =

{
f(x), if x = x′ and k = k′

0, otherwise.

Using the same method as in the Main Result of [D2], we get:

Theorem 2.2. If Φ0 and Φ1 are the maps induced on K-theory by the em-
bedding Φ : C(V ) → C∗(R), and if the K-theory groups K0(V ) and K1(V )
are free and finitely generated, then

K0(C∗(E)) = ker(id− Φ1)⊕K0(V )/(id− Φ0)K0(V ),

K1(C∗(E)) = ker(id− Φ0)⊕K1(V )/(id− Φ1)K1(V ).

Using this theorem, we can get interesting examples of simple purely
infinite C*-algebras with prescribed K-theory groups. In particular, in the
next example, we construct C*-algebras An with K0(An) = 0 and K1(An) =
Zn.

Example 2.3. Let V = V1∪V2, where Vi, i = 1, 2 are copies of the unit circle,
and

E = {(v, w) ∈ V1 × V1 | v = w2} ∪ {(v, w) ∈ V1 × V2 | v = w} ∪
{(v, w) ∈ V2 × V1 | v = w} ∪
{(v, k, w) ∈ V2 × {1, 2, ..., n + 2} × V2 | w = vn}.

Then

Φ : C(V1)⊕ C(V2) −→ C(V1)⊗M2 ⊕ C(V2)⊗Mn(n+2)+1,
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Φ(f ⊕ g) =
(

σ2f 0
0 σ1g

)
⊕


σ1f 0 0 0
0 σ̂ng 0 0

0 0
. . . 0

0 0 0 σ̂ng

 .

Here σkf(z) = f(zk), and σ̂k is the k-times around embedding (the homo-
morphism compatible with the covering z → zk). There are n + 2 copies of
σ̂ng in the definition of Φ. Note that

Φ0 =
(

1 1
1 n(n + 2)

)
, Φ1 =

(
2 1
1 n + 2

)
.

It follows that

ker(id− Φ0) = 0, Z2/(id− Φ0)Z2 = 0,

ker(id− Φ1) = 0, Z2/(id− Φ1)Z2 = Zn,

therefore the corresponding C*-algebra C∗(E) has K0 = 0, K1 = Zn. One
can check that every orbit with respect to the equivalence relation R∞ is
dense, therefore C∗(R∞) and C∗(E) are simple. The latter algebra is purely
infinite because it appears as a crossed product of an inductive limit of circle
algebras by an endomorphism that does not preserve any trace (see Theorem
2.1 in [R2]).

Definition 2.4. Recall that σ+ : X+ → X+ is (positive) expansive if there
is a constant c > 0 such that x 6= y implies d(σn

+(x), σn
+(y)) ≥ c for some

integer n ≥ 0. An element x ∈ X+ is eventually periodic if there are two
integers p 6= q with σp

+(x) = σq
+(x).

In [De], Proposition 4.2, it is proved that if σ+ is expansive and the
eventually periodic points form a dense set with empty interior, then C∗(Γ),
and therefore C∗(E), is nuclear, purely infinite, and belongs to the bootstrap
class N .

Note that in the above hypotheses, the groupoid Γ = Γ(X+, σ+) is es-
sentially free, i.e. the set of points in the unit space with trivial isotropy is
dense.

We will see in the last section that even for non-expansive σ+, the C*-
algebra C∗(E) could be purely infinite. Of course, it can not be finite as
long as the endomorphism α is induced by a non unitary isometry v. If σ+

is minimal (i.e. each orbit with respect to the equivalence relation R∞ is
dense), then this C*-algebra is also simple.

Remark 2.5. When σ+ is expansive, there are other C*-algebras associated
with the continuous graph E. According to [AR], in this case, the space
X of two-sided infinite paths has a Smale space structure, and one may
consider the stable equivalence relation:

Rs = {(x, y) ∈ X ×X | d(σn(x), σn(y))→ 0 as n→ +∞}.
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Then C∗(Rs) is strongly Morita equivalent to C∗(R∞), and its Ruelle algebra
C∗(Rs)×Z is strongly Morita equivalent to C∗(E) (see [AR], Theorem 4.5).

Another C*-algebra which could be associated with the continuous graph
E is the crossed product C(X)×σ Z.

3. The connection with the Pimsner algebras OH .

In this paragraph, we recall the Pimsner construction from [Pi], and we
show how the C*-algebra of a continuous graph could be thought as OH ,
for a particular Hilbert bimodule H. To a pair (H,A), where H is a (right)
Hilbert module over a C*-algebra A, and A acts to the left on H via a
∗-homomorphism ϕ : A → L(H), Pimsner constructs a C*-algebra OH ,
which generalizes both the crossed products by Z and the Cuntz-Krieger
algebras. The algebra OH is a quotient of the generalized Toeplitz algebra
TH , generated by the creation operators Tξ, ξ ∈ H on the Fock space H+ =
∞⊕

n=0

H⊗n. Here H⊗0 = A, and for n ≥ 1, H⊗n denotes the n-th tensor

power of H, balanced via the map ϕ. By definition, Tξa = ξa, for a ∈ A,
and Tξ(ξ1 ⊗ ...⊗ ξn) = ξ ⊗ ξ1 ⊗ ...⊗ ξn, for ξ1 ⊗ ...⊗ ξn ∈ H⊗n.

To give another description of the algebra OH , Pimsner considers a new
pair (H∞,FH), where FH is the C*-algebra generated by all the compact
operators K(H⊗n), n ≥ 0 in lim

−→
L(H⊗n), and H∞ = H ⊗ FH . The advan-

tage is that H∞ becomes an FH −FH bimodule, such that the adjoint H∗
∞

is also an FH − FH bimodule. The C*-algebra OH is represented on the
two-sided Fock space

H∞ =
⊕
n∈Z

H⊗n
∞ ,

where for n < 0,H⊗n
∞ means (H∗

∞)⊗−n. In fact, it is isomorphic to the
C*-algebra generated by the multiplication operators Mξ ∈ L(H∞), where
ξ ∈ H∞, and Mξω = ξ ⊗ ω.

Given a continuous graph E such that the origin and terminus maps
E → V are onto local homeomorphisms, let A = C(V ), and let H = C(E)
(as a vector space), with the structure of Hilbert A-module given by

(ξf)(e) = ξ(e)f(t(e)), ξ ∈ H, f ∈ A, e ∈ E,

〈ξ, η〉(v) :=
∑

t(e)=v

ξ(e)η(e), v ∈ V, ξ, η ∈ H.
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In other words, the inner product is given by 〈ξ, η〉 = P (ξ̄η), where P :
C(E)→ C(V ) is the conditional expectation

(Pξ)(v) =
∑

t(e)=v

ξ(e).

The left module structure is given by

ϕ : A→ L(H), (ϕ(f)ξ)(e) = f(o(e))ξ(e) f ∈ A, ξ ∈ H.

Note that indeed ϕ(f) is in L(H), having the adjoint ϕ(f̄), f ∈ A.
To prove that OH with this choice of A,H and ϕ is isomorphic to C∗(E),

let’s identify the C*-algebra FH in this case.
Note that H⊗ϕ H is a quotient of C(E)⊗C(E), where we identify ξf ⊗η

with ξ ⊗ ϕ(f)η for any ξ, η ∈ H and any f ∈ A. Therefore H ⊗ϕ H could
be identified as a vector space with the continuous functions on the set

{(e1, e2) ∈ E × E | t(e1) = o(e2)}.
This set will be denoted by X2, and is precisely the set of paths of length 2.
In a similar way, H⊗n is identified (as a vector space) with C(Xn), where
Xn is the set of paths of length n. The Hilbert A-module structure on H⊗n

for n ≥ 2 is given by

(ξf)(x) = ξ(x)f(tn(x)), x ∈ Xn

where tn : Xn → V, tn(e1e2...en) = t(en), and by

〈ξ, η〉n = Pn(ξ̄η).

Here Pn is the conditional expectation

Pn : C(Xn)→ C(V ), Pn(ξ)(v) =
∑

tn(x)=v

ξ(x).

Proposition 3.1. The C*-algebra K(H) is isomorphic with C∗(R), where

R = {(e1, e2) ∈ E × E | t(e1) = t(e2)}
is the equivalence relation associated with the map t. The map ϕ : A→ L(H)
could be identified with the embedding Φ : C(V ) → C∗(R), defined before
Theorem 2.2. Moreover, K(H⊗n) ' C∗(Rn), where

Rn = {(x, y) ∈ Xn ×Xn | tn(x) = tn(y)}
is the equivalence relation associated with tn.

Proof. Taking into account the fact that o and t are local homeomorphisms,
we have L(H) = K(H), since H is algebraically finitely generated.

Now K(H) = H ⊗ H∗, the tensor product balanced over A, where H∗

is the adjoint of H. Since ξf ⊗ η∗ = ξ ⊗ fη∗, it follows that, as a set,
K(H) = C(R). The multiplication of compact operators turns out to be
the convolution product on C(R), therefore, as C*-algebras, K(H) = C∗(R).

�
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Corollary 3.2. We have FH = lim
−→

C∗(Rn). Therefore, FH is isomorphic

to the algebra C∗(R∞).

Proof. Note that for n ≥ 1, the inclusion φn : C∗(Rn)→ C∗(Rn+1),

(φn)(f)(x1...xn+1, y1...yn+1) =

{
f(x1...xn, y1...yn) if xn+1 = yn+1

0, otherwise

is just the map K(H⊗n)→ K(H⊗n+1), T 7→ T ⊗ I. Here R1=R. �

In order to establish an isomorphism between C∗(Γ) and OH , we show
that they appear as the C∗-algebras associated to isomorphic Fell bundles
over the group Z. This point of view was suggested by Abadie, Eilers and
Exel in [AEE]. The definition of a Fell bundle and of the associated C∗-
algebra is taken from [K1].

To the pair (H∞,FH), we can associate the Fell bundle B, where Bn :=
H⊗n
∞ , n ∈ Z. The multiplication is given by the tensor product, identifying

H∗
∞ ⊗H∞ with FH and H∞ ⊗H∗

∞ with the ideal F1
H of FH , generated by

K(H⊗n) with n ≥ 1. But F1
H is equal to FH in our case. The involution is

obvious. Then

L2(B) = H∞ =
⊕
n∈Z

H⊗n
∞ .

Since H∞ is generated by FH and H∞, it follows that the C∗-algebra gen-
erated by the operators Mξ is isomorphic to C∗(B). Hence, OH ' C∗(B).

For the groupoid Γ and l ∈ Z, take

Γl := {(x, k, y) ∈ Γ | k = l} = {(x, y) ∈ X ×X | xn = yn+l for large n},

and Dl = Cc(Γ−l) (closure in C∗(Γ)). This way, we obtain a Z-grading
on C∗(Γ), and it is easy to see that this C*-algebra could be recovered as
C∗(D). But

D0 = C∗(R∞) ' FH = B0,

and

D1 = Cc(Γ−1) ' H ⊗A FH = H∞ = B1.

We get

Proposition 3.3. With the above choice of A,H and ϕ, the C*-algebras
C∗(E) and OH are isomorphic.
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4. Generalized solenoids.

A solenoid is a compact connected abelian group of finite dimension. For
example, if T is the unit circle,

T(m) = {z ∈ TZ | zm
k = zk+1, k ∈ Z}

is such a group, for any integer m > 1. The bilateral shift σ on T(m),
σ(z)p = zp+1 is a homeomorphism, and in many respects it is an analogue
of the Bernoulli shift. In [B], Brenken considered the dynamical system
(G0, σ) for G0 the connected component of the identity of the group

G = {z ∈ (Td)Z | Fzk = Mzk+1, k ∈ Z},

where M,F are surjective endomorphisms of the d-torus, given by matrices
M,F ∈Md(Z) with nonzero determinant. (Note that the case d = 1,M =
1, F = m corresponds to the above example T(m).) The space G0 has
a natural local product structure, being a principal bundle over Td with
fiber the Cantor set. Moreover, it has a Smale space structure, and the
author identifies the C∗-algebras associated with the stable and unstable
equivalence relations.

Definition 4.1. By a generalized solenoid we mean the space X of two-
sided infinite paths with edges in the graph E described bellow. Let V =
Td

1 t ... t Td
N be the disjoint union of N copies of the d-dimensional torus

Td , and let L = (l(i, j))i,j be an N × N matrix with positive integer
entries (the ”incidence” matrix of the graph). We require that in the ma-
trix L each row and each column has at least a nonzero entry. For each
pair (i, j) with l(i, j) ≥ 1, consider a family of closed, connected subgroups
Gij

1 , Gij
2 , ..., Gij

l(i,j) of Td
i ×Td

j , not necessarily distinct, such that all the pro-
jections on Td

i and Td
j are surjective. For the pairs (i, j) with l(i, j) = 0,

this family is empty by definition. We take E to be the disjoint union of
all the groups Gij

k , 1 ≤ i, j ≤ N, 1 ≤ k ≤ l(i, j), with obvious origin and
terminus maps.

It is known (see [KS]) that there are families of d×d nonsingular matrices
with integer entries,

Aij = {Aij
1 , ..., Aij

l(i,j)}, Bij = {Bij
1 , ..., Bij

l(i,j)}.

such that

Gij
l = {(z, w) ∈ Td

i ×Td
j | A

ij
l z = Bij

l w}.

The matrices Aij
k , Bij

k are not necessarily distinct. Note that a generalized
solenoid X has no longer a group structure, and the dynamical system (X, σ)
is an analogue of the Matkov shift.
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Example 4.2. Let d = 2, N = 2,

A11
1 =

(
3 1
1 1

)
, B11

1 =
(
−1 0
2 3

)
, A12

1 =
(

1 0
0 2

)
, B12

1 =
(

3 0
1 1

)
,

A12
2 =

(
2 1
0 1

)
, B12

2 =
(
−1 1
1 0

)
,

A22
1 =

(
1 0
0 1

)
, B22

1 =
(

2 0
0 1

)
, A22

2 =
(

1 0
0 1

)
, B22

2 =
(

1 0
0 1

)
.

The space of edges is

{((z, w), 1, (t, u)) ∈ T2
1 × {1} ×T2

1 | z3w = t−1, zw = t2u3} ∪

{((z, w), 1, (t, u)) ∈ T2
1 × {1} ×T2

2 | z = t3, w2 = tu} ∪

{((z, w), 2, (t, u)) ∈ T2
1 × {2} ×T2

2 | z2w = t−1u, w = t} ∪

{((z, w), 1, (t, u)) ∈ T2
2 × {1} ×T2

2 | z = t2, w = u} ∪

{((z, w), 2, (t, u)) ∈ T2
2 × {2} ×T2

2 | z = t, w = u}.
The corresponding embedding C(V )→ C∗(R) of toral algebras is

Φ : C(T2)⊕ C(T2)→ C(T2)⊗M3 ⊕ C(T2)⊗M7,

Φ(f ⊕ g) = Φ11(f)⊕
(

Φ12(f) 0
0 Φ22(g)

)
,

where

Φ11(f) = σ̂B11
1
◦ σA11

1
(f),Φ12(f) =

(
σ̂B12

1
◦ σA12

1
(f) 0

0 σ̂B12
2
◦ σA12

2
(f)

)
,

and

Φ22(g) =
(

σ̂B22
1
◦ σA22

1
(g) 0

0 σ̂B22
2
◦ σA22

2
(g)

)
.

Here σA : C(T2) → C(T2) denotes the ∗-homomorphism induced by the
covering A, defined by (σAf)(z) = f(Az), and σ̂A : C(T2) → C(T2) ⊗
M| det A| is the homomorphism compatible with A, in the sense that σ̂A ◦
σA(f) = f ⊗ I| det A|.

Remark 4.3. Given a generalized solenoid X, let’s denote by K the space
of two-sided infinite paths in the discrete graph with N vertices, where from
the vertex i to the vertex j there are l(i, j) edges. On the Cantor set K
consider the Markov shift τ . Note that there is a natural map ρ : X → K,
ρ((xn, kn)n∈Z) = (kn)n∈Z. Moreover, ρσ = τρ. Therefore, (X, σ) is in fact
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an extension of a Markov shift (K, τ). In the above example, the incidence
matrix L is

L =
(

1 2
0 2

)
.

Note that the fiber of ρ has a group structure, therefore X could be seen
as a group bundle over the Cantor set K. The groups are in fact solenoids
if they are connected.

The space X is also fibered over V = Td
1 t ... tTd

N by the map π : X →
V, π((xn, kn)n∈Z) = x0. The fibers of π are totally disconnected, since the
set {xn ∈ V | π((xn, kn)n∈Z) = x0} is finite for each fixed x0 ∈ V and
n ∈ Z.

The following example arose in a discussion with Jack Spielberg.

Example 4.4. Let V = T, the unit circle, and

E = {(z, 1, z2) | z ∈ V } ∪ {(z3, 2, z) | z ∈ V }.

Then

X = {(zn, kn) ∈ (V × {1, 2})Z | kn = 1⇒
zn+1 = z2

n, kn = 2⇒ z3
n+1 = zn}.

We will show that σ : X → X, σ(zn, kn)p = (zp+1, kp+1) is not expansive,
therefore the space (X, σ) has not a Smale space structure.

It suffices to show that for any ε > 0, we can find two distinct sequences
(zn, kn) and (wn, kn) such that δ(zn, wn) ≥ ε for all n ∈ Z. Fix z0, w0 ∈ V .
The idea is that, taking in a certain order squares, cubes, square roots and
cubic roots, the corresponding vertices remain close together. We can choose
two sequences of integers (an)n≥1, (bn)n≥1 such that

lim
n→∞

2a1+...+an

3b1+...+bn
= 1.

Consider the symmetric sequence (kn)n∈Z described as

... 2...2︸︷︷︸
b2

1...1︸︷︷︸
a2

2...2︸︷︷︸
b1

1...1︸︷︷︸
a1

1̄...1︸︷︷︸
a1

2...2︸︷︷︸
b1

1...1︸︷︷︸
a2

2...2︸︷︷︸
b2

...,

where the bar indicates k0. Given ε > 0, we can choose z0 and w0 sufficiently
close together (but distinct), and zn and wn in a consistent way (when we
take square or cubic roots) such that δ(zn, wn) ≥ ε. It follows that

d(σp(zn, kn), σp(wn, kn)) ≥ ε ∀p ∈ Z,

and the shift is not expansive.
Nevertheless, the orbits with respect to R∞ are dense in X+, and there is

no shift invariant trace, therefore the C*-algebra C∗(E) is simple and purely
infinite.
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Note that in this example, the dynamical system (X+, σ+) is an extension
of the Bernoulli shift ({1, 2}N, τ). The fibers of the map ρ : X+ → {1, 2}N
are circles over the sequences which contain only a finite numbers of 2’s, and
solenoids over the sequences containing infinitely many 2’s.

It is interesting to notice that C∗(E) and C∗(Ê) are both simple, purely
infinite, with K-theory

K0(C∗(E)) = K1(C∗(Ê)) = Z2, K1(C∗(E)) = K0(C∗(Ê)) = Z3.

In [P1] it is proved that the Ruelle algebra associated to the graph of the
map z 7→ zp on the unit circle is isomorphic to the one obtained from the
dual graph. Whether this is true for more general graphs is an open question.
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